JPS63143608A - Identification device - Google Patents

Identification device

Info

Publication number
JPS63143608A
JPS63143608A JP61289919A JP28991986A JPS63143608A JP S63143608 A JPS63143608 A JP S63143608A JP 61289919 A JP61289919 A JP 61289919A JP 28991986 A JP28991986 A JP 28991986A JP S63143608 A JPS63143608 A JP S63143608A
Authority
JP
Japan
Prior art keywords
identification
model type
value
term
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61289919A
Other languages
Japanese (ja)
Inventor
Tomoo Kumamaru
熊丸 智雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61289919A priority Critical patent/JPS63143608A/en
Publication of JPS63143608A publication Critical patent/JPS63143608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

PURPOSE:To perform the identification of a system parameter with high accuracy by calculating two identification values based on the deformation of a model type corresponding to an object system and obtaining an identification value by means of factor conversion and averaging processing. CONSTITUTION:The titled device is constituted of a 1st identification computing element 3 for calculating the identification value of a factor of a model type corresponding to an object system, a 2nd identification computing element 4 for calculating the identification value of a factor of a model type obtained by replacing a term on the left side of the model type by an optional term on the right side and an average processor 5 for obtaining the average value between the output of the 1st computing element 3 and that of the 2nd computing element 4. When no factor is included in the left sides of two model types, e.g. a 1st model type corresponding to the object system and a 2nd model type obtained by replacing a term on the left side of the 1st model type by a term on the right side, the factors of the terms on both right sides are in inverse relation each other. When the average value between the inverse of the identification value of the factor in the 2nd model type and the identification value of the factor in the 1st model type is adopted, an identification error can be reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は同定装置、特にモデル式の係数同定演算を行な
う同定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an identification device, and particularly to an identification device that performs coefficient identification calculations of a model equation.

(従来の技術) 電力システムなどの各種産業システムでは、これらシス
テムの制御系の特性を規定するモデル式を利用し、シス
テムの適応制御や故障診断を行なう傾向が一般化しつつ
ある。このような場合、上記モデル式の係数を同定する
、いわゆるシステムノやラメータの同定は、これらシス
テムの特性を把握し、適応制御や故障診断等を行なうた
めの基本となるものであり、このための同定装置の一例
が、例えば特開昭60−159912号公報に示されて
いる。
(Prior Art) In various industrial systems such as electric power systems, it is becoming common to use model equations that define the characteristics of the control systems of these systems to perform adaptive control and fault diagnosis of the systems. In such cases, identification of the coefficients of the above model equation, so-called system parameters and parameters, is the basis for understanding the characteristics of these systems and performing adaptive control, fault diagnosis, etc. An example of such an identification device is shown in, for example, Japanese Patent Laid-Open No. 159912/1983.

(発明が解決しようとする問題点) しかしながら、従来の同定装置によって同定演算をした
場合には、同定の対象と彦るシステムの状態値を観測す
るに際し、観測雑音が同定誤差の原因となる。この観測
雑音は特に小さな同定用励振信号で同定をしようとする
とき、S/N比が悪いために同定誤差を大きくする。そ
して実システムのオンライン同定のような場合には、シ
ステムへの悪影響を抑えるために小さな同定用励振信号
で同定せざるを得す、したがってこれらの場合に一層雑
音の影響が問題であり、高精度な同定は困難であった。
(Problems to be Solved by the Invention) However, when identification calculations are performed using a conventional identification device, observation noise causes identification errors when observing the state values of the system to be identified. This observation noise increases the identification error especially when attempting to identify using a small identification excitation signal because the S/N ratio is poor. In cases such as online identification of an actual system, identification must be performed using a small identification excitation signal in order to suppress negative effects on the system. Therefore, in these cases, the influence of noise is even more problematic, and high precision Identification was difficult.

本発明は上記問題点を解決するためになされたモ(7)
−?’、l、システムパラメータの同定を高精度に行な
うことの可能な同定装置を提供することを目的としてい
る。
The present invention is a method (7) made to solve the above problems.
−? It is an object of the present invention to provide an identification device that can identify system parameters with high accuracy.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するための構成を第1図にて説明すると
1本発明は対象システムに応じたモデル式の係数の同定
値を算出する第1の同定演算器3と、とのモデ7シ式に
おいて左辺の項と右辺の任意の一項を入れ替えたモデル
式の係数の同定値を算出する第2の同定演算器4と、こ
れら第1の同定演算器3の出力と第2の同定演算器4の
出力との平均値を求める平均処理器5とから構成した。
(Means for Solving the Problems) The configuration for achieving the above object will be explained with reference to FIG. a second identification calculator 4 that calculates the identification value of a coefficient of a model equation in which a term on the left side and an arbitrary term on the right side are exchanged in the model equation of The average processor 5 calculates the average value of the output of the second identification calculator 3 and the output of the second identification calculator 4.

(作用) 本発明によれば対象システムに応じた第1のモデル式と
、このモデル式の左辺の項と右辺の一項を入れ替えた第
2のモデル式とを用いるが、この2つのモデル式にて左
辺に係数を付けないこととすると、当該右辺の項の係数
は互に逆数関係となる。したがって第2のモデル式の当
該係数の同定値の逆数と、第1のモデル式の当該係数の
同定値との平均値をとると同定誤差は小さくなる。
(Operation) According to the present invention, a first model equation corresponding to the target system and a second model equation in which the terms on the left side and one term on the right side of this model equation are exchanged are used. If no coefficient is attached to the left-hand side, the coefficients of the terms on the right-hand side have a reciprocal relationship with each other. Therefore, if the average value of the reciprocal of the identified value of the coefficient in the second model equation and the identified value of the coefficient in the first model equation is taken, the identification error becomes smaller.

(発明の基本的な考え方) 本発明の考え方として、同定励振信号と係数の同定値の
関係を式を用いて説明する。
(Basic Idea of the Invention) As the idea of the invention, the relationship between the identified excitation signal and the identified value of the coefficient will be explained using equations.

先ず、モデル式が次の(1)式で与えられると、最小二
乗法を用いた同定係数値は(2ン式で求まる。
First, when the model equation is given by the following equation (1), the identification coefficient value using the least squares method is determined by the equation (2).

y(kl= A −z(kl+ v(kl      
・・(1)ygR’ 、 zgR” 、 AgRlx”
A:同定対象係列行列 y、z :状態値V:正規白色
雑音    k:サンプリングステップここで、同定用
励振信号yが下ってきてOに近づいた場合を考えると、
(2)式による行列Aの各項もOに近づいてくる。した
がって、一般に他の要因を考えなければ、左辺の項の同
定用励振信号が下ってくると、係数の同定値も下ってく
る。ところが右辺の2の中で一項だけが励振信号が下っ
ても、左辺yの励振信号が下ってなければ、行列人の全
項がOになることはない。そこで左辺のyと右辺の2の
任意の一項を入れ替えると、入替え前後の2つのモデル
式の同定精度は異なってくるが、前記の如く、入替えた
変数2の部分での2つのモデル式での係数の逆数関係を
利用すれば、同定精度が向上できる。要するに、例えば
同定用励振信号が少なくなったとき、第1のモデル式の
当該係数の同定値が下がったとすれば、第2のモデル式
の当該係数の同定値の逆数は上がるため、これらを平均
処理することによって同定誤差が相殺されるからである
y(kl=A −z(kl+v(kl
... (1) ygR', zgR", AgRlx"
A: Identification target coefficient matrix y, z: State value V: Regular white noise k: Sampling step Here, consider the case where the identification excitation signal y falls and approaches O.
Each term of the matrix A based on equation (2) also approaches O. Therefore, in general, unless other factors are considered, when the excitation signal for identification in the term on the left side decreases, the identified value of the coefficient also decreases. However, even if only one term in 2 on the right side has an excitation signal, all terms in the matrix will not become O unless the excitation signal on the left side y does not decrease. Therefore, if one term of y on the left side and 2 on the right side is swapped, the identification accuracy of the two model formulas before and after the swap will be different, but as mentioned above, the two model formulas for the replaced variable 2. Identification accuracy can be improved by using the reciprocal relationship of the coefficients. In short, for example, when the identification excitation signal decreases, if the identified value of the relevant coefficient in the first model equation decreases, the reciprocal of the identified value of the relevant coefficient in the second model equation increases, so these are averaged. This is because the processing cancels out identification errors.

(実施例) 以下図面を参照して実施例を説明する。第1図は本発明
による同定装置の一実施例の構成図である。
(Example) An example will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of an identification device according to the present invention.

第1図における制御システムは、制御系1と被制御系2
とから構成されており、制御系の状態値z(k) 、 
y(k)を同定用励振信号として入力して、演算装置を
得るだめの同定装置ヱが設けられる。同定装置ヱは、第
1のモデル式の係数の同定値を算出する第1の同定演算
機3と、第1のモデル式の左辺の項と右辺の任意の一項
を入替えた第2のモデル式の係数の同定値を演算する第
2の同定演算機4とを備え、前記2つの同定演算器3,
4の出力する同定値間の平均処理を行なう平均処理器5
により、演算出力6′f!:、得ている。
The control system in Figure 1 consists of a control system 1 and a controlled system 2.
It consists of the state value z(k) of the control system,
An identification device (e) is provided which inputs y(k) as an identification excitation signal to obtain an arithmetic device. The identification device 3 includes a first identification calculator 3 that calculates identification values of coefficients of a first model equation, and a second model in which a term on the left side of the first model equation and an arbitrary term on the right side are exchanged. a second identification calculator 4 that calculates identification values of coefficients of the equation, the two identification calculators 3;
An average processor 5 that performs averaging processing between the identified values outputted from 4.
Therefore, the calculation output 6'f! :,It has gained.

以下対象システムのモデル式が回転体の駆動トルクと負
荷と回転体の慣性力との関係で表わされる場合を例とし
て実施例を説明する。
An embodiment will be described below, taking as an example a case where the model equation of the target system is expressed by the relationship between the driving torque of the rotating body, the load, and the inertial force of the rotating body.

このとき、第1と第2のモデル式は次の(3) # (
4)式となる。
At this time, the first and second model equations are as follows (3) # (
4) Equation becomes.

2、′ 5す〜・7・ 但し、θ:角転角 t:負荷 t:駆動トルク IL 、& 2 :係数 第1のモデル式(3)の左辺の項と右辺の第2項を入替
えたものが、第2のモデル式(4)である。(3)。
2,'5~・7・However, θ: Rotation angle t: Load t: Drive torque IL, & 2: Coefficient The term on the left side of the first model equation (3) and the second term on the right side are swapped. This is the second model equation (4). (3).

(4)式かられかるように、両式の右辺第2項の係数は
互に逆数関係にある。
As can be seen from equation (4), the coefficients of the second term on the right side of both equations have a reciprocal relationship with each other.

第2図はシステムの過渡状態での状態値の推移1.1は
過渡状態を経て平衡状態に落ちついている。
In FIG. 2, the state value transition 1.1 in the transient state of the system shows that the system reaches an equilibrium state after passing through the transient state.

第3図は第2図の場合の同定係数を示す図である。係数
12と1/a2の同定値は、夫々の状態値の減衰により
低下してくる。このとき1/a2の逆数をとったものが
a 2/である。したがって最終的に同定値として出力
するのは、平均処理後のIL2となる。
FIG. 3 is a diagram showing identification coefficients in the case of FIG. 2. The identified values of the coefficients 12 and 1/a2 decrease due to the attenuation of the respective state values. At this time, the reciprocal of 1/a2 is a2/. Therefore, what is finally output as the identification value is IL2 after the averaging process.

ここで平均処理は、相加平均と相乗平均のいずれかを対
象システムに応じて使い分ける。
For the averaging process, either an arithmetic average or a geometric average is used depending on the target system.

残シの係数1.については、(3)式による係数a、の
同定値と(4)式による係数IL、7112の同定値に
対して先に求めた係数12′を掛けてa、′を得、係数
a、とa、′の同定値の平均処理により、最終的な同定
値a、を得る。
Remaining coefficient 1. For, the identified value of the coefficient a by the formula (3) and the identified value of the coefficient IL, 7112 by the formula (4) are multiplied by the previously obtained coefficient 12' to obtain a,', and the coefficient a, The final identified value a, is obtained by averaging the identified values of a,'.

結果として、係数の同定値a1,1□は、それぞれモデ
ル式(3) # (4)を単独で同定した場合よりも、
同定誤差を少なくできる。
As a result, the identified values a1 and 1□ of the coefficients are smaller than when model equations (3) and (4) are identified alone, respectively.
Identification errors can be reduced.

第4図は平均処理器の動作を説明するためのフローチャ
ートである。
FIG. 4 is a flowchart for explaining the operation of the averaging processor.

先ず、同定値a2を得るにはステラf41において係数
1/&2の逆数をとって82′とし、ステップ42にお
いて係数& 2/と係数a2との平均処理を行なう。一
方、同定値a、 k得るにはステップ43において係数
jL1/a2にa2’e掛けてa 、/とし、ステップ
44において係数a、′と係数a、との平均処理を行な
う。
First, in order to obtain the identified value a2, the reciprocal of the coefficient 1/&2 is taken in the stellar f41 to give 82', and in step 42, the coefficient &2/ and the coefficient a2 are averaged. On the other hand, to obtain the identified values a, k, in step 43 the coefficient jL1/a2 is multiplied by a2'e to obtain a, /, and in step 44, the coefficients a, ' and the coefficient a are averaged.

第5図は本発明の他の実施例の構成図である。FIG. 5 is a block diagram of another embodiment of the present invention.

本実施例では同定励振入力に過渡状態が発生した場合、
同定演算を停止して同定誤差の拡大を防止するようにし
たものである。8は過渡状態判定器で、同定励振入力の
過渡状態の発生及び減衰を検出し、同定演算の起動・停
止信号S’(H導入したものである。即ち、過渡状態の
発生により同定励振入力の極度の減少があった場合には
、同定演算を停止する。又、自動的に起動停止する使い
方をすれば、過渡状態の発生の都度、同定値を算出し対
象システムのオンライン監視に適用できる。
In this example, when a transient state occurs in the identified excitation input,
The identification calculation is stopped to prevent the identification error from increasing. 8 is a transient state determiner that detects the occurrence and attenuation of the transient state of the identified excitation input, and uses the identification calculation start/stop signal S' (H). If there is an extreme decrease, the identification calculation is stopped.Also, if it is used to start and stop automatically, the identification value can be calculated every time a transient state occurs and can be applied to online monitoring of the target system.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば対象システムに応じ
たモデル式の変形に基づいて2つの同定値を算出し、係
数換算と平均処理により同定値を得るようにしているた
め、実システムのオンライン同定などで同定励振信号が
減衰するときに、同定誤差が生ずるのを補正でき、又、
この場合、特別なハードウェアの付加や同定用励振信号
の新たな付加を考慮することなく、オンラインに使用で
きるパラメータの同定装置を提供できる。
As explained above, according to the present invention, two identified values are calculated based on the transformation of the model formula according to the target system, and the identified values are obtained by coefficient conversion and averaging processing. It is possible to correct the identification error that occurs when the identified excitation signal is attenuated due to identification, etc., and
In this case, a parameter identification device that can be used online can be provided without considering the addition of special hardware or the addition of a new identification excitation signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による同定装置の一実施例の構成図、第
2図はシステムの過渡状態での状態値の推移図、第3図
は第2図の場合の同定係数を示す図、第4図は平均処理
器の動作を説明するためのフローチャート、第5図は本
発明の他の実施例の構成図である。 1・・・制御系      2・・・被制御系3・・・
第1の同定演算器 4・・・第2の同定演算器5・・・
平均処理器    6・・・演算出力ヱ・・・同定装置
FIG. 1 is a block diagram of an embodiment of the identification device according to the present invention, FIG. 2 is a transition diagram of state values in a transient state of the system, FIG. 3 is a diagram showing identification coefficients in the case of FIG. 2, and FIG. FIG. 4 is a flow chart for explaining the operation of the average processor, and FIG. 5 is a block diagram of another embodiment of the present invention. 1... Control system 2... Controlled system 3...
First identification calculator 4...Second identification calculator 5...
Average processor 6...Calculation output ヱ...Identification device

Claims (2)

【特許請求の範囲】[Claims] (1)対象システムに応じたモデル式が有する係数の同
定値を算出する同定装置において、前記モデル式の係数
の同定値を算出する第1の同定演算器と、前記モデル式
において左辺の項と右辺の任意の一項を入れ替えたモデ
ル式の係数の同定値を算出する第2の同定演算器と、前
記第1の同定演算器の出力と第2の同定演算器の出力と
の平均値を求める平均処理器とを備えたことを特徴とす
る同定装置。
(1) In an identification device that calculates identified values of coefficients of a model formula according to a target system, a first identification calculator that calculates identified values of coefficients of the model formula; a second identification calculator that calculates the identification value of the coefficient of the model equation by replacing an arbitrary term on the right side; and an average value of the output of the first identification calculator and the output of the second identification calculator. An identification device characterized by comprising an average processor for calculating.
(2)第1、第2の各同定演算器は過渡状態判定器から
の起動・停止信号に応じて動作させることを特徴とする
特許請求の範囲第1項記載の同定装置。
(2) The identification device according to claim 1, wherein each of the first and second identification calculators is operated in response to a start/stop signal from a transient state determiner.
JP61289919A 1986-12-05 1986-12-05 Identification device Pending JPS63143608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289919A JPS63143608A (en) 1986-12-05 1986-12-05 Identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289919A JPS63143608A (en) 1986-12-05 1986-12-05 Identification device

Publications (1)

Publication Number Publication Date
JPS63143608A true JPS63143608A (en) 1988-06-15

Family

ID=17749461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289919A Pending JPS63143608A (en) 1986-12-05 1986-12-05 Identification device

Country Status (1)

Country Link
JP (1) JPS63143608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124015B2 (en) 2002-07-05 2006-10-17 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124015B2 (en) 2002-07-05 2006-10-17 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for plant

Similar Documents

Publication Publication Date Title
JPS61226804A (en) Control device of multidegree-of-freedom nonlinear machine system
CN111339605B (en) Load calculation device and aircraft
JPS61282902A (en) Power servo apparatus
JP3235242B2 (en) Inertia Estimation Method for Speed Control of Two-Inertia Torsional Vibration System
JPS63143608A (en) Identification device
CN113247084A (en) Control apparatus for steering system
JPH10217173A (en) Non-interferential control device of robot
JPS63197202A (en) Dynamic servo system
JPH07319558A (en) Detection of force in force controller
JPH08206718A (en) Speed controller of motor for rolling mill
DE102016012626A1 (en) Motor control device for balancing play
CN113371058A (en) Steering control device
JPH1190517A (en) Method for controlling hot rolling mill
JP2020090168A (en) Electric power steering device
CN117289686B (en) Parameter calibration method and device, electronic equipment and storage medium
JPH08123506A (en) Device for estimating state parameter of dynamic system and unknown input
JPH06217579A (en) Motor controller
JP3329184B2 (en) Load state estimation device
CN117446008A (en) Method and device for determining boosting torque, vehicle and storage medium
JP3294056B2 (en) Mechanical control system
JPH10323086A (en) Speed correction circuit and torque correction circuit for loading dc motor coupled to output shaft of three-axis differential gear durability tester
JPS6126485A (en) Monitor of roll drive system
JP3341498B2 (en) Observer control arithmetic unit
JPH11122963A (en) Servomotor drive method
JPS6361311A (en) Positioning controller for moving body