JPS63144226A - Optical waveguide type pressure transducer - Google Patents

Optical waveguide type pressure transducer

Info

Publication number
JPS63144226A
JPS63144226A JP29224386A JP29224386A JPS63144226A JP S63144226 A JPS63144226 A JP S63144226A JP 29224386 A JP29224386 A JP 29224386A JP 29224386 A JP29224386 A JP 29224386A JP S63144226 A JPS63144226 A JP S63144226A
Authority
JP
Japan
Prior art keywords
light
pressure
optical
optical waveguide
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29224386A
Other languages
Japanese (ja)
Inventor
Yasushi Tono
靖 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP29224386A priority Critical patent/JPS63144226A/en
Publication of JPS63144226A publication Critical patent/JPS63144226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To obtain a high-accuracy pressure transducer which is not affected by pressure by making coherent light on an optical waveguide, straining one branching optical waveguide, and making the light interfere with light passed through the other optical waveguide. CONSTITUTION:Optical waveguides 1-3 made of SiO2 layers nearby the surface of an Si substrate 30 branch to 1a and 1b, 2a and 2b, and 3a and 3b in the middles and come together again to reach the other substrate and part. Holes 5a-5c are formed in the reverse surface on the opposite side from the optical waveguides and are positioned on the sides of one branching waveguide respectively, and diaphragms 6a-6c are formed of their bottom parts and the surface of the substrate. Light from a laser light source 10 which oscillates the coherent light is made incident from end parts of the waveguides 1-3 through an optical coupler 11 and an optical fiber 12. When pressure is applied to the substrate 30 while the light is incident on the waveguides 1-3, the diaphragms 6a-6c are strained by the pressure, but they differ in thickness, so when the same pressure is applied, optical path differences are generated between the holes 5a and 5b, diaphragms 6a and 6b, etc., and interference light is obtained at the confluence points of the optical waveguides.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光導波路を応用した圧力変換器に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a pressure transducer using an optical waveguide.

〈従来の技術〉 従来、光導波路を用いた圧力センサとしては第3図(a
)〜(C)に示V原理のものが知られている。図におい
て<a)は基板30に′形成された光導波路40を伝箇
している光が導波路の外にも漏れだしていることに看目
し、その光導波路40の近傍に圧力によって移動する光
吸収体41を近付けることによって導波光の一部を吸収
させてしまうエバセント波吸収型、同■(b)は光導波
路40をSta板45に形成し、このSi薄板を孔46
を有するハウジング部48に密着固定し、孔が形成され
た部分のSi薄板をダイアフラムとして用い、圧力によ
る導波路の歪みによって導波光の一部がリーク光となっ
てでていくことを応用した導波路歪み型、同じく(C)
はSi基板30に力によって移動する光遮断体49を入
れることによって、導波光量を変化させる導波光′a断
型である。
<Prior art> Conventionally, a pressure sensor using an optical waveguide is shown in Fig. 3 (a).
) to (C) are known, based on the V principle. In the figure, <a) shows that the light propagating through the optical waveguide 40 formed on the substrate 30 leaks out of the waveguide, and is moved near the optical waveguide 40 by pressure. An evanescent wave absorption type in which a part of the guided light is absorbed by bringing the optical absorber 41 close to
A thin Si plate with a hole is used as a diaphragm, and a part of the guided light becomes leak light due to distortion of the waveguide due to pressure. Wave path distortion type, also (C)
This is a waveguide light 'a' cross-section in which the amount of guided light is changed by inserting a light shield 49 into the Si substrate 30 that moves by force.

〈発明が解決しようとする問題点〉 しかしながら、上記従来技術においては入力光に対する
出力光の減衰光量を測定しているので清福 度が低く、また、導波路の光伝播特性が温度により変化
するので温度特性が悪いという問題が考えられる。
<Problems to be Solved by the Invention> However, in the above-mentioned conventional technology, since the amount of attenuation of the output light with respect to the input light is measured, the degree of clarity is low, and the optical propagation characteristics of the waveguide change depending on the temperature. A possible problem is poor temperature characteristics.

本発明は上記従来技術の問題点に鑑みて成されたもので
、コヒーレント光を光導波路に入射させ。
The present invention has been made in view of the problems of the prior art described above, and involves making coherent light enter an optical waveguide.

分岐した一方の光導波路に歪みを加えることにより、圧
力を印加しない他方の光導波路を通ってきた光と干渉さ
せ、温度に影響を受けない高精度なFカ変換器を実現す
ることを目的とする。
By applying strain to one of the branched optical waveguides, we aim to create a highly accurate F converter that is not affected by temperature by interfering with the light that has passed through the other optical waveguide, which does not apply pressure. do.

〈問題点を解決するための手段〉 上記問題点を解決するための本発明の構成は。〈Means for solving problems〉 The structure of the present invention for solving the above problems is as follows.

受圧板の一方の面の表面近傍に途中が2本に分岐した光
導波路を複数個形成し1分岐した光導波路の一方の側の
それぞれの裏側をくり抜いて、圧力に対する歪みぬの異
なるダイアフラムを形成し。
A plurality of optical waveguides with two branches are formed near the surface of one side of the pressure receiving plate, and the back side of one side of each branched optical waveguide is hollowed out to form diaphragms with different distortion resistance against pressure. death.

前22本の光導波路を通過した光の干渉光を比較するこ
とによりダイアフラムに印加された圧力を測定する様に
したことを特徴とするものである。
This device is characterized in that the pressure applied to the diaphragm is measured by comparing the interference light of the light that has passed through the front 22 optical waveguides.

・〈実施例〉 第1図は本発明に係かる光導波路を用いた圧力変換器の
一実施例を示す平面図(a)、(a)のX−X断面図(
b)である。これらの図において30は所定の厚さを有
するS i 14板で有り、この基板の表面近傍に5t
O2層からなる光導波路1゜2.3が形成されている。
・〈Example〉 Fig. 1 is a plan view (a) showing an example of a pressure transducer using an optical waveguide according to the present invention, and a sectional view taken along line XX in (a) (
b). In these figures, 30 is a Si 14 board with a predetermined thickness, and 5t is placed near the surface of this board.
An optical waveguide 1°2.3 made of an O2 layer is formed.

これらの光導波路は基板の一端から入射した光が途中で
1a、1b、2a、 2b、3a、3bに分岐し、再び
合流して他方の基板端部に達している。5a、5b、5
cは光導波路を形成した側の裏面に電界加工等により形
成した穴で8分岐した光導波路の一方の側に位置し、そ
の底部と基板の表面でダイアフラム5a。
In these optical waveguides, light entering from one end of the substrate branches into 1a, 1b, 2a, 2b, 3a, and 3b, and then joins again to reach the other end of the substrate. 5a, 5b, 5
A diaphragm 5a c is located on one side of the eight-branched optical waveguide with holes formed by electric field machining or the like on the back surface of the side on which the optical waveguide is formed, and a diaphragm 5a is formed between the bottom and the surface of the substrate.

6b、6cを形成している。ダイアフラムは穴の深さを
調整することによりそれぞれ厚みが異なっている。10
はコヒーレント光を発振する例えばレーザ光源で、この
光源からの光を光カプラ−11、光ファイバ12を介し
て光導波路の端部から入射させるものとする。なお図で
は省略するがSil板30は孔を形成した側を測定対象
に対向させ、ダイアフラムに均等に圧力が印加されるよ
うに固定されているものとする。
6b and 6c are formed. Diaphragms have different thicknesses by adjusting the depth of the holes. 10
is, for example, a laser light source that oscillates coherent light, and the light from this light source is made to enter from the end of the optical waveguide via an optical coupler 11 and an optical fiber 12. Although not shown in the drawings, it is assumed that the Sil plate 30 is fixed so that the side on which the holes are formed faces the object to be measured, and pressure is evenly applied to the diaphragm.

上記構成において、光導波路に光を入射しだ状態で基板
に圧力を加えると、その圧力によりそれぞれのダイアフ
ラムが歪むが、ダイアフラムはそれぞれ厚さが異なるの
で、同じ圧力を受けた場合(5aと5b)、(6aと6
b)、(7aと7b)問には各々光路差が生じ光導波路
の合流点で干渉光となる。
In the above configuration, if pressure is applied to the substrate with light starting to enter the optical waveguide, each diaphragm will be distorted by the pressure, but each diaphragm has a different thickness, so if the same pressure is applied (5a and 5b ), (6a and 6
An optical path difference occurs between the beams b) and (7a and 7b), and interference light is generated at the confluence of the optical waveguides.

第2図は圧力に対する出力光(干渉光)の変化を示すも
ので、1 ′、2′、3”の曲線は第1図で示す光導波
路1.2.3に対応した出力を表わしているものとする
。図によればそれぞれの曲線は周期が異なっている。そ
の結果、ある圧力が印加された場合、1の導波路からの
出力がhl、2からの出力がh2,3の導波路からの出
力がh3の場合はそのときの圧力をPlと特定し、1お
よび3の導波路カビらの出力がそれぞれh5,2の導波
路からの出力がh4である場合はそのときの印加圧力を
P2と特定する。
Figure 2 shows the change in output light (interference light) with respect to pressure, and the curves 1', 2', and 3'' represent the output corresponding to optical waveguide 1.2.3 shown in Figure 1. According to the figure, each curve has a different period.As a result, when a certain pressure is applied, the output from waveguide 1 is hl, the output from waveguide 2 is h2, and waveguide 3 If the output from the waveguide is h3, the pressure at that time is specified as Pl, and if the output from the waveguides 1 and 3 is h5, respectively, and the output from the waveguide 2 is h4, the applied pressure at that time is is specified as P2.

なお、この様な図の特性は予め既知の圧力を徐々に印加
しながらその特性を記録しておくものとする。
Note that the characteristics shown in such a diagram are recorded in advance while gradually applying a known pressure.

上記構成において、入力スパンに対して適当な数の光導
波路およびダイアフラムを設けることにより精度の高い
圧力測定が可能となる。また、圧力に対して影響を受け
る側(ダイアフラム側)と影響を受けない側の導波路が
同一環境に配置されるので、光導波路を対称性良く製作
することにより例えば周囲温度の影響をキャンセルする
ことが出来る。
In the above configuration, highly accurate pressure measurement is possible by providing an appropriate number of optical waveguides and diaphragms for the input span. In addition, since the waveguides on the side affected by pressure (diaphragm side) and the side not affected by pressure are placed in the same environment, the influence of ambient temperature, for example, can be canceled by manufacturing the optical waveguide with good symmetry. I can do it.

あ・ なお2本実施例に置いては圧力に対する歪み聞を変化さ
せるため、ダイアフラムの厚さを変化させたがダイアフ
ラムの径を変化させてもよい。また、レーザ光源は同様
の性能のものを3台用意しそれぞれの光導波路に入射さ
けるようにしてもよい。また、導波路は3本形成した例
を示したが導波路の数は本例に限るものではない。
A. In addition, in this embodiment, the thickness of the diaphragm was changed in order to change the strain resistance against pressure, but the diameter of the diaphragm may also be changed. Alternatively, three laser light sources with similar performance may be prepared and the laser light sources may be directed into the respective optical waveguides. Further, although an example in which three waveguides are formed is shown, the number of waveguides is not limited to this example.

〈発明の効果〉 。<Effect of the invention> .

予め求めておいた値と比較することにより、印加された
圧力を特定するので測定精度を高めることが出来、また
、各光導波路は同一環境に配置されるので温度による出
力変動のない光導波型圧力変換器を実現することができ
る。
By comparing it with a predetermined value, the applied pressure can be determined, increasing measurement accuracy.In addition, since each optical waveguide is placed in the same environment, it is an optical waveguide type with no output fluctuation due to temperature. A pressure transducer can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図(a)および<
a)図のX−x断面図(b)、第2図は圧力に対する出
力光変化を示す説明図、第3図(a)、(b)、(c)
は従来例を示す図である。 1〜3・・・光導波路、−5a〜5C・・・穴、5a〜
6C・・・ダイアフラム、30・・・81塁板。 第1図 C゛α) (b) 囮 −゛ぐ 工、f]L 5;1 !      e     ど
FIG. 1 is a plan view (a) showing an embodiment of the present invention and <
a) X-x sectional view (b) in the figure, Figure 2 is an explanatory diagram showing changes in output light with respect to pressure, Figure 3 (a), (b), (c)
1 is a diagram showing a conventional example. 1 to 3... Optical waveguide, -5a to 5C... Hole, 5a to
6C...diaphragm, 30...81 baseboard. Figure 1C゛α) (b) Decoy-゛guwork, f]L 5;1! e.

Claims (1)

【特許請求の範囲】[Claims] 受圧板の一方の面の表面近傍に途中が2本に分岐した光
導波路を複数個形成し、分岐した光導波路の一方の側の
それぞれの裏側をくり抜いて、圧力に対する歪み量の異
なる複数個のダイアフラムを形成し、前記2本の光導波
路を通過した光の干渉光を比較することによりダイアフ
ラムに印加された圧力を測定する様にしたことを特徴と
する光導波型圧力変換器。
A plurality of optical waveguides with two branches in the middle are formed near the surface of one side of the pressure receiving plate, and the back side of one side of each branched optical waveguide is hollowed out to create a plurality of optical waveguides with different amounts of strain in response to pressure. An optical waveguide type pressure transducer characterized in that a diaphragm is formed and the pressure applied to the diaphragm is measured by comparing the interference light of the light that has passed through the two optical waveguides.
JP29224386A 1986-12-08 1986-12-08 Optical waveguide type pressure transducer Pending JPS63144226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29224386A JPS63144226A (en) 1986-12-08 1986-12-08 Optical waveguide type pressure transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29224386A JPS63144226A (en) 1986-12-08 1986-12-08 Optical waveguide type pressure transducer

Publications (1)

Publication Number Publication Date
JPS63144226A true JPS63144226A (en) 1988-06-16

Family

ID=17779313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29224386A Pending JPS63144226A (en) 1986-12-08 1986-12-08 Optical waveguide type pressure transducer

Country Status (1)

Country Link
JP (1) JPS63144226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248299A (en) * 1990-02-27 1991-11-06 Tokyo Electric Power Co Inc:The Optical fiber multipoint measuring system
US11280691B2 (en) 2017-03-21 2022-03-22 Nuron Limited Optical fibre pressure sensing apparatus employing longitudinal diaphragm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248299A (en) * 1990-02-27 1991-11-06 Tokyo Electric Power Co Inc:The Optical fiber multipoint measuring system
US11280691B2 (en) 2017-03-21 2022-03-22 Nuron Limited Optical fibre pressure sensing apparatus employing longitudinal diaphragm

Similar Documents

Publication Publication Date Title
US4320475A (en) Monomodal optical fibre hydrophone operating by the elastooptical effect
US4850666A (en) Slab-type optical device
CN104703105B (en) Double FP chambers optical fiber sound sensing probes and its sensor-based system
DE3686034T2 (en) OPTICAL PRESSURE MEASURING SYSTEM.
EP0050059B1 (en) Hybrid optical junction and application to a ring interferometer
JPH02503713A (en) Optical modulation and measurement methods
WO2022199637A1 (en) Optical fiber temperature sensor and sensing head structure
JPH02257107A (en) Energy filter
US10082624B2 (en) System for coupling radiation into a waveguide
JPS63144226A (en) Optical waveguide type pressure transducer
NZ208276A (en) Optical polarisation variation sensor with compensating optical path
JP3925202B2 (en) High speed wavelength detector
JP2003156367A (en) Probe-type optical fiber sensor
JP3063138B2 (en) Waveguide type wavelength measuring device
JP2003270041A (en) Apparatus for high-speed detection of wavelength
JPH07509064A (en) Optical sensor to determine environmental conditions
JPS63157027A (en) Optical waveguide type pressure transducer
WO2019073623A1 (en) Optical-fiber-type measurement device and optical-fiber-type measurement method
JPS60170723A (en) Optical transducer
JPS6360410A (en) Optical device
JPH05157640A (en) Optical waveguide type stress sensor
JPS62285027A (en) Optical hydrophone
JPS61117411A (en) Optical fiber sensor
JPH10232109A (en) Optical displacement sensor
JPH0115008B2 (en)