JPS63144248A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPS63144248A
JPS63144248A JP61291834A JP29183486A JPS63144248A JP S63144248 A JPS63144248 A JP S63144248A JP 61291834 A JP61291834 A JP 61291834A JP 29183486 A JP29183486 A JP 29183486A JP S63144248 A JPS63144248 A JP S63144248A
Authority
JP
Japan
Prior art keywords
electrode
electrode system
biosensor
layer
sandwiched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61291834A
Other languages
Japanese (ja)
Inventor
Hirokazu Sugihara
宏和 杉原
Shigeo Kobayashi
茂雄 小林
Shiro Nankai
史朗 南海
Kenichi Morigaki
健一 森垣
Sachiko Suetsugu
末次 佐知子
Kiyomi Komatsu
小松 きよみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61291834A priority Critical patent/JPS63144248A/en
Publication of JPS63144248A publication Critical patent/JPS63144248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To speedily and easily determine a specific component in an organic body sample with high accuracy by uniting electrode systems and a porous body. CONSTITUTION:Conductive carbon paste is printed on an insulating substrate 1, and heated and dried to form an electrode system of a counter electrode 2, a measurement electrode 3, and a reference electrode 4. Insulating paste is printed so that the electrode system is covered partially and electrodes 2'-4' which operate electrochemically are left; and a heat treatment is carried out to form an insulating layer 5. Further, both-side adhesive tapes 6 as cohesive structure bodies are adhered to the insulating layer 5 at an interval across the electrode systems 2'-4'. At this time, one end of a rayon cut piece 7 as a liquid holding layer is placed on one tape 6 and the other end is sandwiched between the other tape 6 and insulating layer 5. Then, a filter layer 9 for removing solid components from sample liquid is fixed in a holding frame 8 and a porous body 10 is further held in the holding frame 8. The holding frame 8 is adhered to the tapes 6 and the one end of the rayon cut piece 7 is sandwiched between the tape 6 and filter layer 9. Further, a resin-made cover 11 is adhered to unit the whole body.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、種々の微量の生体試料中の特定成分について
、試料液を希釈することなく迅速かつ簡易に定量するこ
とのできるバイオセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biosensor that can quickly and easily quantify specific components in various minute amounts of biological samples without diluting the sample liquid.

従来の技術 従来、血液などの生体試料中の特定成分について、試料
液の希釈や攪拌などの操作を行うことなく高精度に定量
する方式としては、第6図に示す様なバイオセンサが提
案されている(例えば、特開昭59−188852 )
。このバイオセンサは、絶縁基板12にリード15.1
6をそれぞれ有する白金などからなる測定極13および
対極14を埋設し、これらの電極系の露出部分を酸化還
元酵素および電子受容体を担持した多孔体17で覆った
ものである。試料液を多孔体上へ滴下すると、試料液に
多孔体中の酸化還元酵素と電子受容体が溶解し、試料液
中の基質との間で酵素反応が進行し電子受容体が還元さ
れる。酵素反応終了後、この還元された電子受容体を電
気化学的に酸化し、このとき得られる酸化電流値から試
料液中の基質濃度を求める。
Conventional technology In the past, a biosensor as shown in Figure 6 has been proposed as a method for quantifying specific components in biological samples such as blood with high precision without performing operations such as diluting or stirring the sample solution. (For example, Japanese Patent Application Laid-Open No. 59-188852)
. This biosensor has leads 15.1 on an insulating substrate 12.
A measuring electrode 13 and a counter electrode 14 each made of platinum or the like having 6 are embedded, and the exposed portions of these electrode systems are covered with a porous body 17 carrying an oxidoreductase and an electron acceptor. When the sample liquid is dropped onto the porous body, the oxidoreductase and electron acceptor in the porous body are dissolved in the sample liquid, and an enzymatic reaction proceeds with the substrate in the sample liquid to reduce the electron acceptor. After the enzymatic reaction is completed, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする問題点 この様な従来の構成では、多孔体については、測定毎に
取り替えることにより簡易に測定に供することができる
が、電極系については洗浄等の操作が必要である。一方
電極系をも含めて測定毎の使い棄てが可能となれば、測
定操作上、極めて簡易になるものの、白金等の電極材料
や構成等の面から、非常に高価なものにならざるを得な
い。
Problems to be Solved by the Invention In such a conventional configuration, the porous body can be easily used for measurement by replacing it for each measurement, but the electrode system requires operations such as cleaning. On the other hand, if the electrode system, including the electrode system, could be disposed of after each measurement, the measurement operation would be extremely simple, but it would be extremely expensive due to the electrode materials such as platinum and the structure. do not have.

本発明はこれらの点について種々検討の結果、電極系と
多孔体を一体化することにより、生体試料中の特定成分
を極めて容易に迅速かつ高精度に定量することのできる
安価なディスポーザブルタイプのバイオセンサを提供す
るものである。
As a result of various studies on these points, the present invention has developed an inexpensive disposable type biotechnology that can extremely easily quantify specific components in biological samples quickly and with high precision by integrating an electrode system and a porous body. It provides a sensor.

問題点を解決するための手段 本発明は上記問題点を解決するため、絶縁性の基板に少
なくとも測定極と対極からなる電極系を設け、酵素と電
子受容体と試料液を反応させ、前記反応に際しての物質
濃度変化を電気化学的に前記電極系で検知し、試料液中
の基質濃度を測定するバイオセンサにおいて、前記電極
系上に粘着性構造体を用いて形成した空間部を介して、
酸化還元酵素及び電子受容体を担持した多孔体を設置し
、前記電極系及び前記基板とともに一体化したものであ
る。
Means for Solving the Problems In order to solve the above problems, the present invention provides an electrode system consisting of at least a measurement electrode and a counter electrode on an insulating substrate, reacts an enzyme, an electron acceptor, and a sample solution, and performs the reaction. In a biosensor that electrochemically detects a change in substance concentration with the electrode system and measures the substrate concentration in a sample liquid, through a space formed using an adhesive structure on the electrode system,
A porous body carrying an oxidoreductase and an electron acceptor is installed and integrated with the electrode system and the substrate.

更に、前記電極系上に試料液を確実に供給するための保
液層として、親水性の多孔体の一端を前記粘着性構造体
と試料液中の固形成分を取り除くために設けた濾過層の
間にはさみ、他端を前記粘着性構造体と前記絶縁性基板
の間にはさんで、前記空間部内かつ前記電極系上に設置
した。このように保液層を設置することにより、試料液
を粘着性構造体と濾過層の間にはさんだ一端から他端へ
と方向性を持って導くことにより、保液層を含む空間部
の空気を効果的に試料液と置換することができる。これ
により気泡の形成や、それに伴う測定値の低下を防ぐこ
とができる。
Further, as a liquid retaining layer for reliably supplying the sample liquid onto the electrode system, one end of the hydrophilic porous body is connected to the adhesive structure and a filtration layer provided to remove solid components from the sample liquid. The other end was placed between the adhesive structure and the insulating substrate, and the adhesive structure was placed in the space and on the electrode system. By installing the liquid-retaining layer in this way, the sample liquid is directionally guided from one end to the other end sandwiched between the adhesive structure and the filtration layer. Air can be effectively replaced with the sample liquid. This can prevent the formation of bubbles and the resulting decrease in measured values.

作用 本発明によれば、電極系をも含めたディスポーザブルタ
イプのバイオセンサを構成することができ、試料液を多
孔体に添加することにより、極めて容易に基質濃度を測
定することができる。
Effects According to the present invention, a disposable type biosensor including an electrode system can be constructed, and the substrate concentration can be extremely easily measured by adding a sample liquid to a porous body.

しかも保液層の一端を粘着性構造体と濾過層の間にはさ
み、他端を粘着性構造体と絶縁性基板の間にはさんで、
空間部内かつ電極系上に設置したため、試料液を確実に
電極系上に供給することが可能となり、かつ測定極上の
気泡による測定値の低下もなくなり、精度の良い測定が
可能となった。
Moreover, one end of the liquid retaining layer is sandwiched between the adhesive structure and the filtration layer, and the other end is sandwiched between the adhesive structure and the insulating substrate.
Since it is installed in the space and above the electrode system, it is possible to reliably supply the sample liquid onto the electrode system, and there is no drop in the measured value due to air bubbles on the measurement tip, making it possible to perform highly accurate measurements.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

バイオセンサの一例として、グルコースセンサについて
説明する。第1図は、グルコースセンサの一実施例につ
いて示したもので、構成部分の分解図である。ポリエチ
レンテレフタレートからなる絶縁性の基板1に、スクリ
ーン印刷により導電性カーボンペース)t−印刷し、加
熱乾燥することにより、対極2.測定極3.参照極4か
らなる電極系を形成する。次に、電極系を部分的に覆い
、各々の電極の電気化学的に作用する部分となる2′。
A glucose sensor will be described as an example of a biosensor. FIG. 1 shows an embodiment of a glucose sensor, and is an exploded view of the constituent parts. A conductive carbon paste (t) is printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing and dried by heating to form a counter electrode 2. Measuring pole 3. An electrode system consisting of a reference electrode 4 is formed. 2' then partially covers the electrode system and becomes the electrochemically active part of each electrode.

3′、4′(各1−)を残す様に、絶縁性ペーストを前
記同様印刷し、加熱処理して絶縁層5を形成する0 更に、前記電極系(2’  l 3’ l ” )t”
はさむように、2醪の間隔をあけ、平行に、粘着性構造
体として両面接着テープ6を前記絶縁層6に接着する。
Insulating paste is printed in the same manner as described above so as to leave 3' and 4' (each 1-), and heat-treated to form an insulating layer 50. Furthermore, the electrode system (2' l 3' l '') ”
A double-sided adhesive tape 6 as an adhesive structure is adhered to the insulating layer 6 in parallel with an interval of 2 mm in a sandwiching manner.

この際保液層としてレーヨン切片7(4X4+a++の
大きさ)を、一端を前記両面接着テープ6の上部に置き
、他端を両面接着テープ6と絶縁層6の間にはさむよう
にする。第2図は、電極系と保液層との位置関係を示し
た電極系部の平面図である。
At this time, one end of a rayon piece 7 (4×4+a++ size) is placed on top of the double-sided adhesive tape 6 as a liquid retaining layer, and the other end is sandwiched between the double-sided adhesive tape 6 and the insulating layer 6. FIG. 2 is a plan view of the electrode system section showing the positional relationship between the electrode system and the liquid retaining layer.

次に、穴を開けた樹脂性の保持枠8内に試料液中の固形
成分1例えば赤血球などを除去するための濾過層9とし
てポリカーボネートを固定し、更に保持枠8内に酵素、
及び電子受容体の担体として多孔体10を保持する。こ
のようにした保持枠8を両面接着テープ6に接着すると
、レーヨン切片7の一端は、両面接着テープ6と濾過層
9の間にはさまれることになる。更に多孔体1oより小
さい径の開孔部を有する樹脂性カバー11を接着し、全
体を一体化する。
Next, polycarbonate is fixed as a filtration layer 9 for removing solid components 1 such as red blood cells from the sample liquid in a resin holding frame 8 with holes, and enzymes,
And the porous body 10 is held as a carrier for an electron acceptor. When the holding frame 8 thus constructed is adhered to the double-sided adhesive tape 6, one end of the rayon piece 7 will be sandwiched between the double-sided adhesive tape 6 and the filter layer 9. Furthermore, a resin cover 11 having an opening having a diameter smaller than that of the porous body 1o is adhered to integrate the whole body.

この一体化されたバイオセンサについて、測定極3に沿
った断面図を第3図に示す。上記に用いた多孔体1oは
、酸化還元酵素としてグルコースオキシダーゼ100ダ
と電子受容体としてフェリシアン化カリウム160qを
PH6,eのリン酸緩衝液11/に溶解した液をナイロ
ン不織布に含浸後、減圧乾燥して作製したものである。
A cross-sectional view along the measurement electrode 3 of this integrated biosensor is shown in FIG. The porous body 1o used above was prepared by impregnating a nylon nonwoven fabric with a solution prepared by dissolving 100 da of glucose oxidase as an oxidoreductase and 160 q of potassium ferricyanide as an electron acceptor in a phosphate buffer solution with a pH of 6.e, and then drying it under reduced pressure. It was made by

上記のように構成したグルコースセンサの多孔体1oへ
、試料液としてグルコース標準液を滴下し、滴下2分後
に参照極を基準にして測定極に対してアノード方向へ7
00mV 、10秒のパルス電圧を加え、一定時間後、
例えば10秒後の酸化電流値を測定した0この場合、添
加されたグルコースは多孔体1oに担持されたグルコー
スオキシダーゼの作用でフェリシアン化カリウムと反応
してフェロシアン化カリウムを生成する。そこで、上記
の如くアノード方向のパルス電圧を加えたことにより生
成したフェロシアン化カリウム濃度に基づく酸化電流が
得られ、この電流値は基質であるグルコース濃度に対応
する。
Glucose standard solution was dropped as a sample solution into the porous body 1o of the glucose sensor configured as described above, and after 2 minutes of dropping, the sample solution was dropped 7 minutes in the anode direction with respect to the measurement electrode with reference to the reference electrode.
Apply a pulse voltage of 00 mV for 10 seconds, and after a certain period of time,
For example, the oxidation current value measured after 10 seconds is 0. In this case, the added glucose reacts with potassium ferricyanide by the action of glucose oxidase supported on the porous body 1o to produce potassium ferrocyanide. Therefore, an oxidation current based on the concentration of potassium ferrocyanide generated by applying a pulse voltage in the anode direction as described above is obtained, and this current value corresponds to the concentration of glucose, which is the substrate.

人血に解糖阻止剤としてフッ化ナトウムを加えたものを
1時間室温で放置したもの(以下、試料血液と略称する
)を上記のグルコースセンサに滴下し、2分後に700
!IIv、10秒のパルスを加え、パルス発生後10秒
経過した時点での電流値を測定した結果を第4図のムに
示す。標本数10個での測定電流の平均値は3.03μ
人、変動係数は2.97%であった。第4図のBは、同
様の実験を、上記実験に用いたと同一の試料血液を用い
て、上記構成からレーヨン切片7を除いたグルコースセ
ンサについて行なっ−た結果である。標本数10個での
測定電流の平均値は2.00μム、変動係数はe O,
3%であり、前者に比べ測定電流値のばらつきが太きい
。特に低値を示したグルコースセンサについて分解する
と、電極系上に、試料血液が供給されていないことがわ
かった。
Human blood mixed with sodium fluoride as a glycolytic inhibitor and left at room temperature for 1 hour (hereinafter referred to as sample blood) was dropped onto the above glucose sensor, and after 2 minutes 700
! IIv, a 10-second pulse was applied, and the current value was measured 10 seconds after the pulse was generated. The results are shown in FIG. The average value of the measured current with 10 samples is 3.03μ
The coefficient of variation was 2.97%. FIG. 4B shows the results of a similar experiment conducted using the same sample blood as used in the above experiment, but on a glucose sensor with the above configuration except that the rayon section 7 was removed. The average value of the measured current with 10 samples is 2.00 μm, and the coefficient of variation is e O,
3%, and the variation in measured current values is wider than in the former case. When the glucose sensor that showed a particularly low value was disassembled, it was found that sample blood was not being supplied onto the electrode system.

また、保液層として2X8m+の大きさのレーヨン切片
7′ヲ、長辺の端を両面接着テープ6の上部にのせたり
、両面接着テープ6と絶縁層6との間にはさむことなく
、長辺を両面接着テープに沿わせて設置し、その他は本
実施例の構成と同様に構成したグルコースセンサについ
て、上記実験に用いたと同一の試料血液を用いて標本数
10個で測定した結果全第4図のCに示す。また第6図
はこのグルコースセンサの電極系部の平面図である。
In addition, as a liquid retaining layer, a rayon piece 7' having a size of 2 x 8 m+ was placed on the long side of the double-sided adhesive tape 6, and the long side was not sandwiched between the double-sided adhesive tape 6 and the insulating layer 6. The glucose sensor was installed along a double-sided adhesive tape, and the other configuration was the same as that of this example, and the results were measured using 10 samples using the same sample blood used in the above experiment. Shown in C of the figure. FIG. 6 is a plan view of the electrode system of this glucose sensor.

測定電流の平均値rI′i2.35μム、変動係数は3
0.6%であった。特に低値を示したものについては、
分解の結果、試料血液は電極系上に供給されるものの測
定極3′上に気泡が形成されていることが確認できた。
The average value of the measured current rI'i is 2.35 μm, and the coefficient of variation is 3.
It was 0.6%. For those that showed particularly low values,
As a result of the decomposition, it was confirmed that although the sample blood was supplied onto the electrode system, bubbles were formed on the measurement electrode 3'.

ただし、これらの実験では電極系上に到達する試料血液
は、前記濾過層9により血球が除去されている。
However, in these experiments, blood cells were removed from the sample blood that reached the electrode system by the filtration layer 9.

これに対し、本実施例の如き構成によれば、電極系上に
試料皿が確実に供給され、かつ測定極上の気泡の形成も
みられず、再現性の良い応答が得られた。
On the other hand, according to the configuration of this example, the sample dish was reliably supplied onto the electrode system, and the formation of bubbles at the measurement level was not observed, and a response with good reproducibility was obtained.

更に、両面接着テープ6については、レーヨン切片7を
下に敷き込む方を他方のテープより061〜0.3m高
くし、他は本実施例と同様の構成を持ツクルコースセン
サについて、上記実験に用いたと同一の血液を用いて、
標本数10個で上記と同様の測定を行なった結果、測定
電流の平均値3.01μム、変動係数2.18%であり
、第4図のムに示した本実施例における測定結果よりも
、更に安定したものであった。
Furthermore, regarding the double-sided adhesive tape 6, the one on which the rayon section 7 is placed is set 0.61 to 0.3 m higher than the other tape, and the other parts are the same as in this example. Using the same blood that was used,
As a result of carrying out the same measurement as above with 10 samples, the average value of the measured current was 3.01 μm, and the coefficient of variation was 2.18%, which was better than the measurement results in this example shown in Fig. 4. , which was even more stable.

保液層として用いられる親水性の多孔体はレーヨンに限
定されず、またその形状も前記実施例に限定されるもの
ではない。
The hydrophilic porous material used as the liquid retaining layer is not limited to rayon, and its shape is not limited to those in the above embodiments.

電極系を形成する方法としてのスクリーン印刷は、均一
な特性を有するディスポーザブルタイプのバイオセンサ
を安価に製造することができ、特に、価格が安く、しか
も安定した電極材料であるカーボンを用いて電極を形成
するのに好都合な方法である。
Screen printing as a method for forming electrode systems can produce disposable biosensors with uniform characteristics at low cost, and in particular, it is possible to fabricate electrodes using carbon, which is an inexpensive and stable electrode material. This is a convenient way to form.

本発明のバイオセンサにおける一体化の方法としては、
実施例に示した枠体、カバーなどの形や組み合わせに限
定されるものではない。また、用いる多孔体としては、
ナイロン不織以外に、セルロース、レーヨン、セラミッ
ク、ポリカーボネート等からなる多孔体を単独、あるい
は組み合わせて用いることができる。さらに酸化還元酵
素と電子受容体の組み合わせも前記実施例に限定される
ことはなく、本発明の主旨に合致するものであれば用い
ることができる。一方、上記実施例においては、電極系
として3電極刃式の場合について述べたが、対極と測定
極からなる2電極刃式でも測定は可能である。
The method of integration in the biosensor of the present invention is as follows:
The present invention is not limited to the shapes and combinations of frames, covers, etc. shown in the examples. In addition, the porous body used is
In addition to nylon nonwovens, porous bodies made of cellulose, rayon, ceramic, polycarbonate, etc. can be used alone or in combination. Further, the combination of oxidoreductase and electron acceptor is not limited to the above examples, and any combination can be used as long as it meets the gist of the present invention. On the other hand, in the above embodiments, a three-electrode blade type electrode system was described, but measurements can also be made with a two-electrode blade type consisting of a counter electrode and a measurement electrode.

発明の効果 本発明のバイオセンサは、絶縁性の基板及び電極系と、
酸化還元酵素と電子受容体を担持した多孔体を、前記電
極系上に粘着性構造体を用いて形成した空間部を介して
一体化することにより、極めて容易に生体試料中の基質
濃度を測定することができる。
Effects of the Invention The biosensor of the present invention includes an insulating substrate and an electrode system,
By integrating a porous material carrying an oxidoreductase and an electron acceptor through a space formed using an adhesive structure on the electrode system, it is possible to extremely easily measure the substrate concentration in a biological sample. can do.

更に、保液層として親水性の多孔体の一端を粘着性構造
体と濾過層の間にはさみ、他端を粘着性構造体と絶縁性
の基板の間にはさんで、前記空間部内かつ前記電極系上
に設置することによシ、測定再現性を向上させることが
できた。
Furthermore, one end of the hydrophilic porous material is sandwiched between the adhesive structure and the filtration layer as a liquid retaining layer, and the other end is sandwiched between the adhesive structure and the insulating substrate, so that By installing it on the electrode system, we were able to improve measurement reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるバイオセンサの分解斜
視図、第2図は電極系部の平面図、第3図はその縦断面
図、第4図はバイオセンサの応答特性図、第6図は第4
図のCで測定に用いたバイオセンサの電極系部の平面図
、第6図は従来のバイオセンサの縦断面図である。 1・・・・・・絶縁性の基板、2,2′・・・・・・対
極、3゜3′・・・・・・測定極、4,4′・・・・・
・対極、6・・・・・・絶縁層、6・・・・・・両面接
着テープ、?、7’・・・・・・保液層(レーヨン切片
)、8・・・・・・保持枠、9・・・・・・濾過層、1
0・・・・・・多孔体、11・・・・・・樹脂性カバー
、12・・・・・・絶縁基板、13・・・・・・測定極
、14・・・・・・対極、15.16・・・・・・リー
ド、17・・・・・・多孔体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 N〜 Cつ 寸つカさ幻)( 第 3 @ 第4図 /   z34s6   γ θ  9 10倶1定回
数(凹ン !5  区 7′ 第6図
FIG. 1 is an exploded perspective view of a biosensor that is an embodiment of the present invention, FIG. 2 is a plan view of the electrode system, FIG. 3 is a longitudinal sectional view thereof, and FIG. 4 is a response characteristic diagram of the biosensor. Figure 6 is the 4th
C in the figure is a plan view of the electrode system part of the biosensor used for measurement, and FIG. 6 is a longitudinal sectional view of a conventional biosensor. 1... Insulating substrate, 2, 2'... Counter electrode, 3゜3'... Measurement electrode, 4, 4'...
・Counter electrode, 6...Insulating layer, 6...Double-sided adhesive tape, ? , 7'...Liquid retaining layer (rayon section), 8...Retaining frame, 9...Filtering layer, 1
0...Porous body, 11...Resin cover, 12...Insulating substrate, 13...Measurement electrode, 14...Counter electrode, 15.16...Reed, 17...Porous body. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure N ~ C Tsutsukasa illusion) (3rd @ Figure 4 / z34s6 γ θ 9 10 1 constant number of times (Concave! 5 Ward 7' Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも測定極と対極からなる電極系を設けた
絶縁性の基板を備え、酵素と電子受容体と試料液の反応
に際しての物質濃度変化を電気化学的に前記電極系で検
知し、前記試料液の基質濃度を測定するバイオセンサに
おいて、前記電極系上に、粘着性構造体を用いて形成し
た空間部を介して、前記絶縁性の基板と電極系、保液層
及びろ過層を酸化還元酵素及び電子受容体を担持した多
孔体とともに一体化し、保液層の一端を前記粘着性構造
体とろ過層との間にはさみ、他端を前記粘着性構造体と
前記絶縁性の基板の間にはさんで前記空間部内の電極系
上に設置したことを特徴とするバイオセンサ。
(1) An insulating substrate is provided with an electrode system consisting of at least a measurement electrode and a counter electrode, and a change in substance concentration during a reaction between an enzyme, an electron acceptor, and a sample liquid is electrochemically detected by the electrode system; In a biosensor that measures the substrate concentration of a sample solution, the insulating substrate, the electrode system, the liquid retaining layer, and the filtration layer are oxidized through a space formed using an adhesive structure on the electrode system. It is integrated with a porous body carrying a reductase and an electron acceptor, one end of the liquid retaining layer is sandwiched between the adhesive structure and the filtration layer, and the other end is sandwiched between the adhesive structure and the insulating substrate. A biosensor, characterized in that the biosensor is installed on an electrode system in the space part in between.
(2)電極系が測定極、対極、及び参照極から構成され
る特許請求の範囲第1項記載のバイオセンサ。
(2) The biosensor according to claim 1, wherein the electrode system includes a measurement electrode, a counter electrode, and a reference electrode.
(3)電極系が、絶縁性の基板上にスクリーン印刷で形
成されたカーボンを主体とする材料からなる特許請求の
範囲第1項または第2項記載のバイオセンサ。
(3) The biosensor according to claim 1 or 2, wherein the electrode system is made of a carbon-based material formed by screen printing on an insulating substrate.
(4)保液層がレーヨンである特許請求の範囲第1項記
載のバイオセンサ。
(4) The biosensor according to claim 1, wherein the liquid retaining layer is made of rayon.
(5)粘着性構造体に高低差を設けた特許請求の範囲第
1項記載のバイオセンサ。
(5) The biosensor according to claim 1, wherein the adhesive structure has a height difference.
JP61291834A 1986-12-08 1986-12-08 Biosensor Pending JPS63144248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291834A JPS63144248A (en) 1986-12-08 1986-12-08 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291834A JPS63144248A (en) 1986-12-08 1986-12-08 Biosensor

Publications (1)

Publication Number Publication Date
JPS63144248A true JPS63144248A (en) 1988-06-16

Family

ID=17774019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291834A Pending JPS63144248A (en) 1986-12-08 1986-12-08 Biosensor

Country Status (1)

Country Link
JP (1) JPS63144248A (en)

Similar Documents

Publication Publication Date Title
US4897173A (en) Biosensor and method for making the same
US5185256A (en) Method for making a biosensor
JP4879459B2 (en) Electrochemical biosensor strip for analysis of liquid samples
JPS63317758A (en) Manufacture of biosensor
JPH01291153A (en) Biosensor
JPH04340453A (en) Biosensor and separation and quantification method using the same
JPH0617889B2 (en) Biochemical sensor
JPH01219661A (en) Analysis method and apparatus using enzyme electrode type sensor
JPH04357449A (en) Biosensor and measuring device thereof
JPS63128252A (en) Biosensor
JPS6358149A (en) Biosensor
JPS63139246A (en) Biosensor
JPS61294351A (en) Biosensor
JPH01253648A (en) Biosensor
JP2502656B2 (en) Biosensor manufacturing method
JPH01134245A (en) Biosensor
JPH01134246A (en) Biosensor
JPS63144248A (en) Biosensor
JPS63144246A (en) Biosensor
JPS63144249A (en) Biosensor
JPS60211350A (en) Biosensor
JPS62232554A (en) Biosensor
JPH0758271B2 (en) Biosensor
JPS585642A (en) Enzyme electrode
JPS63317095A (en) Biosensor