JPS6314457B2 - - Google Patents

Info

Publication number
JPS6314457B2
JPS6314457B2 JP56030757A JP3075781A JPS6314457B2 JP S6314457 B2 JPS6314457 B2 JP S6314457B2 JP 56030757 A JP56030757 A JP 56030757A JP 3075781 A JP3075781 A JP 3075781A JP S6314457 B2 JPS6314457 B2 JP S6314457B2
Authority
JP
Japan
Prior art keywords
pyroelectric
ribbon
planar
amorphous
ferroelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56030757A
Other languages
Japanese (ja)
Other versions
JPS57145255A (en
Inventor
Takeshi Hirota
Eiichi Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56030757A priority Critical patent/JPS57145255A/en
Publication of JPS57145255A publication Critical patent/JPS57145255A/en
Publication of JPS6314457B2 publication Critical patent/JPS6314457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/39Charge-storage screens
    • H01J29/45Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen
    • H01J29/458Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen pyroelectrical targets; targets for infrared or ultraviolet or X-ray radiations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radiation Pyrometers (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は、焦電形熱撮像管用の面状焦電素子お
よびその製造方法に関するものであり、高分解
能、高感度の面状焦電素子および高歩留で製造し
うる方法を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a planar pyroelectric element for a pyroelectric thermal image pickup tube and a method for manufacturing the same, and the present invention relates to a planar pyroelectric element with high resolution and high sensitivity, and a planar pyroelectric element that can be manufactured with high yield. The purpose is to provide a method for

従来、赤外線による物体の二次元表面の温度分
布像を得るには、点状赤外線検出器と光学系の二
次元機械的走査とを組み合わせたものと、二次元
赤外線検出面と電子ビーム走査との組み合わせ、
即ち撮像管タイプのものとがあつた。前者の組み
合わせでは、1個の点状検出器で多数の画素を時
間的に順次測定して二次元表面の温度分布像で得
るため、時定数の小さい量子形赤外線検出素子
(例えば、InSb、Hg1-xCdxTe等)が用いられて
いるが、これらの素子は、極低温の液体窒素温度
(77〓)にまで冷却しなければ正常に働かず、又
装置自身も機械的走査のため大形化し、高価とな
るという欠点がある。これに対して、後者の撮像
管タイプでは、一画素を面状検出器の一要素で検
出するため、検出器は時定数が多少長くてもよい
ため、冷却を必要とせず、そのため装置の小型軽
量化、および低価格化ができるという長所を持
つ。近年、この面状素子として、感度が低いサー
ミスターに代つて、焦電形赤外線検出器が実用化
され、高感度で時定数の点でも優れたものが開発
されつつあるが問題点も多い。
Conventionally, in order to obtain a temperature distribution image of a two-dimensional surface of an object using infrared rays, two methods have been used: a combination of a point-like infrared detector and two-dimensional mechanical scanning of an optical system, and a combination of a two-dimensional infrared detection surface and electron beam scanning. combination,
That is, there was a camera tube type one. In the former combination, a single point detector measures many pixels sequentially in time to obtain a temperature distribution image on a two-dimensional surface. 1- xCd The drawback is that it is large and expensive. On the other hand, in the latter type of image pickup tube, each pixel is detected by one element of the planar detector, so the detector may have a slightly longer time constant, so cooling is not required, and the device is compact. It has the advantage of being lightweight and low cost. In recent years, pyroelectric infrared detectors have been put into practical use as planar elements, replacing thermistors with low sensitivity, and devices with high sensitivity and excellent time constants are being developed, but they still have many problems.

これらに用いられる焦電材料に要求される、物
理的特性としては、焦電係数PT(coul/cm2℃)が
大きく、キユーリー温度TC5(℃)が高く、電気
抵抗率ρ(Ω・cm)が小さいことおよび熱伝導率
K(W/cm℃)と熱拡散係数χ(cm2/S)とが小さ
いことである。その他に、撮像管を作製する上で
必要なことは、真空中での安定性、加工性、耐熱
性、操作性等に優れていることである。大きい焦
電係数PTが必要な理由は、検出素子の温度変化
に対して誘起される表面電荷によつて得られる焦
電電流jTを大きくするためである。又、高いキユ
ーリー温度TCが必要な理由は、キユーリー温度
TCが例えば、100℃以下と低い焦電材料を用いた
場合、もし周囲の温度が高くなると焦電効果を失
ない、素子として動作しなくなるためである。低
い電気抵抗率ρが必要な理由は面状焦電素子を赤
外線撮像管のターゲツトとして用いた場合、この
面状焦電素子上に、電子ビーム走査によつて負電
荷が蓄積されないようにするためであり、熱伝導
率Kと熱拡散係数χとが共に小さいことが必要な
理由は、空間分解能、過度分解能等感度の点から
である。その他、加工性について述べると、これ
ら面状焦電素子は、外部の熱的刺激、赤外線に対
し表面の検出要素の熱容量を小さくし、昇温・降
温の応答速度及び感度を上げるため膜は薄い程好
ましいが強度上の問題から数10μm程度にする必
要があるため薄体化が容易でなくてはならない。
The physical properties required of the pyroelectric materials used in these materials include a large pyroelectric coefficient P T (coul/cm 2 °C), a high Curie temperature T C 5 (°C), and an electrical resistivity ρ (Ω・cm) is small, and thermal conductivity K (W/cm°C) and thermal diffusion coefficient χ (cm 2 /S) are small. In addition, what is required when producing an image pickup tube is that it has excellent stability in vacuum, workability, heat resistance, operability, and the like. The reason why a large pyroelectric coefficient P T is necessary is to increase the pyroelectric current j T obtained by the surface charge induced in response to a temperature change of the detection element. Also, the reason why a high Curie temperature T C is necessary is that the Curie temperature
This is because if a pyroelectric material with a low T C of, for example, 100° C. or less is used, it will not lose its pyroelectric effect and will no longer function as an element if the surrounding temperature rises. The reason why a low electrical resistivity ρ is necessary is to prevent negative charges from being accumulated on the planar pyroelectric device due to electron beam scanning when the planar pyroelectric device is used as a target for an infrared imaging tube. The reason why it is necessary that both the thermal conductivity K and the thermal diffusion coefficient χ are small is from the viewpoint of sensitivity such as spatial resolution and excessive resolution. Regarding processability, these planar pyroelectric elements have thin films to reduce the heat capacity of the detection element on the surface against external thermal stimuli and infrared rays, and to increase response speed and sensitivity for temperature rise and fall. However, due to strength issues, the thickness must be approximately several tens of micrometers, so it must be easy to make it thin.

従来、この焦電形赤外線検出素子としてTGS
(トリグリシンサルフエイト)、PVF2(ポリビニ
リデンフロライド)、単結晶のPbTiO3(チタン酸
鉛)PZT、Pb5Ge3O11(ゲルマン酸鉛)等が報告
されてきた。
Conventionally, TGS was used as this pyroelectric infrared detection element.
(triglycine sulfate), PVF 2 (polyvinylidene fluoride), single crystal PbTiO 3 (lead titanate) PZT, Pb 5 Ge 3 O 11 (lead germanate), etc. have been reported.

代表的なそれぞれの焦電材料について、これら
の項目を検討すると、TGSはキユーリー温度TC
が低く(TC=49℃)、又潮解性を持ち、さらに約
150℃で分解するため、撮像管などに組み込むこ
とが困難である。正方晶系の強誘電体である
PbTiO3は高いキユーリー温度TC(=470℃)を持
ち、又焦電係数PTが大きく(PT=6×10-8coul/
cm2℃)、比較的感度は良いが、熱拡散係数χが大
きい(χ=9.9×10-3cm2/S)ため空間分解能は
悪いという欠点を持つ。しかし素子表面に溝加工
等をすることにより、実効的に熱拡散係数を小さ
くできる。しかしながら、単結晶から薄体にまで
加工する必要があるため多大な時間と材料ロスを
生じコストアツプにつながつていた。PVF2はキ
ユーリー温度TCが120℃と若干低いが、有機物で
あるため薄いフイルム状に加工しやすく、熱拡散
係数も小さいが感度はあまりよくない(PT=0.24
×10-8coul/cm2℃)。またゲルマン酸鉛
(Pb5Ge3O11)は、TC=178℃、PT=0.5×
10-8coul/cm2℃)で実用的にはPbTiO3に次ぐ赤
外線検出素子材料である六方晶系の結晶である。
しかし、これは、電気抵抗率ρが大きい(ρ=3
×1012Ωcm)という弱点を持つ。結局、物理的特
性、材料の薄体化等、全ての要求を満足するもの
が得られていないという問題があつた。
Considering these items for each typical pyroelectric material, TGS is the Curie temperature T C
(T C = 49℃), has deliquescent properties, and has a
Because it decomposes at 150°C, it is difficult to incorporate it into image pickup tubes, etc. It is a tetragonal ferroelectric material.
PbTiO 3 has a high Curie temperature T C (=470℃) and a large pyroelectric coefficient P T (P T =6×10 -8 coul/
cm 2 °C), and has relatively good sensitivity, but has the disadvantage of poor spatial resolution due to the large thermal diffusion coefficient χ (χ = 9.9×10 -3 cm 2 /S). However, by forming grooves on the surface of the element, the thermal diffusion coefficient can be effectively reduced. However, since it is necessary to process from a single crystal to a thin body, a large amount of time and material loss occur, leading to an increase in costs. PVF 2 has a slightly lower Curie temperature T C of 120°C, but since it is an organic substance, it is easy to process into thin films and has a small thermal diffusion coefficient, but its sensitivity is not very good (P T = 0.24
×10 -8 coul/cm 2 ℃). In addition, lead germanate (Pb 5 Ge 3 O 11 ) has T C = 178℃, P T = 0.5×
10 -8 coul/cm 2 ℃), and is a hexagonal crystal that is practically the second material for infrared detection elements after PbTiO 3 .
However, this has a large electrical resistivity ρ (ρ=3
×10 12 Ωcm). In the end, there was a problem in that it was not possible to obtain a product that satisfied all the requirements such as physical properties and thinning of the material.

本発明はかかる問題を解決するものであり、強
誘電体を主成分とする非晶質薄体に、局在的に熱
エネルギーを与えることにより、結晶化させ、ド
ツトマトリツクス状に結晶化させた部分を配置さ
せ、かつ結晶化させた各結晶体のC軸方向を、全
て薄帯面と垂直なる方向に配向させることによ
り、高感度の面状焦電素子およびその製造方法を
提供するものである。
The present invention solves this problem by locally applying thermal energy to an amorphous thin body mainly composed of ferroelectric material to crystallize it into a dot matrix shape. To provide a highly sensitive planar pyroelectric element and a method for manufacturing the same, by arranging the crystallized parts and orienting the C-axis direction of each crystallized crystal in a direction perpendicular to the ribbon surface. It is.

以下、本発明の構成を第1図、第2図を用いて
詳述する。
Hereinafter, the configuration of the present invention will be explained in detail using FIGS. 1 and 2.

第1図は、本発明の製造方法を実施するために
用いた薄帯製造装置の概略断面図、第2図は本発
明の面状焦電素子の一例を示す斜視図である。
FIG. 1 is a schematic cross-sectional view of a ribbon manufacturing apparatus used to carry out the manufacturing method of the present invention, and FIG. 2 is a perspective view showing an example of the planar pyroelectric element of the present invention.

図中1は、加熱ヒータ2によつて加熱融解させ
た試料3を入れた石英管である。
In the figure, 1 is a quartz tube containing a sample 3 heated and melted by a heater 2 .

Arガス、N2ガスなどの不活性ガスで加圧する
ことにより石英管1の底部に設けられた直径0.5
〜1.0mmのノズル孔4から融解した試料3を、互
いに近接し、かつ逆方向に500〜4000r.p.mで回転
する一対の直径50〜200mmのステンレスローラ5
の隙間に噴出させ、急冷、凝固させることによ
り、厚さ10〜50μmの非晶質薄帯6を得た。
A diameter of 0.5 mm is provided at the bottom of the quartz tube 1 by pressurizing with an inert gas such as Ar gas or N2 gas.
A pair of stainless steel rollers 5 with a diameter of 50 to 200 mm rotate in close proximity to each other and in opposite directions at 500 to 4000 rpm.
An amorphous ribbon 6 having a thickness of 10 to 50 μm was obtained by ejecting the mixture into the gap, rapidly cooling and solidifying it.

また、試料3としては、強誘電体として例えば
Pb5Ge3O11、PZTチタン酸バリウムPbTiO3等を
主成分とする焦電材料をそれぞれ通常のセラミツ
クスを製造する方法、即ち、出発原料の配合・混
合・乾燥・仮焼・粉砕・乾燥造粒成形・本焼成と
いう一連の工程で作成された焼結体を用いた。こ
の非晶質薄体6に、直径1〜2μmのレーザービ
ームを照射し、その照射部分だけ温度をあげ結晶
化させた。この光照射を二次元的に一定間隔をお
いて行なうことにより、基盤の目の様に、結晶化
した部分8と非晶質部分7とを形成した。
In addition, as sample 3, for example, as a ferroelectric material,
Methods for producing ordinary ceramics from pyroelectric materials mainly composed of Pb 5 Ge 3 O 11 , PZT barium titanate PbTiO 3 , etc., namely, blending, mixing, drying, calcining, pulverizing, and drying of starting materials. A sintered body created through a series of steps of grain molding and final firing was used. This amorphous thin body 6 was irradiated with a laser beam having a diameter of 1 to 2 μm, and only the irradiated portion was heated and crystallized. By performing this light irradiation two-dimensionally at regular intervals, crystallized portions 8 and amorphous portions 7 were formed like the eyes of the base.

このように形成した結晶化させた部分3の結晶
のC軸方向は矢印9に示すように、薄帯面に対し
垂直な方向に配向した。
The C-axis direction of the crystal of the crystallized portion 3 thus formed was oriented in a direction perpendicular to the ribbon surface, as shown by arrow 9.

次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.

実施例 1 セラミツクス合成法を用いて作つた多結晶
PbTiO330gを第1図に示す装置を用いて1200℃
で石英管中で溶融し、0.3Kg/cm2のArガスで、
1000r.p.mで回転する直径100mmのステンレスロー
ラ5の隙間に噴出し、厚さ20μmの非晶質薄膜6
を得た。
Example 1 Polycrystal made using ceramics synthesis method
30g of PbTiO 3 was heated to 1200°C using the equipment shown in Figure 1.
melted in a quartz tube with 0.3Kg/ cm2 Ar gas,
A thin amorphous film 6 with a thickness of 20 μm is sprayed into the gap between a stainless steel roller 5 with a diameter of 100 mm rotating at 1000 rpm.
I got it.

この薄帯から3cm×5cmの面積を有するものを
作つた。この非晶質薄帯に、直径1.5μmに絞つた
出力1Wのルビー・レーザー光パルス(1msec)
を照射し7.0μm間隔で直径μmの結晶化された部
分8をドツトマトリツクス状に形成し、面状焦電
素子をつくつた。また、その特性を測定した。結
果、温度分解能は約0.5℃と、従来の単結晶膜
PbTiO3を用いた場合の1〜2℃の分解能と比
べ、著しく特性が向上したものを得た。
A piece with an area of 3 cm x 5 cm was made from this thin strip. A ruby laser light pulse (1msec) with an output of 1W focused to a diameter of 1.5μm is applied to this amorphous ribbon.
was irradiated to form crystallized portions 8 with a diameter of .mu.m at 7.0 .mu.m intervals in the shape of a dot matrix, thereby producing a planar pyroelectric element. We also measured its characteristics. As a result, the temperature resolution is approximately 0.5℃, compared to conventional single crystal films.
Compared to the resolution of 1 to 2° C. using PbTiO 3 , a device with significantly improved characteristics was obtained.

実施例 2 非晶質化を容易にさせるためSiO2を5モル%
加えたPb5Ge3O11多結晶体を作り、そのうちの50
gを実施例1と同様に1000℃で溶融し0.4Kg/cm2
のArガスで800r.p.mで回転する直径100mmのステ
ンローラ5に噴出し、厚さ15μmの非晶質薄体を
得た。その後、実施例1と同様に8.0μm間隔で直
径6.0μmの結晶体化された部分8をドツトマトリ
ツクス状に、又C軸が薄帯表面に垂直になるよう
に配向させて結晶を折出させ、面状焦電素子をつ
くつた。その特性を測定した結果、温度分解能は
約0.3℃と優秀な特性を示した。
Example 2 5 mol% of SiO 2 to facilitate amorphization
Added Pb 5 Ge 3 O 11 to make polycrystals, of which 50
g was melted at 1000℃ in the same manner as in Example 1 to give 0.4Kg/cm 2
Ar gas was ejected onto a stainless steel roller 5 with a diameter of 100 mm rotating at 800 rpm to obtain an amorphous thin body with a thickness of 15 μm. Thereafter, as in Example 1, the crystallized portions 8 with a diameter of 6.0 μm are arranged at 8.0 μm intervals in a dot matrix shape, and the crystals are oriented so that the C axis is perpendicular to the surface of the ribbon. and created a planar pyroelectric element. As a result of measuring its characteristics, the temperature resolution was approximately 0.3℃, which showed excellent characteristics.

以上のように本発明によればドツト状に結晶化
させた部分と、その周囲を囲む非晶質の部分とを
同一面上に存在させうるため、結晶体部分に電子
ビーム走査により蓄積された電荷を結晶体に比べ
105〜106倍も小さい電気抵抗率ρを持つ非晶質部
分にすみやかにリークさせることができる。その
ため、例えばPb5Ge3O11の電気抵抗値が大きいた
め、チヤージアツプするという従来の欠点を解決
し、さらに、非晶質体より結晶化させる過程で、
膜面に垂直にC軸が整うため、焦電係数が最も高
い結晶方向(他の結晶方向では焦電効果は見られ
ない)を利用できるため高感度・高分解能の面状
焦電素子を提供することができる。
As described above, according to the present invention, since the dot-shaped crystallized portion and the surrounding amorphous portion can be made to exist on the same plane, Compare the charge with that of a crystal
It is possible to quickly cause leakage to the amorphous portion, which has an electrical resistivity ρ that is 10 5 to 10 6 times smaller. Therefore, for example, Pb 5 Ge 3 O 11 has a large electric resistance value, so it solves the conventional drawback of charging up, and furthermore, in the process of crystallizing from an amorphous body,
Since the C-axis is aligned perpendicular to the film surface, the crystal direction with the highest pyroelectric coefficient can be used (pyroelectric effects are not observed in other crystal directions), providing a planar pyroelectric element with high sensitivity and high resolution. can do.

また、本発明によれば液体超急冷法の技術を利
用することにより、数10μmの厚みを持つ薄体が
容易に得られ、従来、単結晶体から薄体を作製す
る場合に、費やしていた多大な時間と加工の困難
さ及び材料ロスを大巾に低減でき、前記のような
高感度、高分解能の面状焦電素子を容易に高歩留
りで製造しうる方法を提供することができる。
In addition, according to the present invention, by using the liquid ultra-quenching technique, a thin body with a thickness of several tens of micrometers can be easily obtained, and conventionally, when producing a thin body from a single crystal, it is possible to obtain a thin body with a thickness of several tens of μm. It is possible to provide a method that can greatly reduce the amount of time, difficulty in processing, and material loss, and easily manufacture the above-mentioned high-sensitivity, high-resolution planar pyroelectric element at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法を実施するために用
いた薄帯製造装置の概略断面図、第2図は本発明
の面状焦電素子の一例を示す斜視図である。 1……石英管、2……加熱ヒータ、3……融解
した試料、4……ノズル孔、5……ステンレスロ
ーラ、6……非晶質薄帯、7……非晶質体部分、
8……結晶化された部分、9……C軸配向方向。
FIG. 1 is a schematic sectional view of a ribbon manufacturing apparatus used to carry out the manufacturing method of the present invention, and FIG. 2 is a perspective view showing an example of the planar pyroelectric element of the present invention. 1... Quartz tube, 2... Heater, 3... Melted sample, 4... Nozzle hole, 5... Stainless steel roller, 6... Amorphous ribbon, 7... Amorphous body part,
8... Crystallized portion, 9... C-axis orientation direction.

Claims (1)

【特許請求の範囲】 1 非晶質強誘電体からなる薄帯中に、ドツトマ
トリツクス状の焦電効果を有し、C軸方向は薄帯
表面に対し垂直方向である結晶質強誘電体を有す
ることを特徴とする面状焦電素子。 2 焦電効果を有する強誘電材料の非晶質薄帯を
形成し、この非晶質薄帯をドツトマトリツクス状
に局部的にレーザービームを用いて加熱すること
により結晶化させ、非晶質薄帯の表面に対し、垂
直方向に結晶のC軸が配列した結晶質強誘電体を
ドツトマトリツクス状に形成させたことを特徴と
する面状焦電素子の製造方法。
[Scope of Claims] 1. A crystalline ferroelectric material that has a dot matrix-like pyroelectric effect in a thin ribbon made of an amorphous ferroelectric material, and the C-axis direction is perpendicular to the surface of the ribbon. A planar pyroelectric element characterized by having: 2 Form an amorphous ribbon of ferroelectric material that has a pyroelectric effect, and locally heat the amorphous ribbon in a dot matrix shape using a laser beam to crystallize it. 1. A method for manufacturing a planar pyroelectric element, characterized in that a crystalline ferroelectric material in which the C-axis of the crystal is aligned in a direction perpendicular to the surface of a ribbon is formed in a dot matrix shape.
JP56030757A 1981-03-03 1981-03-03 Flat type pyroelectricity element and manufacture thereof Granted JPS57145255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56030757A JPS57145255A (en) 1981-03-03 1981-03-03 Flat type pyroelectricity element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56030757A JPS57145255A (en) 1981-03-03 1981-03-03 Flat type pyroelectricity element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS57145255A JPS57145255A (en) 1982-09-08
JPS6314457B2 true JPS6314457B2 (en) 1988-03-31

Family

ID=12312553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56030757A Granted JPS57145255A (en) 1981-03-03 1981-03-03 Flat type pyroelectricity element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57145255A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137107A (en) * 1996-08-30 2000-10-24 Raytheon Company Thermal detector with inter-digitated thin film electrodes and method
US5990481A (en) * 1996-08-30 1999-11-23 Raytheon Company Thermal detector with preferentially-ordered thermally sensitive element and method
US6087661A (en) * 1997-10-29 2000-07-11 Raytheon Company Thermal isolation of monolithic thermal detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227125A (en) * 1975-08-22 1977-03-01 Hino Motors Ltd Sound attenuating device of car engine
JPS5450998A (en) * 1977-09-30 1979-04-21 Noboru Tsuya Method of producing thin dielectric having high dielectric constant
JPS54163396A (en) * 1978-06-14 1979-12-25 Noboru Tsuya Method of producing dielectric substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227125A (en) * 1975-08-22 1977-03-01 Hino Motors Ltd Sound attenuating device of car engine
JPS5450998A (en) * 1977-09-30 1979-04-21 Noboru Tsuya Method of producing thin dielectric having high dielectric constant
JPS54163396A (en) * 1978-06-14 1979-12-25 Noboru Tsuya Method of producing dielectric substance

Also Published As

Publication number Publication date
JPS57145255A (en) 1982-09-08

Similar Documents

Publication Publication Date Title
Whatmore Pyroelectric ceramics and devices for thermal infra-red detection and imaging
Aggarwal et al. Pyroelectric materials for uncooled infrared detectors: processing, properties, and applications
CA1098615A (en) Ferroelectric imaging system
US5602043A (en) Monolithic thermal detector with pyroelectric film and method
Francombe Ferroelectric films and their device applications
Watton et al. Pyroelectric materials: Operation and performance in the pyroelectric camera tube
Whatmore et al. Pyroelectric materials and devices
JPH09500234A (en) Pyro detector with oriented and grown pyroelectric layer and method of making
Whatmore et al. Pyroelectric ceramics and thin films for uncooled thermal imaging
Yamaka Pyroelectric IR sensor using vinylidene fluoride-trifluoroethylene copolymer film
US6137107A (en) Thermal detector with inter-digitated thin film electrodes and method
US20050279939A1 (en) Infrared detection element, infrared detector, solid state imaging device, and method for fabricating infrared detector
JPS6314457B2 (en)
US9040912B2 (en) Infrared sensing element and infrared imaging device
Watton Pyroelectric materials: operation and performance in thermal imaging camera tubes and detector arrays
US4053806A (en) Pyroelectric detector comprising nucleating material wettable by aqueous solution of pyroelectric material
US5990481A (en) Thermal detector with preferentially-ordered thermally sensitive element and method
JP2000298062A (en) Energy detecting device, thermal function device and driving method therefor
US5502307A (en) Spun cast IR detector arrays and method of making the same
CN108871592B (en) Flexible pyroelectric thermal infrared imager pixel array with low voltage and temperature interference
US5972108A (en) Method of preferentially-ordering a thermally sensitive element
Okuyama et al. Pyroelectric infrared-CCD image sensor using LiTaO3
US5854587A (en) REx M1-x Mny O.sub.δ films for microbolometer-based IR focal plane arrays
CN101867011A (en) Pyroelectric film material and preparation method thereof
JP2001242256A (en) Radiation detector, arrayed radiation detector and two- dimensional radiation image pickup device