JPS63144198A - Ferroelectric single crystal - Google Patents

Ferroelectric single crystal

Info

Publication number
JPS63144198A
JPS63144198A JP28844086A JP28844086A JPS63144198A JP S63144198 A JPS63144198 A JP S63144198A JP 28844086 A JP28844086 A JP 28844086A JP 28844086 A JP28844086 A JP 28844086A JP S63144198 A JPS63144198 A JP S63144198A
Authority
JP
Japan
Prior art keywords
single crystal
crystal
ferroelectric
flux
pbtio3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28844086A
Other languages
Japanese (ja)
Other versions
JPH034519B2 (en
Inventor
Masabumi Ofune
正文 小舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP28844086A priority Critical patent/JPS63144198A/en
Publication of JPS63144198A publication Critical patent/JPS63144198A/en
Publication of JPH034519B2 publication Critical patent/JPH034519B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a readily and precisely machinable ferroelectric single crystal, having excellent processability in cutting and grinding and readily dividable into single domains, by partially substituting Pb in a PbTiO3 single crystal with Mg. CONSTITUTION:The aimed ferroelectric single crystal, obtained by partially substituting Pb in a PbTiO3 single crystal with Mg and having a composition expressed by the formula (0<x<=0.5). This ferroelectric single crystal is produced by preparing a melt of a PbO-PbTiO3 based blend using a crucible made of, e.g. magnesia single crystal, and growing a single crystal by a flux or flux pulling up method. The ferroelectric single crystal can be readily divided into single domains by weak electric field treatment and the single crystal in the single domains has improved electric characteristics, e.g. resistivity, etc. and can be applied to various sensors utilizing excellent pyroelectricity thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はP b T t O3単結晶におけるPbの一
部をMgで置換した( P b +−x M g x)
 T i O3(0くx≦0.5)で表される新規な強
誘電体単結晶に関する。
[Detailed description of the invention] (Industrial application field) The present invention replaces a part of Pb in a P b T t O3 single crystal with Mg (P b +−x M g x)
The present invention relates to a novel ferroelectric single crystal represented by T i O3 (0x≦0.5).

(従来技術) 最近、PbTi0.はペロブスカイト型構造を有する強
誘電体で、キュリ一温度が490℃と高く、他の強誘電
体(たとえば、BaTi0゜)と比較して焦電係数(a
pr /dT)ならびに性能指数(apr /dT)(
1/ε)が大きいことから、焦電形赤外線検出器用材料
として注目されてはじめている工業材料である。
(Prior art) Recently, PbTi0. is a ferroelectric material with a perovskite structure, has a high Curie temperature of 490°C, and has a pyroelectric coefficient (a
pr /dT) and figure of merit (apr /dT) (
1/ε), it is an industrial material that is beginning to attract attention as a material for pyroelectric infrared detectors.

(発明が解決しようとする問題点) しかしながら、公知のフラックス法、引上げ法、フラッ
クス法上げ法及びスパッタ法等で作製された純粋なP 
b T i Oy単結晶は非常に脆(、しかも多くの空
孔や結晶欠陥を有し、電気的な諸定数もほとんどの場合
、測定されるに至っていないのが実情である。ごく一部
の報告例によると、室温での抵抗率はlOhΩ・c11
1程度のものしか得られていない。また、この抵抗率を
改善する目的から、たとえば、3価の金属酸化物などの
不純物質を添加した場合、抵抗率は向上する反面、他の
電気特性を劣化させて最終的な材料の焦電係数及び性能
指数を低下させるという欠点があった。さらに、従来法
で作製されたP b T i O:l結晶は多くの双晶
構造を有するため、数にV / craから50KV/
cm程度の強電屑処理を施しても容易に単分域化できな
い欠点もあった。
(Problems to be Solved by the Invention) However, pure P produced by known flux methods, pulling methods, flux raising methods, sputtering methods, etc.
b T i Oy single crystals are extremely brittle (and have many vacancies and crystal defects, and the reality is that their electrical constants have not been measured in most cases. According to a reported example, the resistivity at room temperature is lOhΩ・c11
Only about 1 was obtained. In addition, for the purpose of improving this resistivity, for example, if impurities such as trivalent metal oxides are added, the resistivity will improve, but other electrical properties will deteriorate and the final material will become pyroelectric. It had the disadvantage of lowering the coefficient and figure of merit. Furthermore, since the P b T i O:l crystal produced by the conventional method has many twin structures, the number varies from V/cra to 50KV/
There was also a drawback that it could not be easily converted into a single domain even if strong electric waste treatment of about cm was applied.

(問題点を解決するための手段) 本発明は上述の点にかんがみ、発明されたものであって
、弱電解処理で容易に単分域化することができ、優れた
加工性及び電気特性を発揮する全く新規な強誘電体単結
晶(P b+−x Mgx )T i 03  (0<
 x≦0.5)を提供しようというものである。
(Means for Solving the Problems) The present invention was invented in view of the above-mentioned points. A completely new ferroelectric single crystal (P b+-x Mgx )T i 03 (0<
x≦0.5).

以下、本発明の構成について説明する。The configuration of the present invention will be explained below.

すなわち、本発明の構成要旨とするところは、P b 
T i O:l単結晶におけるPbの一部をMgで置換
した一般式(P b+−x Mgx ) T i O:
1(0〈x≦0.5)で表されることを特徴とする強誘
電体単結晶、にある。
That is, the gist of the present invention is that P b
General formula (P b+-x Mgx ) in which a part of Pb in the T i O:l single crystal is replaced with Mg T i O:
1 (0<x≦0.5).

つぎに、このような強誘電体単結晶を得る手段について
説明すると、強誘電体単結晶の育成坩堝材としてマグネ
シア単結晶(純度99.99%以上)を用いてPbOを
フラックスとするpbOP b T i O3系融液か
らフラックス法あるいはフラックス引上げ法によって結
晶を育成させることにより、所望の強誘電体単結晶が得
られる。ここで、マグネシア単結晶を坩堝材として用い
る理由は高温のPbOPbTi0z系融液から徐々に結
晶を育成する過程において、坩堝材からのMgの溶出に
より、PbTiO3単結晶のPbの一部をMgで置換す
るためであり、その結果、育成結晶の抵抗率が改善され
ると共にその他の電気特性も向上し、最終的に材料の焦
電性能が大幅に高められる。
Next, to explain the means for obtaining such a ferroelectric single crystal, pbOP b T using magnesia single crystal (purity of 99.99% or more) as a ferroelectric single crystal growth crucible material and PbO as a flux is used. A desired ferroelectric single crystal can be obtained by growing a crystal from an iO3-based melt by a flux method or a flux pulling method. Here, the reason why magnesia single crystal is used as a crucible material is that during the process of gradually growing crystals from a high-temperature PbOPbTi0z melt, Mg is eluted from the crucible material and a part of the Pb in the PbTiO3 single crystal is replaced with Mg. As a result, the resistivity of the grown crystal is improved as well as other electrical properties, and ultimately the pyroelectric performance of the material is greatly enhanced.

また、上記強誘電体単結晶の育成手段によれば、Mgの
溶出量、すなわち、PbTi0.単結晶のPbの一部と
置換固溶するMg量は結晶の育成条件である保持温度な
らびに保持時間により制御され、これにより所望のMg
1tを固溶した(P bl−XMgx ) T i 0
3  (0< x≦0.5)単結晶が得られる。ただし
、X=0組成の結晶は第2図の走査型顕微鏡写真に示す
とおり、多孔質でこわれやすい結晶となり、Xが0.5
を超えると組成の結晶は内部に多くの気泡や異種相が介
在し、不透明な結晶となるので、Q<x≦0.5の条件
を満たすことが必要である。
Further, according to the above-mentioned ferroelectric single crystal growth method, the amount of Mg eluted, that is, PbTi0. The amount of Mg that replaces a part of the single crystal Pb and forms a solid solution is controlled by the holding temperature and holding time, which are the crystal growth conditions.
1T in solid solution (P bl-XMgx ) T i 0
3 (0<x≦0.5) single crystal is obtained. However, as shown in the scanning micrograph in Figure 2, a crystal with a composition of X = 0 becomes a porous and fragile crystal, and
If the composition exceeds , the crystal with the composition will have many bubbles and different phases interposed inside, and will become an opaque crystal, so it is necessary to satisfy the condition of Q<x≦0.5.

なお、育成方法として、特に、フラックス法を採用して
行う場合には、望ましくは坩堝内の出発原料粉末の上部
もしくは下部に約1〜2 ms程度の厚さのマグネシア
単結晶薄板を置くことにより、融液状態で融液比重が約
8.0.マグネシア単結晶薄板の比重が約3.585か
ら比重差によって薄板が融液の上面に押し上げられ、こ
の結果、高温部でのpbo蒸気の揮散が著しく抑制され
、良質の大型単結晶が高収率で得られるメリットがある
。また、このマグネシア単結晶薄板はpbo蒸気の揮散
防止以外に、坩堝材と同様に結晶の育成過程における重
要なMgの供給源として利用される。
In addition, especially when the flux method is adopted as the growth method, it is preferable to place a magnesia single crystal thin plate with a thickness of about 1 to 2 ms above or below the starting raw material powder in the crucible. , the specific gravity of the melt in the melt state is approximately 8.0. Since the specific gravity of the magnesia single crystal thin plate is approximately 3.585, the thin plate is pushed up to the top surface of the melt due to the difference in specific gravity, and as a result, the volatilization of PBO vapor in the high temperature section is significantly suppressed, resulting in a high yield of high quality large single crystals. There are benefits to be gained. In addition to preventing the volatilization of PBO vapor, this magnesia single crystal thin plate is used as an important source of Mg in the crystal growth process, similar to a crucible material.

(実施例) 実施例1゜ PbOPbTi0z  MgCOx系配合物を用い、融
液組成がX−0,0,02,0,1,0,5,0,6と
なる5種について、フラックス法により一般式(P b
 01−X Mgx ) T i 03で表されるXv
L拮晶を育成した。なお、フラックスとじてはpboを
用いるため、PbO:PbTi0゜=80:20(モル
%)とし、上記5種の混合粉末を各々、白金坩堝に入れ
、電気炉に装填した後、室温から1,100℃まで20
0℃/時間で昇温させた。その温度を10時間保持した
後、室温まで20℃/時間で徐冷した。
(Example) Example 1 Using a PbOPbTi0z MgCOx-based compound, the general formula was determined by the flux method for five types of melt compositions of (P b
01-X Mgx ) Xv represented by T i 03
Raised L. In addition, since PBO is used as the flux, PbO:PbTi0° = 80:20 (mol %), the above five mixed powders are placed in a platinum crucible, loaded into an electric furnace, and then heated from room temperature to 20 to 100℃
The temperature was raised at 0°C/hour. After maintaining that temperature for 10 hours, it was slowly cooled to room temperature at a rate of 20° C./hour.

育成結晶の取出しはZN  HNOs中に坩堝全体を浸
漬させ、これを加熱しながら、攪拌することで完全にフ
ラックスを除去した。得られた結晶の化学組成は原子吸
光分析から、出発配合物とほぼ同一の組成であった。ま
た、X=O組成の場合の結晶は第2図の走査型顕微鏡写
真に示すとおり、多孔質でこわれやすい結晶であり、ま
た、X=0.6組成の結晶は内部に多くの気泡や異種相
が多く介在しており、良質な結晶は得られなかった。
To take out the grown crystal, the entire crucible was immersed in ZN HNOs, and the crucible was heated and stirred to completely remove the flux. The chemical composition of the obtained crystals was determined by atomic absorption spectrometry to be almost the same as that of the starting formulation. Furthermore, as shown in the scanning micrograph in Figure 2, the crystal with the X=O composition is a porous and fragile crystal, and the crystal with the X=0.6 composition has many bubbles and foreign substances inside. Many phases were present, and good quality crystals could not be obtained.

これに対し、X=0.02.0.1.0.5の各々組成
の結晶は、透明度の高い強誘電体単結晶であった。ちな
みにX−0,022組成結晶の走査型顕微鏡写真は第1
図に示すとおり、透明度の高い強誘電体単結晶であった
On the other hand, the crystals with the respective compositions of X=0.02, 0.1, and 0.5 were highly transparent ferroelectric single crystals. By the way, the first scanning micrograph of the X-0,022 composition crystal is
As shown in the figure, it was a highly transparent ferroelectric single crystal.

実施例2゜ PbO:PbTfO3=80:20(モル%)に調整さ
れたP b OP b T i O3系配合物をマグネ
シア単結晶(純度99.99%以上)坩堝(寸法:内径
40X高さ50關、外径60mmX高さ60關)に入れ
、電気炉に装填した後、室温から1,100°Cまで1
50℃/時間で昇温させた。その温度を15時間保持し
た後、室温まで10℃/時間で徐冷した。ついで、実施
例1と同様の操作で結晶を取出した後、原子吸光分析な
らびに蛍光X線分析によって、結晶の化学組成を求めた
。その結果を第1表に示す。
Example 2 A P b OP b Ti O3-based compound adjusted to PbO:PbTfO3 = 80:20 (mol%) was placed in a magnesia single crystal (purity 99.99% or higher) crucible (dimensions: inner diameter 40 x height 50 After loading it into an electric furnace, heat it for 1 hour from room temperature to 1,100°C.
The temperature was raised at a rate of 50°C/hour. After maintaining that temperature for 15 hours, it was slowly cooled to room temperature at a rate of 10°C/hour. Next, the crystals were taken out in the same manner as in Example 1, and the chemical composition of the crystals was determined by atomic absorption spectrometry and fluorescent X-ray analysis. The results are shown in Table 1.

第1表 強誘電体単結晶の化学組成 上記第1表より明らかなように、得られた結晶は(P 
bo、wvz Mgo、axs ) T i 03単結
晶であることが確認できた。
Table 1 Chemical composition of ferroelectric single crystal As is clear from Table 1 above, the obtained crystal was (P
bo, wvz Mgo, axs) It was confirmed that it was a T i 03 single crystal.

つぎに、育成した結晶を2.6 X2.6 Xl、、3
龍の寸法に研磨加工した後、電気炉に入れ、600℃か
ら室温までの温度域で電場冷却を行った。
Next, the grown crystal is 2.6X2.6Xl,,3
After polishing to the dragon dimensions, it was placed in an electric furnace and cooled in an electric field at a temperature ranging from 600°C to room temperature.

この時の印加電界は100V/crrrで、育成結晶は
容易に単分域化された。これを測定試料として、誘電率
(ε)、誘電損失(tan δ)、抵抗率(ρ)及び焦
電係数(dpr/dT)について測定した。その測定結
果を第2表に示す。
The applied electric field at this time was 100 V/crrr, and the grown crystal was easily made into a single domain. Using this as a measurement sample, dielectric constant (ε), dielectric loss (tan δ), resistivity (ρ), and pyroelectric coefficient (dpr/dT) were measured. The measurement results are shown in Table 2.

第2表 (Pbo、qvz Mgo、ozs)TiOs
 単Pi晶(Dn定数さらに、誘電率の温度特性から測
定試料はキュリ一温度T。=489℃、キュリーワイス
温度−465℃、キュリ一定数C−2,I XIO”C
ををする優れた強誘電体単結晶であることが判明した。
Table 2 (Pbo, qvz Mgo, ozs) TiOs
Single Pi crystal (Dn constant) Furthermore, from the temperature characteristics of the dielectric constant, the measurement sample has a Curie temperature T = 489°C, a Curie-Weiss temperature -465°C, a Curie constant C-2, I XIO”C
It turned out to be an excellent ferroelectric single crystal that can

なお、実施例1及び2で単結晶の育成方法としてフラツ
クス性を用いた例を上げたが、この育成方法の手段とし
ては、他の手段、たとえば、引上げ法、フラックス引上
げ法あるいはスパッタ法によっても差支えなく、要する
に、得られる結晶が(P b+−x Mgx ) T 
i O*  (0くx≦0.5)で表される強誘電体単
結晶であれば上述のごと(、優れた特性を発揮すること
はいうまでもない。
In addition, in Examples 1 and 2, an example was given in which flux property was used as a method for growing a single crystal, but other means such as a pulling method, a flux pulling method, or a sputtering method may also be used as a means for this growing method. No problem, in short, the obtained crystal is (Pb+-xMgx)T
It goes without saying that a ferroelectric single crystal represented by iO* (0x≦0.5) exhibits excellent characteristics as described above.

(発明の効果) 以上、説明したように、本発明による強誘電体単結晶一
般式(P b+−x Mgx ) T i 03  (
0<x≦0.5)で表される単結晶は公知の純粋なPb
Ti0.単結晶に比べて、切断、研磨したりするときの
加工性に優れ、たとえば、約IX I XQ、5 龍程
度まで容易に精密加工できる利点がある。また、弱電界
処理で容易に単分域化され、完全に双晶も除去される。
(Effects of the Invention) As explained above, the ferroelectric single crystal general formula (P b+-x Mgx ) T i 03 (
The single crystal represented by 0<x≦0.5) is a known pure Pb
Ti0. Compared to single crystals, it has excellent workability when cutting and polishing, and has the advantage of being easily precision-processed to about IXIXQ, 5X, for example. In addition, it is easily made into a single domain by weak electric field treatment, and twins are completely removed.

さらに、単分域化された(Pb、−イMgx ) T 
i 03  (0<X≦0.5)単結晶は純粋なP b
T i 03 !li結晶に比べ、キュリ一温度をほと
んど低下させることなく、大幅に抵抗率ならびにその他
の電気特性も改善できることから、その優れた焦電性を
利用した各種センサへの応用が期待されることから、工
業材料としての価値はきわめて大きい。
Furthermore, monodomained (Pb, -IMgx)T
i 03 (0<X≦0.5) Single crystal is pure P b
T i 03! Compared to Li crystals, resistivity and other electrical properties can be significantly improved with almost no drop in the Curie temperature, and it is expected that it will be applied to various sensors that utilize its excellent pyroelectric properties. Its value as an industrial material is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(P bo、wsMgo、。z)TiQ、単結
晶の走査型電子顕微鏡写真を示し、また、第2図はP 
b T i O3結晶の走査型電子顕微鏡写真を示す。
Figure 1 shows a scanning electron micrograph of (P bo, wsMgo, .z) TiQ, single crystal, and Figure 2 shows P
b Shows a scanning electron micrograph of a T i O3 crystal.

Claims (1)

【特許請求の範囲】[Claims] PbTiO_3単結晶におけるPbの一部をMgで置換
した一般式(Pb_1_−_xMg_x)TiO_3(
0<x≦0.5)で表されることを特徴とする強誘電体
単結晶。
General formula (Pb_1_-_xMg_x) TiO_3(
0<x≦0.5).
JP28844086A 1986-12-02 1986-12-02 Ferroelectric single crystal Granted JPS63144198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28844086A JPS63144198A (en) 1986-12-02 1986-12-02 Ferroelectric single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28844086A JPS63144198A (en) 1986-12-02 1986-12-02 Ferroelectric single crystal

Publications (2)

Publication Number Publication Date
JPS63144198A true JPS63144198A (en) 1988-06-16
JPH034519B2 JPH034519B2 (en) 1991-01-23

Family

ID=17730240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28844086A Granted JPS63144198A (en) 1986-12-02 1986-12-02 Ferroelectric single crystal

Country Status (1)

Country Link
JP (1) JPS63144198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0441584A2 (en) * 1990-02-09 1991-08-14 Raytheon Company Ferroelectric memory structure
JPH03245406A (en) * 1990-02-20 1991-11-01 Tateho Chem Ind Co Ltd Ferroelectric thin film and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0441584A2 (en) * 1990-02-09 1991-08-14 Raytheon Company Ferroelectric memory structure
JPH03245406A (en) * 1990-02-20 1991-11-01 Tateho Chem Ind Co Ltd Ferroelectric thin film and manufacture thereof

Also Published As

Publication number Publication date
JPH034519B2 (en) 1991-01-23

Similar Documents

Publication Publication Date Title
Kolar et al. Synthesis and crystal chemistry of BaNd2Ti3O10, BaNd2Ti5O14, and Nd4Ti9O24
Woodward et al. Order-disorder in A2M3+ M5+ O6 perovskites
JP2003041362A (en) Method for manufacturing zinc oxide-based homologous compound film
Bertram et al. Growth and correlation between composition and structure of (1− x) Pb (Zn1/3Nb2/3) O3− xPbTiO3 crystals near the morphotropic phase boundary
US4721547A (en) Process for producing single crystal of garnet ferrite
EP1867761A1 (en) Gallate single crystal, process for producing the same, piezoelectric device for high-temperature use and piezoelectric sensor for high-temperature use
EP0030170A1 (en) Process for the production of polycrystalline garnet
Yang et al. Growth, microstructure, energy–storage and dielectric performances of chemical–solution NBT–based thin films: Effect of sodium nonstoichimometry
CN1304648C (en) Bismuth sodium potassium titanate series nonlead ferroelectric piezoelectric monocrystal and its growing method and equipment
Fratello et al. Nickel containing perovskites
JPS63144198A (en) Ferroelectric single crystal
JPH01252538A (en) Metal oxide material
EP3321397B1 (en) Piezoelectric material, method for manufacturing same, piezoelectric element and combustion pressure sensor
Agrawal et al. Ultra low thermal expansion phases: Substituted ‘PMN’perovskites
Subbarao Reactions in the System PbO‐Ta2O5
Guha Reaction chemistry and subsolidus phase equilibria in lead-based relaxor systems Part II The ternary system PbO-MgO-Nb 2 O 5
Sakamoto et al. Synthesis of Lead Barium Niobate Powders and Thin Films by the Sol‐Gel Method
JPH034520B2 (en)
JPH03245406A (en) Ferroelectric thin film and manufacture thereof
RU2616305C1 (en) Method for bismuth ferrite transparent nanoscale films production
Markgraf et al. Effect of starting components on the growth of PbMg13Nb23O3
Hepp et al. Inert atmosphere preparation of Ba2YCu3O7− x using BaO2
CN113957530B (en) Transparent potassium-sodium niobate crystal and preparation method and application thereof
CN108441964B (en) Ga2S3Method for producing single crystal and use of single crystal in ferroelectric material, piezoelectric device and thermoelectric device
Kashchieva et al. Effect of synthesis route on the microstructure of SiO2 doped bismuth titanate ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees