JPS63143409A - Fluidized bed boiler of circulation type - Google Patents

Fluidized bed boiler of circulation type

Info

Publication number
JPS63143409A
JPS63143409A JP28675186A JP28675186A JPS63143409A JP S63143409 A JPS63143409 A JP S63143409A JP 28675186 A JP28675186 A JP 28675186A JP 28675186 A JP28675186 A JP 28675186A JP S63143409 A JPS63143409 A JP S63143409A
Authority
JP
Japan
Prior art keywords
particle
gas
rear flue
particles
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28675186A
Other languages
Japanese (ja)
Inventor
Takao Ishihara
崇夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28675186A priority Critical patent/JPS63143409A/en
Publication of JPS63143409A publication Critical patent/JPS63143409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To make an equipment compact, and to largely decrease its manufacturing cost, by providing a cooling passage, a non-cooling passage, and a particle distribution damper in a particle circulating passage, and by feeding particles, which are caught by a particle separator and of which temperature is controlled in the particle circulating passage, into a combustion furnace. CONSTITUTION:A combustion gas is fed into a rear flue 32 after particles are separated from the gas by a particle separator 10. Heat transfer pipes of boiler 14 are provided in the rear flue 32, and the combustion gas is cooled by those heat transfer pipes of boiler 14, flowing down to a combustion exhaust gas pipeline 21. Part of small volume of fine particles contained in the combustion gas is collected in a rear flue hopper 17 provided in the lower part of a rear flue 32, and the remaining particles are conveyed to the combustion exhaust gas pipeline 21 together with the combustion gas. The particles collected in the rear flue hopper 17 pass through a rotary valve 18 provided under the rear flue hopper, and are returned to a combustion furnace 8 from the outlet 34 of a gas recirculating pipeline via a gas recirculating draft fan 33 and gas recirculating pipeline inlet 35.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、循環流動層ボイラにおける各機器の構成に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the configuration of each device in a circulating fluidized bed boiler.

〔従来の技術〕[Conventional technology]

従来、循環流動層ボイラにおいては、コンバスタ出口に
、サイクロンを設け、循環粒子の捕捉を行っており、構
成要素として、分離器(サイクロン等)は、コンバスタ
本体と独立して構成される4゜さらに分離器にて、捕集
された粒子は、必要により、別置の冷却器にて、必要温
度まで、冷却される構成となっている。又、冷却器は、
通常、気泡型流動床にて構成されている。
Conventionally, in a circulating fluidized bed boiler, a cyclone is installed at the combustor outlet to capture circulating particles. The particles collected in the separator are cooled down to the required temperature in a separate cooler, if necessary. Also, the cooler is
Usually, it consists of a bubble-type fluidized bed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の技術では、循環流動層ボイラの各構成要素(特に
コンバスタ、分離器(サイクロン)、冷却器等)は、各
々、別置として、構成されている為、装置全体が、複雑
で、大きな空間を必要とし、大巾なコストアップを、余
儀なくされていた。
In conventional technology, each component of a circulating fluidized bed boiler (especially the combustor, separator (cyclone), cooler, etc.) is configured separately, making the entire device complex and requiring a large space. , which necessitated a significant increase in costs.

又、粒子循環については、従来技術によると、空塔速度
と、粒子径の関係及び、循環系の抵抗等より、自然循環
のバランスとして、その循環比が決ってきたが、これを
積極的にコントロールすることは、困難であり、従って
、補機動力の上昇を伴う等の問題点があった。
Regarding particle circulation, according to conventional technology, the circulation ratio has been determined as a balance of natural circulation based on the relationship between superficial velocity, particle size, and resistance of the circulation system, but it is necessary to actively improve this ratio. It is difficult to control, and therefore there are problems such as an increase in auxiliary machine power.

〔問題点を解決するための手段〕[Means for solving problems]

コンバスタ、サイクロン、粒子冷却器、ボイラ伝熱管を
一体形にて構成する為、下記の手段を用いる: げ) サイクロンを、通常の竪形より、横置の半割り構
造とし、コンバスタ出口に、一体形として設置する。
In order to configure the combustor, cyclone, particle cooler, and boiler heat exchanger tubes in an integrated form, the following methods are used: (g) The cyclone is made into a horizontally halved structure rather than the usual vertical shape, and is integrated at the combustor outlet. Install it as a shape.

(ロ)上記簡易分離器は、各々、分離器出口に接続され
た後部煙道及び、粒子再循環ラインと一体形に構成する
(b) Each of the simple separators is constructed integrally with a rear flue connected to the separator outlet and a particle recirculation line.

(ハ)上記再循環ライン内には、循環粒子冷却の為の粒
子冷却器が、配置され、これら粒子冷却器は、通常、蒸
発管、過熱器管、節炭器管等により、構成される。
(c) A particle cooler for circulating particle cooling is arranged in the recirculation line, and these particle coolers are usually composed of evaporator tubes, superheater tubes, economizer tubes, etc. .

粒子循環系統において、スクリューフィーダー等の機械
的手段にて、火炉にリサイクルを行う。
In the particle circulation system, the particles are recycled to the furnace using mechanical means such as a screw feeder.

に)粒子の冷却を促進する為、燃焼ガスの一部を粒子再
循環系統に、導入し、火炉へ戻すガス再循環系統を設け
る。
2) In order to accelerate the cooling of particles, a gas recirculation system is installed to introduce a part of the combustion gas into the particle recirculation system and return it to the furnace.

(作用) 上記ヒ)、(ロ)、(ハ)により、コンバスタ、サイク
ロン粒子冷却器、ボイラ伝熱管が、一体形に、コンパク
トに構成される。
(Function) By the above h), (b), and (c), the combustor, cyclone particle cooler, and boiler heat exchanger tube are integrally and compactly constructed.

粒子冷却器での粒子冷却は、粒子の自然落下に伴う、粒
子と、冷却管との固体衝突による熱伝達が、利用される
Particle cooling in a particle cooler utilizes heat transfer due to solid collisions between particles and cooling pipes as the particles naturally fall.

上記(ハ)により、1次、2次エア系統の通風機動力が
減少する。
Due to the above (c), the ventilation power of the primary and secondary air systems is reduced.

上記に)により粒子と伝熱管の固体衝突による熱伝達が
促進される。
(above) promotes heat transfer through solid collisions between particles and heat transfer tubes.

〔実施例〕〔Example〕

第1図、第2図において1は押込通風機、2は空気予熱
器、3は燃焼用空気供給ダクト、4は1次空気系統、5
は2次空気系統、6は1次空気吹込口、7は2次空気吹
込口、8はコンバスタ(火炉)、9は燃料供給系統、1
0は粒子分離器、例えば横置き半割りサイクロン、11
は粒子分配ダンパ、12は粒子分配グンパ駆動モータ、
13は粒子冷却器(伝熱管)、14はボイラ伝熱管、1
5は粒子リサイクル用フィーダー、16は粒子リサイク
ル用フィーダー駆動用モーター、17は後部煙道ホッパ
ー、18は後部煙道ホッパー下ロータリーパルプ、19
は後部煙道ホッパ下灰リサイクル系統、20は灰取り出
し系統、21は燃焼排ガス系統、22は窒気予熱器出口
排ガスダクト、23は集じん装置、24は誘引通風機、
25は煙道、26は流動剤及び脱硫剤投入口、27は再
循還粒子通路、28は粒子逆流防止せき、29は1次空
気通風機、30は粒子冷却通路、31は粒子無冷却通路
、32は後部煙道、33はガス再循環通風機、34はガ
ス再循環取出口、35はガス再循環投入口である。
In Figures 1 and 2, 1 is a forced draft fan, 2 is an air preheater, 3 is a combustion air supply duct, 4 is a primary air system, and 5
is the secondary air system, 6 is the primary air inlet, 7 is the secondary air inlet, 8 is the combustor (furnace), 9 is the fuel supply system, 1
0 is a particle separator, such as a horizontal half-cyclone, 11
12 is a particle distribution damper, 12 is a particle distribution damper drive motor,
13 is a particle cooler (heat exchanger tube), 14 is a boiler heat exchanger tube, 1
5 is a feeder for particle recycling, 16 is a motor for driving the feeder for particle recycling, 17 is a rear flue hopper, 18 is a rotary pulp under the rear flue hopper, 19
is a rear flue hopper bottom ash recycling system, 20 is an ash removal system, 21 is a combustion exhaust gas system, 22 is a nitrogen preheater outlet exhaust gas duct, 23 is a dust collector, 24 is an induced draft fan,
25 is a flue, 26 is a flow agent and desulfurization agent inlet, 27 is a recirculation particle passage, 28 is a particle backflow prevention weir, 29 is a primary air ventilator, 30 is a particle cooling passage, and 31 is a particle non-cooling passage. , 32 is a rear flue, 33 is a gas recirculation ventilator, 34 is a gas recirculation outlet, and 35 is a gas recirculation inlet.

このような装置において、押込通風機lより、供給され
た空気は、空気予熱器2を通り、ボイラ燃焼排ガスと熱
交換を行い、燃焼用空気供給ダクト3を通り、1次空気
系統4と2次空気系統5に分れる。1次空気は1次空気
通風機29により必要圧まで、昇圧されて1次空気口6
より流動用空気として、コンバスタ(火炉)8へ底部よ
り投入される。一方、2次空気は、2次空気系統5を通
り、コンバスタ8の底部より、ある距離(5〜10m)
を置いて、設置された2次空気吹込ロアより、コンバス
タ8へ投入される。
In such a device, air supplied from a forced draft fan 1 passes through an air preheater 2, exchanges heat with the boiler combustion exhaust gas, passes through a combustion air supply duct 3, and is connected to primary air systems 4 and 2. It is divided into 5 air systems. The primary air is boosted to the required pressure by the primary air ventilator 29 and then passed through the primary air port 6.
The air is then introduced into the combustor (furnace) 8 from the bottom as fluidizing air. On the other hand, the secondary air passes through the secondary air system 5 and is a certain distance (5 to 10 m) from the bottom of the combustor 8.
The air is then put into the combustor 8 from the installed secondary air blowing lower.

この2段燃焼の意味は、発生NOxの低減を計る為であ
る。又、燃料供給系統9より石炭粒子、スラッジ等、適
正なサイズで、コンバスタ8の下iに供給され、脱硫剤
等についても、流動剤及び、脱硫剤投入口26より、同
様にコンバスタ8下部に供給される。コンバスタ8に供
給されたこれらの、燃料、空気、脱硫剤は、高速流動状
態(空塔速度5rrL/B〜15m/ill )におい
て燃焼反応と共に1脱硫反応、脱硝反応を行い低NOx
 、低SOx状態で、粒子分離器10に入ろ。このさい
、燃焼ガスは、コンバスタ8出口より徐々に、流速を上
げ、粒子分離器10人口にて、必要流速を確保できる構
造とする。粒子分離器10にて、旋回力をうけた粒子は
、遠心力にて、粒子分離器100内京に沿って下方へ運
ばれ再循環粒子通路270入口へ至る。
The purpose of this two-stage combustion is to reduce the amount of NOx generated. In addition, coal particles, sludge, etc., of appropriate size are supplied to the lower part of the combustor 8 from the fuel supply system 9, and desulfurizing agents, etc. are also supplied to the lower part of the combustor 8 from the flow agent and the desulfurizing agent inlet 26. Supplied. The fuel, air, and desulfurizing agent supplied to the combustor 8 undergo a combustion reaction, a desulfurization reaction, and a denitrification reaction in a high-speed flow state (superficial velocity of 5rrL/B to 15m/ill) to reduce NOx.
, enter the particle separator 10 in low SOx conditions. At this time, the flow rate of the combustion gas is gradually increased from the outlet of the combustor 8, and the structure is such that the required flow rate can be secured at the particle separator 10. Particles subjected to swirling force in the particle separator 10 are carried downward along the interior of the particle separator 100 by centrifugal force and reach the entrance of the recirculation particle passage 270.

さらに粒子分配ダンパ11により、コンバスタ8内燃節
ガス温度を約850℃にコントロールする為、粒子冷却
通路30及び無冷却通路31への粒子の分配を行う。分
配された粒子は粒子冷却器13の伝熱管により冷却され
る粒子と無冷却のまま落下していく粒子に分れるがいず
れも再循環粒子通路27の下に設けられた粒子リサイク
ル用フィーダー15により、コンバスタ8下部に、リサ
イクルされる。このさいリサイクル量は、 NOz、S
Ox。
Further, the particle distribution damper 11 distributes particles to the particle cooling passage 30 and the non-cooling passage 31 in order to control the combustion gas temperature within the combustor 8 to approximately 850°C. The distributed particles are divided into particles that are cooled by the heat exchanger tube of the particle cooler 13 and particles that fall without being cooled, but both are collected by the particle recycling feeder 15 provided under the recirculation particle passage 27. , are recycled to the lower part of the combustor 8. The amount recycled at this time is NOz, S
Ox.

燃焼効率等を見ながら、通風機動力を、削0に−rる為
、可能な限り減らして、運用される。
While looking at combustion efficiency, etc., the ventilation machine power will be reduced as much as possible in order to reduce it to zero.

一方、燃焼ガスは、粒子分離器10にて、粒子を分離さ
れたのち、後部煙道32に入る。後部煙道32には、ボ
イラ伝熱管14が配置されており、燃焼ガスは、これら
ボイラ伝熱管14により、冷却され、燃焼排ガス系統2
1に至る。後部煙道32の下に設けられた後部煙道ホッ
パ17には、燃焼ガスに含まれる少量の微粒子の一部が
貯まり、残りは、燃焼ガスと共に、燃焼排ガス系統21
へと運ばれる。後部煙道ホツノ々17に貯った粒子は、
後部煙道ホッパ下ロータリーバルズ18を経て、後部煙
道下灰リサイクル系統19を通り適宜、再循環粒子通路
27へ、戻される。
On the other hand, the combustion gas enters the rear flue 32 after its particles are separated in the particle separator 10 . Boiler heat exchanger tubes 14 are disposed in the rear flue 32, and the combustion gas is cooled by these boiler heat exchanger tubes 14, and then transferred to the combustion exhaust gas system 2.
It reaches 1. In the rear flue hopper 17 provided below the rear flue 32, part of a small amount of particulates contained in the combustion gas is stored, and the rest is stored in the flue gas system 21 along with the combustion gas.
be carried to. The particles accumulated in the rear flue hotspots 17 are
Via the rear flue hopper lower rotary bals 18, it passes through the rear flue ash recycle system 19 and returns to the recirculation particle passageway 27 as appropriate.

又、粒子循環系統のマスバランス(流量バランス)を、
維持する為、灰取り出し系統20より燃料及び、脱硫剤
投入量に見合った灰量が系外に排出される。
In addition, the mass balance (flow rate balance) of the particle circulation system,
In order to maintain this, an amount of ash commensurate with the amount of fuel and desulfurization agent input is discharged from the ash removal system 20 to the outside of the system.

又、燃焼排ガスは空気予熱器2をへて、空気予熱器出口
排ガスダクト22を通り集じん装置23、訪引通風機2
4を経て、煙突25に至る。
In addition, the combustion exhaust gas passes through the air preheater 2 and passes through the air preheater outlet exhaust gas duct 22 to the dust collector 23 and the visiting ventilation fan 2.
4, it reaches the chimney 25.

以上の方式により、流動層ボイラとしてその性能は、以
下の如く達成される。
By the above method, the performance as a fluidized bed boiler is achieved as follows.

燃焼効率  98〜99% NOx     100p¥1m以下 脱硫率   90チ以上 (Ca/ s = 2.5 
)又、再循環粒子の冷却を促進する為、燃焼ガスの一部
は、再循環ガスとして、再循環粒子通路27を通り、粒
子の冷却を促進したのち、ガス再循環取出口34よりガ
ス再循環通風機33及び、ガス再循環投入口35をへて
、コンバスタ8に戻される。再循環ガス量は、粒子の伝
熱管への衝突による摩耗を最少とする為、十分少量とし
、流速を下げたものとする。
Combustion efficiency 98-99% NOx 100p¥1m or less Desulfurization rate 90p or more (Ca/s = 2.5
) Also, in order to promote the cooling of the recirculated particles, a part of the combustion gas passes through the recirculated particle passage 27 as a recirculated gas, accelerates the cooling of the particles, and then returns the gas from the gas recirculation outlet 34. The gas passes through the circulation fan 33 and the gas recirculation inlet 35 and is returned to the combustor 8 . The amount of recirculated gas should be kept sufficiently small and the flow rate should be kept low in order to minimize wear due to particles colliding with the heat transfer tubes.

〔発明の効果〕〔Effect of the invention〕

(IJ  配管系統が大巾に簡素化される。 (IJ piping system is greatly simplified.

(2)装置のコンパクト化が計れ、大巾なコストダウン
が達成される。
(2) The device can be made more compact, resulting in significant cost reductions.

(3)粒子の冷却か、気泡型流動層ボイラに依らず、粒
子の自然落下に伴う、粒子と伝熱管の衝突伝熱に依る為
、冷却器用高圧流動空気(又はガス)が不用となり、構
造が簡略化され、補機動力が低減する。
(3) The cooling of the particles does not depend on the bubble-type fluidized bed boiler, but instead relies on collisional heat transfer between the particles and heat transfer tubes as the particles naturally fall, eliminating the need for high-pressure fluidized air (or gas) for the cooler, and improving the structure. is simplified and the power of auxiliary equipment is reduced.

+47  循環粒子の流量を、機械的手段(スクリュー
フィーダー等)により、行うことで、循環量をコントロ
ールでき、1次、2次エア系統の通風機動力を、削減す
ることができる。
+47 By controlling the flow rate of circulating particles using mechanical means (such as a screw feeder), the amount of circulation can be controlled and the power required for ventilation in the primary and secondary air systems can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例としての循環流動層ボイラ
の概念図、第2図は、第1因のA−A矢視図を示す。 8・・・コンバスタ(火炉)    10・・・粒子分
離器11・・・粒子分配ダンパ 13・・・粒子冷却器(伝熱管) 14・・・ボイラ伝熱管 15・・・粒子リサイクル用
フィーダー21・・・燃焼排ガス系統  27・・・再
循環粒子通路28・・・粒子逆流防止せき 30・・・
粒子冷却通路31・・・粒子無冷却通路 32・・・後
部煙道復代理人 弁理士 岡 本 重 文 外2名
FIG. 1 is a conceptual diagram of a circulating fluidized bed boiler as an embodiment of the present invention, and FIG. 2 is a view taken along the line A-A of the first factor. 8... Combustor (furnace) 10... Particle separator 11... Particle distribution damper 13... Particle cooler (heat transfer tube) 14... Boiler heat transfer tube 15... Particle recycling feeder 21. ... Combustion exhaust gas system 27 ... Recirculation particle passage 28 ... Particle backflow prevention weir 30 ...
Particle cooling passage 31... Particle non-cooling passage 32... Rear flue Sub-agent Patent attorney Shige Okamoto 2 other persons

Claims (1)

【特許請求の範囲】[Claims] 竪形のコンバスタと、前記コンバスタに並設された後部
煙道と、前記後部煙道の上部に設けられた一体形の粒子
分離器と、前記後部煙道に並設された循環粒子通路とを
具え、前記後部煙道の内部にボイラ伝熱管を設置し、前
記粒子分離器の上部を前記コンバスタに連通し中央部を
前記後部煙道に連通し下部を前記循環粒子通路に連通し
、前記循環粒子通路に冷却通路と非冷却通路と粒子分配
ダンパを設け、前記粒子分離器で捕捉され前記循環粒子
通路で温度調整された粒子を再び前記コンバスタに供給
するようにしたことを特徴とする循環流動層ボイラ。
A vertical combustor, a rear flue arranged in parallel with the combustor, an integrated particle separator provided in the upper part of the rear flue, and a circulation particle passage arranged in parallel with the rear flue. a boiler heat exchanger tube is installed inside the rear flue, the upper part of the particle separator is connected to the combustor, the central part is connected to the rear flue, and the lower part is connected to the circulation particle passage; A circulating flow characterized in that the particle passage is provided with a cooling passage, a non-cooling passage, and a particle distribution damper, and particles captured in the particle separator and whose temperature has been adjusted in the circulation particle passage are supplied to the combustor again. Layer boiler.
JP28675186A 1986-12-03 1986-12-03 Fluidized bed boiler of circulation type Pending JPS63143409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28675186A JPS63143409A (en) 1986-12-03 1986-12-03 Fluidized bed boiler of circulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28675186A JPS63143409A (en) 1986-12-03 1986-12-03 Fluidized bed boiler of circulation type

Publications (1)

Publication Number Publication Date
JPS63143409A true JPS63143409A (en) 1988-06-15

Family

ID=17708566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28675186A Pending JPS63143409A (en) 1986-12-03 1986-12-03 Fluidized bed boiler of circulation type

Country Status (1)

Country Link
JP (1) JPS63143409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002293A1 (en) * 1988-08-31 1990-03-08 Ebara Corporation Composite circulation fluidized bed boiler
JPH02501498A (en) * 1987-05-08 1990-05-24 エイ.アフルストロム コーポレーション Apparatus and method for operating a fluidized bed reactor
US5156099A (en) * 1988-08-31 1992-10-20 Ebara Corporation Composite recycling type fluidized bed boiler
JP2012527597A (en) * 2009-05-19 2012-11-08 アルストム テクノロジー リミテッド Oxygen combustion steam generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501498A (en) * 1987-05-08 1990-05-24 エイ.アフルストロム コーポレーション Apparatus and method for operating a fluidized bed reactor
WO1990002293A1 (en) * 1988-08-31 1990-03-08 Ebara Corporation Composite circulation fluidized bed boiler
US5156099A (en) * 1988-08-31 1992-10-20 Ebara Corporation Composite recycling type fluidized bed boiler
JP2012527597A (en) * 2009-05-19 2012-11-08 アルストム テクノロジー リミテッド Oxygen combustion steam generator

Similar Documents

Publication Publication Date Title
US4419965A (en) Fluidized reinjection of carryover in a fluidized bed combustor
JP2657857B2 (en) Fluid bed combustion apparatus and method with integrated recirculating heat exchanger with lateral outlet chamber
US6039008A (en) Steam generator having an improved structural support system
CN1973988B (en) Circulating fluidised bed furnace provided with a convertible combustion process
US5174799A (en) Horizontal cyclone separator for a fluidized bed reactor
EP0667944A1 (en) Method and apparatus for operating a circulating fluidized bed system
WO1994011673B1 (en) Method and apparatus for operating a circulating fluidized bed system
JPH04278104A (en) Fluidized bed burning apparatus having re-circulation heatexchanger with non-mechanical solid controller and its method
US5471955A (en) Fluidized bed combustion system having a heat exchanger in the upper furnace
US5954000A (en) Fluid bed ash cooler
JPS6150629A (en) Apparatus for separating solid particle of recirculation type fluidized bed reactor
KR100293851B1 (en) Large Fluidized Bed Reactor
JP2829839B2 (en) Fluidized bed reactor
JPS63143409A (en) Fluidized bed boiler of circulation type
FI952155A0 (en) Method and apparatus for operating a fluidized bed type fluidized bed reactor system
US5218931A (en) Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger
US5277151A (en) Integral water-cooled circulating fluidized bed boiler system
BG63513B1 (en) Recirculation fluidized bed reactor with numerous outlets from the furnace
JP3482176B2 (en) Circulating fluidized bed boiler
JPS6240605B2 (en)
HU217001B (en) Method and device in the cooling of the circulating material in a fluidized-bed boiler
JPS5815722A (en) High-temperature gas system
JPS62213601A (en) Multiple circulation combustion boiler
JP2517648B2 (en) Cyclone coal combustion system
US5392736A (en) Fludized bed combustion system and process for operating same