JPS63144245A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPS63144245A
JPS63144245A JP61291061A JP29106186A JPS63144245A JP S63144245 A JPS63144245 A JP S63144245A JP 61291061 A JP61291061 A JP 61291061A JP 29106186 A JP29106186 A JP 29106186A JP S63144245 A JPS63144245 A JP S63144245A
Authority
JP
Japan
Prior art keywords
electrode
measurement
porous body
electrode system
adhered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61291061A
Other languages
Japanese (ja)
Other versions
JP2543057B2 (en
Inventor
Mariko Kawaguri
真理子 河栗
Shiro Nankai
史朗 南海
Hirokazu Sugihara
宏和 杉原
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61291061A priority Critical patent/JP2543057B2/en
Publication of JPS63144245A publication Critical patent/JPS63144245A/en
Application granted granted Critical
Publication of JP2543057B2 publication Critical patent/JP2543057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable biosensor of uniform quality by installing and uniting a porous body which holds oxidoreductase and electron acceptors on an electrode plate selected by measuring the electric characteristics. CONSTITUTION:Conductive carbon paste is printed in parallel belts on an insulating substrate 1, and heated and dried to form an electrode system consisting of a counter electrode 2, a measurement electrode 3, and a reference electrode 4. Then, the electrode system is covered partially and an insulating layer 5 is formed by printing insulating paste so that parts 2'-4' of the respective electrodes which perform electrochemical operation are left; and the exposed parts 2'-4' are polished and a heat treatment is carried out. The electrode system uses only an electrode system which is uniform in response by taking a measurement as well as preliminary measurement using inspection liquid. Then, a holding frame 6 made of synthetic resin is adhered to the insulating layer 5 and the porous body 7 which carries enzyme and electron acceptors is held in a hole so that the electrode systems 2'-4' are covered, further, a cover 8 which is made of resin and has an opening part with a diameter smaller than the external diameter of the porous body 7 is adhered to unit the whole body.

Description

【発明の詳細な説明】 産業上の利用分野 本発明になるバイオセンサは生体試料中の特定成分を高
精度で迅速かつ容易に定量でき医療分野や食品工学など
に幅広く応用できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The biosensor of the present invention can quickly and easily quantify a specific component in a biological sample with high precision, and can be widely applied to the medical field, food engineering, etc.

従来の技術 近年、酵素の有する特異的触媒作用を利用した種々のバ
イオセンサが開発され、特に臨床検査分野への応用が試
みられている。横歪項目及び検体数が増加している現在
、迅速に精度よく測定できるバイオセンサが望まれてい
る。
BACKGROUND OF THE INVENTION In recent years, various biosensors that utilize the specific catalytic action of enzymes have been developed, and attempts have been made to apply them particularly to the field of clinical testing. Nowadays, as the number of transverse strain items and the number of specimens increases, a biosensor that can measure quickly and accurately is desired.

グルコースセンサに例をとると、糖尿病の増加が激しい
今日、血液中の血糖値を測定し管理するには、以前のよ
うに血液を遠心分離し血漿にして測定するのでは非常に
時間がかかるため、全血で測定できるセンサが要求され
ている。簡易型としては、圧検量の時に使用されている
横歪紙と同様に、スティック状の支持体に糖(グルコー
ス)にのみ反応する酵素および酵素反応時又は酵素反応
の生成物により変化する色素を含有する担体を設置した
ものがある。この担体シζ血液を添加し、一定時間後の
色素の変化を目視又は光学的に測定する方式であるが、
血液中の着色物による゛妨害が大きく精度は低い。
Taking glucose sensors as an example, in today's world where diabetes is rapidly increasing, measuring and managing blood glucose levels requires a lot of time to centrifuge blood and convert it into plasma, as was done in the past. , there is a need for a sensor that can measure whole blood. A simple type, similar to the transversely strained paper used for pressure measurement, is a stick-shaped support containing an enzyme that reacts only with sugar (glucose) and a dye that changes during the enzyme reaction or by the products of the enzyme reaction. Some have a carrier containing them installed. This method involves adding ζ blood to this carrier and measuring the change in pigment visually or optically after a certain period of time.
Accuracy is low due to large interference from colored substances in the blood.

そこで、第5図のような多層式の分析担体が提案されて
いる(実開昭54−178496号公報)。
Therefore, a multilayer analytical carrier as shown in FIG. 5 has been proposed (Japanese Utility Model Publication No. 178496/1983).

これは透明な支持体9の上に試薬層io、展開層11、
防水層12、濾過層13が順に積層した構造となってい
る。血液サンプルを上部から滴下すると、まず濾過層1
3により血液中の赤血球、血小板などの固形成分が除去
され、防水層12にある小孔14から展開層11へ均一
に浸透し、試薬層1oにおいて反応が進行する。反応終
了後、透明な支持体9を通して矢印の方向から光をあて
、分光分析によシ基質濃度を測定する方式である。
This consists of a transparent support 9, a reagent layer io, a developing layer 11,
It has a structure in which a waterproof layer 12 and a filtration layer 13 are laminated in this order. When a blood sample is dropped from the top, it first passes through the filtration layer 1.
3, solid components such as red blood cells and platelets in the blood are removed and uniformly permeate into the spreading layer 11 through the small holes 14 in the waterproof layer 12, and a reaction proceeds in the reagent layer 1o. After the reaction is completed, light is irradiated through the transparent support 9 in the direction of the arrow, and the substrate concentration is measured by spectroscopic analysis.

従来の簡易なスティック状の担体にくらべ、複雑な構造
であるが、血球除去などにより精度は向上した。しかし
、血液の浸透および反応に時間がかかるため、サンプル
の乾燥を防ぐ防水層12が必要となったり、反応を速め
るために高温でインキュベートする必要があり、装置お
よび担体が複雑化するという問題がある。
Although it has a more complex structure than the conventional simple stick-shaped carrier, it has improved accuracy due to blood cell removal. However, since it takes time for blood to permeate and react, a waterproof layer 12 is required to prevent the sample from drying out, and it is necessary to incubate at a high temperature to speed up the reaction, making the apparatus and carrier complicated. be.

一方、血液などの生体試料中の特定成分について、試料
液の希釈や攪拌などの操作を行うことなく高精度に定量
する方式としては、第6図に示す様なバイオセンサが提
案されている(例えば、特開昭59−166852号公
報)。このバイオセンサは、絶縁基板16にリード18
.19をそれぞれ有する白金などからなる測定極16お
よび対極17を埋設し、これらの電極系の露出部分を酸
化還元酵素および電子受容体を担持した多孔体2oで覆
ったものである。試料液を多孔体上へ滴下すると、試料
液に多孔体中の酸化還元酵素と電子受容体が溶解し、試
料液中の基質との間で酵素反応が進行し、電子受容体が
還元される。酵素反応終了後、この還元された電子受容
体を電気化学的に酸化し、このとき得られる酸化電流値
から試料液中の基質濃度を求める。
On the other hand, a biosensor as shown in Fig. 6 has been proposed as a method for quantifying specific components in biological samples such as blood with high precision without performing operations such as diluting or stirring the sample solution ( For example, Japanese Unexamined Patent Publication No. 59-166852). This biosensor has leads 18 on an insulating substrate 16.
.. A measuring electrode 16 and a counter electrode 17 made of platinum or the like having 19 are buried, and the exposed portions of these electrode systems are covered with a porous body 2o carrying an oxidoreductase and an electron acceptor. When a sample solution is dropped onto a porous material, the oxidoreductase and electron acceptor in the porous material are dissolved in the sample solution, an enzymatic reaction proceeds with the substrate in the sample solution, and the electron acceptor is reduced. . After the enzymatic reaction is completed, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする問題点 従来の構成では、多孔体は測定毎に喉り替えることによ
り簡単に測定することができるが、電極系については洗
浄等の操作が必要となる。特に血液などを測定した後は
、電極表面に付着した蛋白質等が水洗だけでは完全に除
去できないため応答の劣化をまねき測定の精度に影響を
与えた。
Problems to be Solved by the Invention In the conventional configuration, the porous body can be easily measured by changing the throat for each measurement, but the electrode system requires operations such as cleaning. Particularly after measuring blood or the like, proteins adhering to the electrode surface cannot be completely removed by washing with water alone, leading to deterioration of response and affecting measurement accuracy.

問題点を解決するだめの手段 本発明は、上記問題点を解決するため、絶縁性の基板上
に少なくとも測定極と対極からなる電極系を設け、酵素
および電子受容体を担持した多孔体と一体化した。さら
に、電極系については、あらかじめ少なくとも前記電子
受容体を含む検査液で測定時と同様に測定を行ない応答
のそろったもののみ使用するものである。
Means to Solve the Problems In order to solve the above problems, the present invention provides an electrode system consisting of at least a measurement electrode and a counter electrode on an insulating substrate, and integrates it with a porous body carrying an enzyme and an electron acceptor. It became. Further, regarding the electrode system, only those that have been tested in advance with a test solution containing at least the electron acceptor in the same manner as in the measurement and have a consistent response are used.

作用 電極系および酵素と電子受容体を含む多孔体が一体化さ
れているため、測定毎に電極も含めて取り替えるので測
定操作は試料の滴下のみという極めて簡易となった。応
答には測定極の面積が左右するが、あらかじめ電子受容
体を含む検量液で応答のそろった電極を選別しているた
め、精度の良い応答が得られた。
Since the working electrode system and the porous body containing the enzyme and electron acceptor are integrated, the electrodes are also replaced after each measurement, making the measurement operation extremely simple and requiring only dropping the sample. Although the response depends on the area of the measurement electrode, a calibration solution containing electron acceptors was used to select electrodes with consistent responses, so a highly accurate response was obtained.

実施例 (実施例1) バイオセンサの一例として、グルコースセンサについて
説明する。第1図は、グルコースセンサの一実施例につ
いて示したもので、構成部分の分解図である。ポリエチ
レンテレフタレートからなる絶縁性の基板1に、スクリ
ーン印刷により樹脂バインダーを含む導電性カーボンペ
ーストを平行な帯状て印刷し、加熱乾燥することにより
、対極2、測定極3.参照極4からなる電極系を形成す
る。次に、電極系を部分的に覆い、各々の電極の電気化
学的に作用する部分となる2’ 、 3’ 、 4’ 
(各1−)を残す様に、ポリエステル主体の絶縁性ペー
ストを前記と同様に印刷し、加熱処理して絶縁層5を形
成する。次に、露出した2’ 、 3’ 、 4’の各
部分を研摩後、空気中で100’Cにて4時間熱処理を
施した。
Example (Example 1) A glucose sensor will be described as an example of a biosensor. FIG. 1 shows an embodiment of a glucose sensor, and is an exploded view of the constituent parts. A conductive carbon paste containing a resin binder is printed in parallel strips on an insulating substrate 1 made of polyethylene terephthalate by screen printing, and then heated and dried to form a counter electrode 2, a measurement electrode 3. An electrode system consisting of a reference electrode 4 is formed. Next, 2', 3', 4' partially cover the electrode system and become the electrochemically active part of each electrode.
An insulating paste mainly composed of polyester is printed in the same manner as described above so that (1-) is left, and the insulating layer 5 is formed by heat treatment. Next, the exposed portions 2', 3', and 4' were polished and then heat treated in air at 100'C for 4 hours.

検査液としてフェリシアン化カリウムとフェロシアン化
カリウムをpH5,6のリン酸緩衝液に溶かして0.1
 Mの等モル2液を作成し、電極上2′。
As a test solution, dissolve potassium ferricyanide and potassium ferrocyanide in a phosphate buffer solution with a pH of 5.6 to 0.1.
Prepare two equimolar solutions of M and place 2' on the electrode.

3.4′上に30μで添加した。参照極4′を基準にし
て700mVのパルス電圧を印加すると、フェロシアン
化カリウムが測定極3′上で酸化され酸化電流が流れる
。この酸化電流は、フェロシアン化カリウムの濃度が一
定の場合は、測定極3′の面積に影響されるため、スク
リーン印刷で複数の電極系を作成した時の各々の測定極
の面積をチェックすることができる。測定極は、1−と
非常に小さいため、目視又は顕微鏡を用いても面積の差
は判断しにくい。しかも、電極の表面は平滑ではなく、
印刷の条件(温度、湿度、樹脂バインダーとの混合状態
)によシ表面状態がかわるため、測定前に検査する必要
がある。上記の方法を用いれば簡単に表面状態を検査で
き水洗して乾燥した後、応答のそろった電極のみを測定
に使えるので測定精度が向上した。
Added 30 μ on top of 3.4′. When a pulse voltage of 700 mV is applied with respect to the reference electrode 4', potassium ferrocyanide is oxidized on the measuring electrode 3', and an oxidation current flows. This oxidation current is affected by the area of the measurement electrode 3' when the concentration of potassium ferrocyanide is constant, so it is difficult to check the area of each measurement electrode when multiple electrode systems are created by screen printing. can. Since the measurement electrode is very small at 1-, it is difficult to judge the difference in area even by visual inspection or using a microscope. Moreover, the surface of the electrode is not smooth;
Since the surface condition changes depending on the printing conditions (temperature, humidity, mixing state with the resin binder), it is necessary to inspect it before measurement. By using the above method, the surface condition can be easily inspected, and after washing and drying, only electrodes with a uniform response can be used for measurement, improving measurement accuracy.

選別した電極上に穴を開けたポリエステル等の合成樹脂
製の保持枠6を絶縁層6に接着し、前記電極系2’、3
’、4’を覆う様に酵素および電子受容体を担持した多
孔体7を穴の中に保持する。さらにこの多孔体7の外径
より小さい径の開孔部を有する樹脂製カバー8を接着し
、全体を一体化する。
A holding frame 6 made of synthetic resin such as polyester with holes drilled on the selected electrodes is adhered to the insulating layer 6, and the electrode systems 2', 3
A porous body 7 carrying an enzyme and an electron acceptor is held in the hole so as to cover ', 4'. Furthermore, a resin cover 8 having an opening having a diameter smaller than the outer diameter of the porous body 7 is adhered to integrate the whole body.

この一体化されたバイオセンサについて、測定極3に沿
った断面図を第2図に示す。上記で用いた多孔体は、ナ
イロン不織布を基材とし、酸化還元酵素としてのグルコ
ースオキシダーゼ200mgと、電子受容体としてのフ
ェリシアン化カリウムaoomgを、濃度0.25 w
t %の界面活性剤(ホリエテレンクリコールアルキル
フェニルエーテル)を含むりH5,6のリン酸緩衝液1
rnlに溶解した液を前記基材に含浸後、濃度0.25
 wt%の界面活性剤を含むエタノール中に浸漬して結
晶化し、次に減圧乾燥して作製したものである。
A cross-sectional view along the measurement electrode 3 of this integrated biosensor is shown in FIG. The porous body used above has a nylon nonwoven fabric as a base material, and contains 200 mg of glucose oxidase as an oxidoreductase and aoomg of potassium ferricyanide as an electron acceptor at a concentration of 0.25 W.
H5,6 phosphate buffer containing t% surfactant (polyetherene glycol alkyl phenyl ether) 1
After impregnating the base material with the solution dissolved in rnl, the concentration was 0.25.
It was produced by immersing it in ethanol containing wt% surfactant to crystallize it, and then drying it under reduced pressure.

上記の様に構成したグルコースセンサの多孔体へ試料液
としてグルコース標準液を滴下し、滴下2分後に参照極
を基準にして700mVのパルス電圧を印加することに
より、測定極をアノード方向へ分極した。
A glucose standard solution was dropped as a sample solution into the porous body of the glucose sensor configured as described above, and 2 minutes after dropping, a pulse voltage of 700 mV was applied with respect to the reference electrode to polarize the measurement electrode toward the anode. .

この場合、添加されたグルコースは多孔体7に担持され
たグルコースオキシダーゼの作用でフェリシアン化カリ
ウムと反応してフェロシアン化カリウムを生成する。そ
こで、上記のアノード方向へのパルス電圧の印加により
、生成したフェロシアン化カリウム濃度に比例しだ酸化
電流が得られ、この電流値は基質であるグルコース濃度
に対応する。
In this case, the added glucose reacts with potassium ferricyanide by the action of glucose oxidase supported on the porous body 7 to produce potassium ferrocyanide. Therefore, by applying the pulse voltage in the direction of the anode, an oxidation current proportional to the concentration of potassium ferrocyanide produced is obtained, and this current value corresponds to the concentration of glucose, which is the substrate.

第3図は、上記構成のセンサの応答特性の一例として、
電圧印加10秒後の電流値と、グルコース濃度との関係
を示すものであり、極めて良好な直線性を示した。
FIG. 3 shows an example of the response characteristics of the sensor with the above configuration.
It shows the relationship between the current value 10 seconds after voltage application and the glucose concentration, and showed extremely good linearity.

(実施例2) 実施例1に用いた検査液にグルコースオキシダーゼを1
0 mg/cc  加え、実施例1と同様に各電極の応
答電流を調べ電極の選別を行なった1、この電極上に実
施例1と同様にしてグルコースセンサを構成した。上記
構成による10個のグルコースセンサに約90 m97
dl  のグルコースを含む血清サンプルを各々滴下し
、2分後に700mVのパルス電圧を印加し実施例1と
同様に測定したところ第4図中人に示す様に良好な再現
性を示した。一方、グルコースオキシダーゼを含まない
倹fi−で選別した電極で構成したグルコースセンサに
血清サンプルを滴下し前記と同様に測定した場合は、第
4図中Bに示すように、人に比較して応答電流の変動が
大であった。この差は、血清サンプル中の蛋白質等の吸
着物質が電極へ吸着するためと考えられる。そこで、あ
らかじめグルコースオキシダーゼを含んだ検査液で電極
の応答を調べれば、グルコースオキシダーゼが電極表面
に吸着され、血清サンプル中の蛋白質が吸着するのを防
ぐことができる。
(Example 2) One portion of glucose oxidase was added to the test solution used in Example 1.
In addition, the response current of each electrode was examined and the electrodes were selected in the same manner as in Example 1. A glucose sensor was constructed on this electrode in the same manner as in Example 1. Approximately 90 m97 for 10 glucose sensors with the above configuration
A serum sample containing dl of glucose was dropped into each sample, and after 2 minutes, a pulse voltage of 700 mV was applied and measurements were carried out in the same manner as in Example 1. As shown in Figure 4, good reproducibility was obtained. On the other hand, when a serum sample is dropped onto a glucose sensor composed of selectively selected electrodes that do not contain glucose oxidase and measured in the same manner as described above, the response is lower than that of humans, as shown in B in Figure 4. The current fluctuation was large. This difference is thought to be due to adsorption of adsorbed substances such as proteins in the serum sample to the electrode. Therefore, if the response of the electrode is checked in advance with a test solution containing glucose oxidase, glucose oxidase can be adsorbed to the electrode surface and proteins in the serum sample can be prevented from being adsorbed.

グルコースオキシダーゼのかわりにアルブミンを10 
mji7cc  加えて選別した電極についても良好な
再現性を示しだ。
10 albumin instead of glucose oxidase
mji7cc In addition, the selected electrodes also showed good reproducibility.

検査液に含ませる蛋白質としては、上記実施例に示した
グルコースオキシダーゼやアルブミンに限定されること
はない。
The protein to be included in the test solution is not limited to glucose oxidase and albumin shown in the above examples.

前記実施911においては、電極系として3電極力式の
場合について述べたが、対極と測定極からなる2電啄方
式でも測定は可能である。
In Example 911, a three-electrode force type electrode system was described, but measurement can also be performed using a two-electrode force type consisting of a counter electrode and a measurement electrode.

多孔体に担持させたり検査液に含まれる電子受容体とし
ては、前記実施例で用いたフェリシアン化カリウムが安
定に反応するので適しているが、P−ベンゾキノンを使
えば、反応速度が早いので高速化に適している。父、2
・6−シクロロフエノールインドフエノール、メチレン
ブルー、フェナジンメトサルフェート、β−ナフトキノ
ン4−スルホン酸カリウムなども使用でき・る。
Potassium ferricyanide used in the above example is suitable as an electron acceptor supported on a porous material or contained in a test solution because it reacts stably, but P-benzoquinone can be used to speed up the reaction because it has a fast reaction rate. suitable for father, 2
・6-cyclophenol indophenol, methylene blue, phenazine methosulfate, β-naphthoquinone potassium 4-sulfonate, etc. can also be used.

なお、上記実施例におけるセンサはグルコースセンサス
、アルコールセンサやコレステロールセンサなど、酸化
還元酵素の関与する系に用いることができる。酸化還元
酵素としてはグルコースオキシダーゼを用いたが、他の
酵素、たとえばアルコールオキシダーゼ、キサンチンオ
キシダーゼ。
Note that the sensor in the above embodiment can be used in systems involving redox enzymes, such as glucose sensors, alcohol sensors, and cholesterol sensors. Although glucose oxidase was used as the oxidoreductase, other enzymes such as alcohol oxidase and xanthine oxidase were used.

コレステロールオキシダーゼ等も用いることができる。Cholesterol oxidase and the like can also be used.

発明の効果 被検液測定に必要な電子受容体を含んだ横歪液を電極板
上に付着させて電気的特性を測定し、それによって選別
した電極板上に酸化還元酵素と前記電子受容体を保持し
た担持板を設置し一体化することにより、安定でかつ品
質の揃ったバイオセンサを得ることができる。
Effects of the Invention A transversely strained liquid containing electron acceptors necessary for measuring a sample liquid is deposited on an electrode plate and its electrical characteristics are measured, and the oxidoreductase and the electron acceptor are deposited on the selected electrode plate. By installing and integrating a support plate that holds a biosensor, it is possible to obtain a biosensor that is stable and of uniform quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造法になるグルコースセ
ンサの模式図、第2図は第1図の縦断面図、第3図と第
4図は同グルコースセンサの応答特性図、第5図と第6
図は従来例のバイオセンサの断面図である。 1・・・・・・基板、2・・・・・・対極、3・・・・
・・測定極、4・・・・・・参照極、5・・・・・・絶
縁層、6・・・・・・保持枠、7・・・・・・多孔体、
8・・・・・・樹脂製カバー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名・N
−(’%J  rつ 寸 区 第3図 Zルコース濃、喪 (硬Vd1) 第4図 フルゴースぐンブ(澗υ 第5図 第6図
FIG. 1 is a schematic diagram of a glucose sensor according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of FIG. 1, and FIGS. 3 and 4 are response characteristic diagrams of the same glucose sensor. Figures 5 and 6
The figure is a cross-sectional view of a conventional biosensor. 1...Substrate, 2...Counter electrode, 3...
... Measuring electrode, 4 ... Reference electrode, 5 ... Insulating layer, 6 ... Holding frame, 7 ... Porous body,
8...Resin cover. Name of agent: Patent attorney Toshio Nakao and one other person/N
-('%J rtsu Dimensions Figure 3 Z lucose thick, mourning (Hard Vd1) Figure 4 Full Gose Gunbu (澗υ Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁性基板上に少なくとも測定極と対極を形成し
て電極板とし、前記電極板上被検液測定に必要な電子受
容体を含む検査用液を付着させ、前記測定極と対極間の
電気的特性に測定して前記電極板を選別し、選別した電
極板上に接して、酸化還元酵素と前記電子受容体を保持
する担体を載置して一体化したことを特徴とするバイオ
センサ。
(1) At least a measurement electrode and a counter electrode are formed on an insulating substrate to form an electrode plate, a test liquid containing an electron acceptor necessary for measuring a test liquid is adhered to the electrode plate, and a gap between the measurement electrode and the counter electrode is applied. The electrode plates are selected by measuring their electrical properties, and a carrier holding the oxidoreductase and the electron acceptor is placed and integrated in contact with the selected electrode plate. sensor.
(2)検査液は電子受容体の酸化型および還元型を水溶
液にとかしたものであることを特徴とする特許請求の範
囲第1項記載のバイオセンサ。
(2) The biosensor according to claim 1, wherein the test liquid is an aqueous solution containing oxidized and reduced electron acceptors.
(3)検査液は電子受容体にタンパク質を加えたもので
あることを特徴とする特許請求の範囲第1項記載のバイ
オセンサ。
(3) The biosensor according to claim 1, wherein the test liquid is an electron acceptor plus protein.
JP61291061A 1986-12-05 1986-12-05 Biosensor manufacturing method and biosensor electrode plate manufacturing method Expired - Fee Related JP2543057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291061A JP2543057B2 (en) 1986-12-05 1986-12-05 Biosensor manufacturing method and biosensor electrode plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291061A JP2543057B2 (en) 1986-12-05 1986-12-05 Biosensor manufacturing method and biosensor electrode plate manufacturing method

Publications (2)

Publication Number Publication Date
JPS63144245A true JPS63144245A (en) 1988-06-16
JP2543057B2 JP2543057B2 (en) 1996-10-16

Family

ID=17763922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291061A Expired - Fee Related JP2543057B2 (en) 1986-12-05 1986-12-05 Biosensor manufacturing method and biosensor electrode plate manufacturing method

Country Status (1)

Country Link
JP (1) JP2543057B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165249A (en) * 1989-11-24 1991-07-17 Matsushita Electric Ind Co Ltd Method for inspecting electrode of biosensor and production thereof
JP2002090331A (en) * 2000-07-21 2002-03-27 I-Sens Inc Biosensor provided with porous thin film having chromatography function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165249A (en) * 1989-11-24 1991-07-17 Matsushita Electric Ind Co Ltd Method for inspecting electrode of biosensor and production thereof
JP2002090331A (en) * 2000-07-21 2002-03-27 I-Sens Inc Biosensor provided with porous thin film having chromatography function

Also Published As

Publication number Publication date
JP2543057B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US4897173A (en) Biosensor and method for making the same
US5185256A (en) Method for making a biosensor
CN2372689Y (en) Current biological sensor
US5229282A (en) Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system
US5120420A (en) Biosensor and a process for preparation thereof
US5171689A (en) Solid state bio-sensor
EP0136362A1 (en) Biosensor
JPH0640086B2 (en) Biosensor
US20100089774A1 (en) Non-enzymatic electrochemical method for simultaneous determination of total hemoglobin and glycated hemoglobin
JPS63128252A (en) Biosensor
JPH0524453B2 (en)
Foster et al. Electrochemical diagnostic strip device for total cholesterol and its subfractions
JPH022913A (en) Modified electrode
JPH043500B2 (en)
JPS63144245A (en) Biosensor
JPS60211350A (en) Biosensor
Wang et al. Single‐use thick‐film electrochemical sensor for insulin
JPS63317097A (en) Biosensor
JPH01134246A (en) Biosensor
DE4216980C2 (en) Immunosensory detection method
JPS63144246A (en) Biosensor
RU2076316C1 (en) Electrochemical sensor to determine content of glucose
JP2590802B2 (en) Biosensor
JPS6150054A (en) Biosensor
JPS633249A (en) Biosensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees