JPS63144158A - Xonotlite base calcium silicate formed body - Google Patents

Xonotlite base calcium silicate formed body

Info

Publication number
JPS63144158A
JPS63144158A JP28685686A JP28685686A JPS63144158A JP S63144158 A JPS63144158 A JP S63144158A JP 28685686 A JP28685686 A JP 28685686A JP 28685686 A JP28685686 A JP 28685686A JP S63144158 A JPS63144158 A JP S63144158A
Authority
JP
Japan
Prior art keywords
calcium silicate
molded
xonotrite
xonotlite
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28685686A
Other languages
Japanese (ja)
Inventor
一郎 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP28685686A priority Critical patent/JPS63144158A/en
Publication of JPS63144158A publication Critical patent/JPS63144158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、建築用材料として用いられるゾノトライト系
ケイ酸カルシウム成形体に関し、さらに詳しくは強度と
耐熱性に優れたゾノトライト系ケイ酸カルシウム成形体
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a xonotlite-based calcium silicate molded body used as a building material, and more specifically to a xonotlite-based calcium silicate molded body that has excellent strength and heat resistance. Regarding.

〈従来の技術およびその問題点〉 ゾノトライト結晶を主要構成成分とするゾノトライト系
ケイ酸カルシウム成形体は、特に耐熱性に優れているた
めに、この特徴を生かし高温用の保温材、断熱材、耐火
被覆材といった用塗に広く使用されている。
<Conventional technology and its problems> Zonotlite-based calcium silicate molded bodies containing xonotlite crystals as a main component have particularly excellent heat resistance. It is widely used in applications such as coatings.

ゾノトライト系ケイ酸カルシウム成形体の製造方法とし
ては、次に示す4つの方法が主に知られている。
The following four methods are mainly known as methods for producing xonotrite-based calcium silicate molded bodies.

■ ケイ酸質原料および石灰質原料さらに必要に応じて
添加する添加材を、粉末状で型枠に入れ成形した後、オ
ートクレーブ中で水熱反応させて成形体を得る(fF公
昭61−25672号公報)。
■ Siliceous raw materials and calcareous raw materials, as well as additives to be added as necessary, are placed in powder form in a mold and molded, and then hydrothermally reacted in an autoclave to obtain a molded body (fF Publication No. 1983-25672). ).

■ ケイ酸質原料、石灰質原料および水さらに必要に応
じて添加する添加材からなる原料スラリーを成形した後
、オートクレーブ中で水熱反応させて成形体を得る(%
公昭61−25672号公報の比較例2)。
■ After molding a raw material slurry consisting of a siliceous raw material, a calcareous raw material, water, and additives added as necessary, a molded body is obtained by a hydrothermal reaction in an autoclave (%
Comparative Example 2 of Publication No. 61-25672).

■ ■と同様の原料スラリーを加熱して予備反応を行っ
てゲルを生成させ、そのゲルを成形した後、オートクレ
ーブ中で水熱反応させて成形体を得る。
(2) A raw material slurry similar to (2) is heated to perform a preliminary reaction to produce a gel, and after the gel is molded, a hydrothermal reaction is performed in an autoclave to obtain a molded body.

■ ■と同様の原料スラリーをオートクレーブ中で攪拌
しながら水熱反応させてゾノトライト結晶を生成させ、
それを成形乾燥して成形体を得る(特公昭45−257
71号公報)。
■ A raw material slurry similar to ■ is subjected to a hydrothermal reaction while stirring in an autoclave to generate xonotlite crystals.
It is molded and dried to obtain a molded body (Special Publication Publication No. 45-257
Publication No. 71).

しかし前述の■で示した製造方法においては、原料をそ
れ程密に充填することができないために1得られる成形
体の嵩比重は0.48程度であり(%公昭61−256
72号公報の実験例2参照)、あまり嵩比重の大きい成
形体は得られない。したがって強度面での性能が高い成
形体を得ることは困難である。また■と■で示した製造
方法においては、嵩比重の高い成形体は得られるが、得
られた成形体全高温に加熱した際の収縮率が、従来のゾ
ノトライト系ケイ酸カルシウム成形体より大きくなる。
However, in the manufacturing method shown in (1) above, since the raw materials cannot be packed so densely, the bulk specific gravity of the obtained molded product is about 0.48 (%Koshō 61-256
(Refer to Experimental Example 2 in Japanese Patent No. 72), a molded article having a large bulk specific gravity cannot be obtained. Therefore, it is difficult to obtain a molded product with high performance in terms of strength. In addition, with the manufacturing methods shown in ■ and ■, molded bodies with high bulk specific gravity can be obtained, but the shrinkage rate of the resulting molded bodies when heated to a high temperature is greater than that of conventional xonotrite-based calcium silicate molded bodies. Become.

つまりゾノトライト系ケイ酸カルシウム成形体の大きな
特徴である耐熱性が低下してしまう。さらに■で示した
製造方法においては、水熱反応により生成するゾノトラ
イト結晶の集合体が非常に嵩高なものであるために(窯
業協会誌82 (3) 171(1974)参照)、■
で示した製造方法と同様にあまり嵩比重の大きい成形体
は得られない。したがってこの製造方法においても、強
度面での性能が高い成形体を得ることは困難である。
In other words, the heat resistance, which is a major feature of the xonotrite-based calcium silicate molded product, is reduced. Furthermore, in the production method shown in ■, the aggregate of xonotrite crystals produced by the hydrothermal reaction is extremely bulky (see Ceramics Association Journal 82 (3) 171 (1974)),
Similarly to the manufacturing method shown in , a molded article having a large bulk specific gravity cannot be obtained. Therefore, even with this manufacturing method, it is difficult to obtain a molded article with high performance in terms of strength.

以上のような理由から、壁材や床材といった強度が要求
される用途だ使用でき、かつ耐熱性に優れたゾノトライ
ト系ケイ酸カルシウム成形体は従来得られていない。
For the reasons mentioned above, a xonotrite-based calcium silicate molded body that can be used in applications that require strength such as wall materials and flooring materials and has excellent heat resistance has not been obtained so far.

く問題点を解決するための手段〉 本発明は建築用壁材や床材として必要とされる強度を有
し、かつ耐熱性に優れたゾノトライト系ケイ酸カルシウ
ム成形体を得ることを目的としたものである。
Means for Solving the Problems The present invention aims to obtain a xonotrite-based calcium silicate molded product that has the strength required for architectural wall materials and flooring materials and has excellent heat resistance. It is something.

すなわち本発明は、ゾノトライト質ケイ酸カルシウムと
無機質材料とからなり、嵩比重が0.80以上であり、
かつ加熱後の残存線収縮率が1.0%以下であることを
特徴とするゾノトライト系ケイ酸カルシウム成形体であ
る。
That is, the present invention is made of xonotrite calcium silicate and an inorganic material, and has a bulk specific gravity of 0.80 or more,
The xonotrite-based calcium silicate molded article is characterized in that the residual linear shrinkage rate after heating is 1.0% or less.

本発明でいうゾノトライト質ケイ酸カルシウムは、通常
ケイ酸質原料と石灰質原料とから水熱反応によってつく
られ、ゾノトライト結晶とC8Hゲルと呼ばれる非晶質
物質とから構成されているものである。成形体の物性値
はこのゾノトライト結晶とC3Hゲルの存在割合によっ
て異ってくる。
The xonotrite calcium silicate referred to in the present invention is usually produced from a silicic acid raw material and a calcareous raw material by a hydrothermal reaction, and is composed of xonotrite crystals and an amorphous substance called C8H gel. The physical properties of the molded article vary depending on the proportions of the xonotlite crystals and C3H gel.

@Ic耐熱性を要求する場合はゾノトライト結晶の存在
量が多いことが必要である。
@Ic When heat resistance is required, it is necessary to have a large amount of xonotrite crystals.

本発明の成形体の成分の1つである無機質材料は、耐熱
性を有することが必要である。また成形体の強度を向上
させる効果を持つものであり、特に成形体が高温に加熱
された際の成形体の強度低下を抑える効果を持つことが
必要である。ただし、これらの無機質材料は後述するよ
うにゾノトライト質ケイ酸カルシウムをつくる原料およ
び水と混合され水熱条件下におかれるが、この際化学反
応を起こして耐熱性が劣るような成分を生成するような
ものは好ましくない。例えばある種のシャモットは水熱
反応時に反応して耐熱性に劣るトバモライト結晶を生成
するが、このようなものは好ましくない。本発明の成形
体の成分として好ましい無機質材料としては、棒状のワ
ラストナイト、板状のマイカ、繊維状の石綿・セラミッ
クファイバー等が例示できる。また無機質材料の含有量
は、無機質材料の種類によって効果が異なるために一概
に限定することはできない。無機質材料は強度面での向
上のみならず、本発明が問題にしている加熱後の残存線
収縮率を小さくする効果も必要であるので、この点も考
慮して含有率を決定することが好ましい。含有量の一応
の目安としては、ゾノトライト質ケイ酸カルシウムをつ
くるための固形分原料の合計量に対して外割りで最低5
重量−程度、好ましくは10〜50重量%である。
The inorganic material that is one of the components of the molded article of the present invention needs to have heat resistance. It also has the effect of improving the strength of the molded product, and in particular, it is necessary to have the effect of suppressing a decrease in the strength of the molded product when the molded product is heated to a high temperature. However, as described below, these inorganic materials are mixed with the raw materials for making xonotrite calcium silicate and water and placed under hydrothermal conditions, but at this time a chemical reaction occurs and components with poor heat resistance are produced. I don't like things like that. For example, some types of chamotte react during hydrothermal reactions to produce tobermorite crystals that have poor heat resistance, which is not preferred. Examples of inorganic materials preferable as a component of the molded article of the present invention include rod-shaped wollastonite, plate-shaped mica, and fibrous asbestos/ceramic fiber. Further, the content of the inorganic material cannot be absolutely limited because the effects vary depending on the type of inorganic material. Inorganic materials not only need to improve strength, but also have the effect of reducing residual linear shrinkage after heating, which is the problem of the present invention, so it is preferable to take this point into account when determining the content. . As a tentative guideline for the content, it should be at least 5% of the total amount of solid raw materials for making xonotrite calcium silicate.
By weight, preferably from 10 to 50% by weight.

本発明の底形体の嵩比重は0.80以上である必要があ
り、好ましくは1.00〜1.70である。嵩比重が0
.80未満である場合には、鉄筋等の補強なしに壁材と
して必要な強度を得ることは困難であるからである。ま
た高温に加熱された後の成形体の強度を保持するために
も、O,SO以上の嵩比重が必要である。
The bulk specific gravity of the bottom body of the present invention must be 0.80 or more, preferably 1.00 to 1.70. Bulk specific gravity is 0
.. This is because if it is less than 80, it is difficult to obtain the strength required for a wall material without reinforcement with reinforcing bars or the like. Further, in order to maintain the strength of the molded product after being heated to a high temperature, it is necessary to have a bulk specific gravity greater than O or SO.

また本発明の成形体は、後に示す条件で測定した加熱後
の残存線収縮率が1.0以下であることが必要である。
Further, the molded article of the present invention needs to have a residual linear shrinkage rate of 1.0 or less after heating measured under the conditions shown below.

1.0チ以下であれば、ゾノトライト系ケイ酸カルシウ
ム成形体の最高使用温度とされている1000°Cでの
加熱処理を受けても、成形体の強度低下を小さな値にと
どめることができるからである。なお加熱後の残存線収
縮率の測定方法は、次に示した通りである。
If it is less than 1.0 cm, the decrease in strength of the molded product can be kept to a small value even if it is heat-treated at 1000°C, which is the maximum operating temperature for xonotrite-based calcium silicate molded products. It is. The method for measuring the residual linear shrinkage after heating is as shown below.

測定機器:理学電機■製熱機械分析装置高温形圧縮TM
A8141H 試料への荷重・・・so、9af/d(高さ方向ン昇温
速度(室温→1000’C)・・・20℃/分保持温度
・・・1000℃ 保持時間・・・5分間 降温速度(1000℃→室温戸・・10℃/分残存線収
縮率は、高さ方向の収縮量を測定し、下記(I)式によ
って算出した。
Measuring equipment: Rigaku Denki thermomechanical analyzer high-temperature compression TM
A8141H Load on sample...so, 9af/d (height direction temperature increase rate (room temperature → 1000'C)...20℃/min Holding temperature...1000℃ Holding time...5 minutes cooling down Speed (1000°C→room temperature door...10°C/min) The residual linear shrinkage rate was calculated by measuring the amount of shrinkage in the height direction and using the following formula (I).

本発明のゾノトライト系ケイ酸カルシウム成形体の展進
方法は、ケイ酸質原料として粒径Zo。
The method for developing a xonotlite-based calcium silicate molded body of the present invention uses particle size Zo as a silicic acid raw material.

μ以下、かつ後に示す条件で測定したNaOH水溶液中
での重量減少率が1.0〜10.0チ好ましくは2、o
〜5.0−である珪石、石灰質原料として消石灰を用い
、これらをCaO/SiO□(モル比)が1.OKなる
ように混合する。これに無機質材料および必要に応じて
減水剤を添加した後、水と混合し均一なスラリーとする
。このスラリーを成形し、水熱反応を行う直前の含水率
が水/固形分(iit比)で1.0以下になるように調
整した後、水熱反応することによって、本発明のゾノト
ライト系ケイ酸カルシウム成形体を得ることができる。
μ or less, and the weight loss rate in NaOH aqueous solution measured under the conditions shown later is 1.0 to 10.0 μ, preferably 2.0
Using slaked lime as the calcareous raw material, silica stone with a CaO/SiO□ (molar ratio) of ~5.0- is 1. Mix until OK. After adding an inorganic material and, if necessary, a water reducing agent, the mixture is mixed with water to form a uniform slurry. This slurry is molded and the water content just before the hydrothermal reaction is adjusted so that the water/solid content (IIT ratio) is 1.0 or less. A calcium acid molded body can be obtained.

なお珪石のNaOH水溶液中での重量減少率の測定は、
次に示す通りである。
The weight loss rate of silica stone in NaOH aqueous solution is measured as follows:
It is as shown below.

Na OH水溶液濃度・・・・・・・・・・・・・・・
・・−・・10wt%NaOH水溶液温度・・・・・・
・・・・・・・・・・・・・・・100℃珪石/NaO
H水溶液(重量比)・・・・・・1150浸漬時間・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・4時間(静置)重量減少率は
、残存した珪石のxiを測定し、下記(If)弐によっ
て算出した。
NaOH aqueous solution concentration・・・・・・・・・・・・・・・
・・・・・・10wt% NaOH aqueous solution temperature・・・・・・
・・・・・・・・・・・・・・・100℃silica/NaO
H aqueous solution (weight ratio)...1150 Immersion time...
・・・・・・・・・・・・・・・・・・・・・・・・
......The weight loss rate for 4 hours (standing still) was calculated by measuring the xi of the remaining silica stone and using (If) 2 below.

〈実施例〉 以下、本発明を実施例を用いて具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained using examples.

ここで各種物性値の測定は、次に示す方法で行った。Here, various physical property values were measured by the following methods.

嵩比重: 4X4X16cmの供試体を110℃の電気
乾燥器内で恒量になるまで乾燥した 後の重量と体積より求めた。
Bulk specific gravity: Determined from the weight and volume of a 4×4×16 cm specimen after drying it in an electric dryer at 110° C. until it reached a constant weight.

曲げ強度: 4x4x16ffiの供試体を温度20℃
、相対湿度65%の室内に7日以上放置 した後、スパン10 exe 、荷重速度0.5■/順
の条件で測定した。
Bending strength: 4x4x16ffi specimen at 20℃
After being left in a room with a relative humidity of 65% for 7 days or more, measurements were taken under the conditions of a span of 10 exe and a loading rate of 0.5 cm/sequence.

加熱後の残存線収縮率:前記の加熱後の残存線収縮率の
測定方法に従って測定した。
Residual linear shrinkage rate after heating: Measured according to the method for measuring the residual linear shrinkage rate after heating described above.

珪石のNa OH水溶液中での重量減少率:前記の珪石
のNaOH水溶液中での重量減少率の測定条件で測定し
た。
Weight loss rate of silica stone in NaOH aqueous solution: Measured under the conditions for measuring the weight loss rate of silica stone in NaOH aqueous solution.

実施例1 粒径20〜44μの小久慈珪石(NaOH水溶液中での
t全減少率2.3%)と消石灰とをCab/5t02(
モル比2が1.0になるよう配合した5、これにワラス
トナイト(日本クリエイツσD製、商品名;ケンモリツ
)N)を小久慈珪石と消石灰との合計量に対して外割り
で50重量%添加した。さらに水を全固形分に対して外
割りで60重量%、減水剤(ハマノ工業■製、商品名:
HP−100)を全固形分に対して外割りで2重量%添
加し、十分混合して均一なスラリーとした。このスラリ
ーを型枠に流し込んで成形した後、型枠ごとオートクレ
ーブ中に入れ210℃で15時間水熱反応させて成形体
を得た。得られた成形体のX線回折図を第1図に示す。
Example 1 Kokuji silica with a particle size of 20 to 44μ (total reduction rate of 2.3% in NaOH aqueous solution) and slaked lime were mixed into Cab/5t02 (
5 was mixed so that the molar ratio 2 was 1.0, and wollastonite (manufactured by Nippon Creates σD, trade name: Ken Moritsu N) was added to this by 50 weight by dividing the total amount of Kokuji silica and slaked lime. % added. Furthermore, add 60% by weight of water to the total solid content, and add a water reducing agent (manufactured by Hamano Industries, product name:
HP-100) was added in an amount of 2% by weight based on the total solid content, and thoroughly mixed to form a uniform slurry. After pouring this slurry into a mold and molding, the mold was placed in an autoclave and subjected to a hydrothermal reaction at 210° C. for 15 hours to obtain a molded product. The X-ray diffraction pattern of the obtained molded product is shown in FIG.

底形体を構成している結晶は、ゾノトライト結晶とワラ
ストナイト結晶であった。この成形体の各種物性値シ第
1表に示す。
The crystals constituting the bottom body were xonotrite crystals and wollastonite crystals. Various physical properties of this molded body are shown in Table 1.

実施例2 ワラストナイト50重iチをアスベスト(レイク社製、
商品名;レイク6D−4)30重量%に、水60重i%
を65重量%にイ〜える以外は、実施例1と同様にして
成形体全得た。得られた成形体のX線回折図を第2図に
示す。成形体を構成している結晶は、ゾノトライト結晶
とアスベストの構成成分であるクリソタイル結晶であっ
た。この成形体の各種物性値を第1表に示す。
Example 2 Asbestos (manufactured by Lake Co., Ltd.,
Product name: Lake 6D-4) 30% by weight, 60% by weight of water
A whole molded body was obtained in the same manner as in Example 1, except that the amount of the molded product was reduced to 65% by weight. The X-ray diffraction pattern of the obtained molded product is shown in FIG. The crystals constituting the molded body were xonotrite crystals and chrysotile crystals, which are a constituent of asbestos. Table 1 shows various physical property values of this molded article.

比較例1 粒径20〜44μの小久慈珪石(NaOH水溶液中での
重量減少率2.3チ)、消石灰をCaO/SiO□(モ
ル比ンが1.0になるように配合した。これに水を全固
形分く対して外割りで60重量%添加し、さらに減水剤
(ハマノ工業■製、商品名;HP−100)を全固形分
に対して外割りで2重量%添加し混合して均一なスラリ
ーとした。このスラリーを型枠に流し込んで成形した後
、型枠ごとオートクレーブ中で210℃で15時間水熱
反応させて成形体を得た。得られた成形体のX線回折図
を第3図に示す。成形体を構成している結晶はゾノトラ
イト結晶であった。この成形体の各種物性値を第1表に
示す。
Comparative Example 1 Kokuji silica with a particle size of 20 to 44 μm (weight loss rate in NaOH aqueous solution: 2.3 μm) and slaked lime were blended with CaO/SiO□ (mole ratio was 1.0). Water was added in an amount of 60% by weight based on the total solid content, and a water reducing agent (manufactured by Hamano Kogyo ■, trade name: HP-100) was added in an amount of 2% by weight based on the total solid content and mixed. This slurry was poured into a mold and molded, and the mold was subjected to a hydrothermal reaction at 210°C for 15 hours in an autoclave to obtain a molded product. X-ray diffraction of the molded product obtained A diagram is shown in Fig. 3. The crystals constituting the molded body were xonotrite crystals. The various physical property values of this molded body are shown in Table 1.

比較例2 ワラストナイトを磁器質シャモットに、水60重量%を
35重itsに変える以外は、実施例1と同様にして成
形体を得た。得られた成形体のX線回折図を第4図に示
す。成形体1−*成している結晶はトバモライト結晶と
α−石英であった。この成形体の各種物性値を第1表に
示す。
Comparative Example 2 A molded article was obtained in the same manner as in Example 1, except that wollastonite was changed to porcelain chamotte and 60% by weight of water was changed to 35% by weight. The X-ray diffraction pattern of the obtained molded product is shown in FIG. The crystals forming compact 1-* were tobermorite crystals and α-quartz. Table 1 shows various physical property values of this molded article.

第  1  表 1)  1000℃で5分間加熱 2)供試体の損傷が著しかったので測定しなかった。Table 1 1) Heating at 1000℃ for 5 minutes 2) No measurements were taken because the specimen was severely damaged.

〈発明の効果〉 本発明は、建築用壁材や床材として必要とされる強度を
有し、かつ耐熱性に優れたゾノトライト系ケイ酸カルシ
ウム成形体である。またこの成形体表面に釉薬を塗って
高温で焼成すれば、壁材や床材として必要とされる強度
を有したセラミックコーティング板が得られる。
<Effects of the Invention> The present invention is a xonotrite-based calcium silicate molded product that has the strength required for architectural wall materials and flooring materials and has excellent heat resistance. Furthermore, by applying a glaze to the surface of this molded body and firing it at a high temperature, a ceramic coated plate having the strength required as a wall material or flooring material can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた成形体のX線回折図、第2
図は実施例2で得られた成形体のX線回折図、第3図は
比較例1で得られた成形体のX線回折図、第4図は比較
例2で得られた成形体のX線回折図である。 特許出願人 旭化成工業株式会社 第1図 e 第2図
Figure 1 is an X-ray diffraction diagram of the molded product obtained in Example 1,
The figure shows an X-ray diffraction diagram of the molded body obtained in Example 2, Figure 3 is an X-ray diffraction diagram of the molded body obtained in Comparative Example 1, and Figure 4 shows the X-ray diffraction diagram of the molded body obtained in Comparative Example 2. It is an X-ray diffraction diagram. Patent applicant: Asahi Kasei Industries, Ltd. Figure 1 e Figure 2

Claims (1)

【特許請求の範囲】[Claims] ゾノトライト質ケイ酸カルシウムと無機質材料からなり
、嵩比重が0.80以上であり、かつ加熱後の残存線収
縮率が1.0%以下であることを特徴とするゾノトライ
ト系ケイ酸カルシウム成形体
A xonotrite calcium silicate molded body made of xonotrite calcium silicate and an inorganic material, having a bulk specific gravity of 0.80 or more and a residual linear shrinkage rate of 1.0% or less after heating.
JP28685686A 1986-12-03 1986-12-03 Xonotlite base calcium silicate formed body Pending JPS63144158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28685686A JPS63144158A (en) 1986-12-03 1986-12-03 Xonotlite base calcium silicate formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28685686A JPS63144158A (en) 1986-12-03 1986-12-03 Xonotlite base calcium silicate formed body

Publications (1)

Publication Number Publication Date
JPS63144158A true JPS63144158A (en) 1988-06-16

Family

ID=17709913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28685686A Pending JPS63144158A (en) 1986-12-03 1986-12-03 Xonotlite base calcium silicate formed body

Country Status (1)

Country Link
JP (1) JPS63144158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197206A (en) * 2011-03-23 2012-10-18 A & A Material Corp Method of manufacturing calcium silicate material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197206A (en) * 2011-03-23 2012-10-18 A & A Material Corp Method of manufacturing calcium silicate material

Similar Documents

Publication Publication Date Title
AU649469B2 (en) Tectoaluminosilicate cement and process for producing it
JPH08325074A (en) Calcium silicate plate and its production
JPS5939389B2 (en) cement composition
Figovsky et al. Advanced nanomaterials based on soluble silicates
Zribi et al. Phosphate-based geopolymers: A critical review
US3718491A (en) Process for silicate-perlite structures
Vanitha et al. Structural study of the effect of nano additives on the thermal properties of metakaolin phosphate geopolymer by MASNMR, XPS and SEM analysis
JPS58130149A (en) Manufacture of calcium silicate formed body
JP2003104769A (en) Calcium silicate material and its production method
JPS63144158A (en) Xonotlite base calcium silicate formed body
JPS5926957A (en) Manufacture of calcium silicate hydrate hardened body
US2215078A (en) Process for the manufacture of fireproof thermal and acoustical insulation articles
JPS63139040A (en) Xonotlite type calcium silicate formed body
JPH0524102B2 (en)
Dey Thermal properties of a sustainable cement material: Effect of cure conditions
JP3300118B2 (en) Manufacturing method of calcium silicate plate
JPS61117168A (en) Refractory composition
JP2002308669A (en) (calcium silicate)-silica composite formed body
JPS5945953A (en) Manufacture of calcium silicate hydrate product
JP2879378B2 (en) Composition for inorganic molding
JPS6120511B2 (en)
JP2755447B2 (en) Manufacturing method of zonotorite-based compact calcium silicate hydrate
JPS6116745B2 (en)
JPS58130150A (en) Lightweight inorganic hardened body
JPH0338226B2 (en)