JPS63143396A - Capacity control device of screw compressor - Google Patents

Capacity control device of screw compressor

Info

Publication number
JPS63143396A
JPS63143396A JP28969986A JP28969986A JPS63143396A JP S63143396 A JPS63143396 A JP S63143396A JP 28969986 A JP28969986 A JP 28969986A JP 28969986 A JP28969986 A JP 28969986A JP S63143396 A JPS63143396 A JP S63143396A
Authority
JP
Japan
Prior art keywords
control valve
rotor
working chamber
central control
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28969986A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28969986A priority Critical patent/JPS63143396A/en
Publication of JPS63143396A publication Critical patent/JPS63143396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid

Abstract

PURPOSE:To freely change the starting time of delivery by the screw compressor in the caption by installing control valves which can be moved along rotor-axes in grooves provided on both sides of the groove in which a central control valve is fitted movably along a rotor-axes in a rotor-casing. CONSTITUTION:A central control valve 10 is installed so that it can be moved along the rotor-axes in a groove 9 formed in a rotor-casing 4. Control valves 12 are installed so that they can be moved along the rotor-axes in the grooves 11 provided on both sides of the groove 9 in the rotor-casing 4. By moving the central control valve 10 and the control valves 12 simultaneously or nonsimultaneously and controlling the by-pass timing, the starting time of delivery can be freely changed.

Description

【発明の詳細な説明】 本発明は、圧縮機の容量制御の度合に対して吐出開始時
期を自在に変化させ得るスクリュー圧縮機の容量制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacity control device for a screw compressor that can freely change the discharge start timing depending on the degree of capacity control of the compressor.

一般にスクリュー圧縮機は第1図に示す様に雄ローター
1と雌ローター2とが接触又は被接触状態で(後者の場
合は同期歯車を必要とする)同期的に噛合い、作動室3
(雄ローター1、雌ローター2、ローターケーシング4
、サイドケーシング5又は6により形成される溝状の空
間を言う)内に一杯に吸入した流体を作動室3の容積の
密閉的縮小によって圧縮した後に吐出する様に構成され
ているが、圧縮機の容量を制御する場合には溝7の中を
ローター軸方向に移動するスライド弁8が使用される。
Generally, in a screw compressor, as shown in Fig. 1, a male rotor 1 and a female rotor 2 mesh synchronously in contact or in a non-contact state (in the latter case, a synchronous gear is required), and a working chamber 3
(Male rotor 1, female rotor 2, rotor casing 4
(refers to the groove-shaped space formed by the side casing 5 or 6), the fluid is compressed by hermetically reducing the volume of the working chamber 3, and then discharged. To control the capacity of the rotor, a slide valve 8 is used which moves in the groove 7 in the axial direction of the rotor.

即ち、圧縮機の容量が制御されていない場合の作動室3
のP−V線図(圧力−容積線図)は第2図において実線
で示され、容量制御時はスライド弁8は図示の位置まで
移動せしめられており、作動室3内に一杯に吸入された
流体はSに相当する分だけ圧縮されずにそのまま吸入側
へ戻され、然る後に作動室3の容積の密閉的縮小によっ
て圧縮が開始され、吐出側の圧力にほぼ等しくなった時
点で吐出される様になっている。
That is, the working chamber 3 when the capacity of the compressor is not controlled.
The PV diagram (pressure-volume diagram) of is shown by a solid line in Fig. 2, and during volume control, the slide valve 8 is moved to the position shown in the figure, and suction is fully drawn into the working chamber 3. The fluid is returned to the suction side as it is without being compressed by an amount corresponding to S, and then compression is started by hermetic reduction of the volume of the working chamber 3, and when the pressure becomes almost equal to the pressure on the discharge side, the fluid is discharged. It looks like it will be done.

この時、圧縮機の容量制御時のP−V線図は第2図にお
いて二点鎖線で示される。
At this time, the PV diagram during capacity control of the compressor is shown by a chain double-dashed line in FIG.

さて以上の様な従来のスクリュー圧縮機の容量制御装置
では圧縮機の容量制御の度合が定まると、これに応じて
作動室3内の流体の吐出開始時期が一義的に定まってし
まい、吐出側の圧力が変動して規準値よりも高くなった
り又は低くなったりすると、作動室3のP−V線図を示
した第3図からも明らかな様に作動室3内での圧縮の過
不足から斜線の部分に相当する仕事損失、即ち動力損失
が生ずる不具合がある。
Now, in the conventional capacity control device for a screw compressor as described above, once the degree of capacity control of the compressor is determined, the timing to start discharging the fluid in the working chamber 3 is uniquely determined according to this degree, and the discharge side If the pressure in the working chamber 3 fluctuates and becomes higher or lower than the standard value, as is clear from Figure 3, which shows the PV diagram of the working chamber 3, there will be excess or insufficient compression in the working chamber 3. There is a problem in which a work loss, that is, a power loss, occurs corresponding to the shaded area.

更には、この際騒音を発生する欠点もある。Furthermore, there is also the drawback that noise is generated at this time.

これは圧縮機の容量制御の度合に対して吐出開始時期を
自在に変化させる事ができないところから来るものであ
り、理想的には圧縮機の回転速度に対しても吐出開始時
期を自在に変え得る構造とする事が望ましい。
This is due to the fact that the discharge start timing cannot be freely changed according to the degree of capacity control of the compressor. Ideally, the discharge start timing can also be freely changed according to the rotation speed of the compressor. It is desirable to have a structure that allows for

又、このスクリュー圧縮機を内燃機関の過給機として使
用する場合にも前述の欠点が現れてくる。
Further, the above-mentioned drawbacks also appear when this screw compressor is used as a supercharger for an internal combustion engine.

即ち第4図に示す如くスクリュー圧縮機を過給機として
使用した場合、一般には作動室3内の給気を吸入側へ戻
し終った後は一定期間(普通、この期間は過給機の最大
容量時に最適となる様に適合させている)の圧縮過程を
経た後に前記作動室3が吐出側へ連通する様に構成され
ている為、機関の部分負荷域においてスライド弁8を移
動させて過給機の容量を制御すると、第3図でも述べた
如く作動室3内での過圧縮から損失を生じ、騒音も発生
する。
In other words, when a screw compressor is used as a supercharger as shown in Fig. 4, generally the supply air in the working chamber 3 is returned to the suction side for a certain period of time (normally, this period is Since the working chamber 3 is configured to communicate with the discharge side after the compression process (optimized at the engine capacity), the slide valve 8 can be moved in the partial load range of the engine to prevent overload. When the capacity of the feeder is controlled, as described in FIG. 3, losses occur due to overcompression within the working chamber 3, and noise is also generated.

これは作動室3内の吸気の吐出開始時期が遅すぎる為に
起る現象で、吐出開始時期を変化させる事ができれば解
決されるものである。
This is a phenomenon that occurs because the discharge start timing of the intake air in the working chamber 3 is too late, and can be solved if the discharge start timing can be changed.

更には、スライド弁8を一杯に移動させて過給機の容量
を吐出側が負圧となるまで制御(減少)させ、作動室3
内の吸気を吸入側へ戻し終る直前(近傍)でこの作動室
3と吐出側との連通が開始される様にすれば、作動室3
のP−V線図を示した第5図からも明らかな様に過給機
には斜線の部分に相当する仕事、即ち動力が発生し(機
関がオットー機関でもディーゼル機関でも発生する)、
機関の燃費を改善する事ができるはずである(ディーゼ
ル機関でも機関のアイドル騒音を減少させる等の為に、
吸気絞りを行って吸気通路内を負圧にする事がある)。
Furthermore, the slide valve 8 is moved fully to control (reduce) the capacity of the supercharger until the discharge side becomes negative pressure, and the working chamber 3
If the communication between the working chamber 3 and the discharge side is started just before (near) the intake air in the chamber finishes returning to the suction side, the working chamber 3
As is clear from Figure 5, which shows the P-V diagram of
It should be possible to improve the engine's fuel efficiency (even in diesel engines, by reducing the idle noise of the engine, etc.)
(The intake air may be throttled to create negative pressure in the intake passage.)

従来では作動室3内の吸気を吸入側へ戻し終った後は、
一定期間の圧縮過程を経た後に吐出側へ連通する様にな
っている為、動力が発生する事は到底起り得ない。
Conventionally, after the intake air in the working chamber 3 has been returned to the intake side,
Since it is connected to the discharge side after a certain period of compression process, it is completely impossible for power to be generated.

これは過給機の容量制御の度合に対して作動室3内の吸
気の吐出開始時期を自在に変化させる事ができないとこ
ろから来るものである。
This is because the discharge start timing of the intake air in the working chamber 3 cannot be freely changed depending on the degree of capacity control of the supercharger.

本発明は以上の様な欠点を解決する為、圧縮機の容量制
御の度合に対して吐出開始時期を自在に変化させ得る容
量制御装置を提供しようとしたもので、以下図面に従っ
て説明する。
In order to solve the above-mentioned drawbacks, the present invention attempts to provide a capacity control device that can freely change the discharge start timing depending on the degree of capacity control of the compressor, and will be described below with reference to the drawings.

第6図は本発明によるスクリュー圧縮機の容量制御装置
の一実施例で、ローターケーシング4に形成された溝9
の中をローター軸方向に移動可能な中央制御弁10を備
えると共に、中央制御弁10が嵌り込んでいる溝9の両
側に形成されかつローターケーシング4に形成された溝
11の中をローター軸方向に移動可能な制御弁12を備
えており、中央制御弁10、制御弁12は右側に示した
断面図の様にリニアボールベアリング等によって支えら
れ、滑らかに移動できる様になっている(第7図に示す
如く円形断面を有する軸17、18を各々一体的に形成
し、これらを軸受で支える様にしても良い)。
FIG. 6 shows an embodiment of the capacity control device for a screw compressor according to the present invention, in which a groove 9 formed in the rotor casing 4 is shown.
A central control valve 10 is provided which is movable in the rotor axial direction, and the central control valve 10 is movable in the rotor axial direction through grooves 11 formed on both sides of the groove 9 in which the central control valve 10 is fitted and which is formed in the rotor casing 4. The central control valve 10 and the control valve 12 are supported by linear ball bearings, etc., as shown in the cross-sectional view on the right, so that they can move smoothly (7th As shown in the figure, shafts 17 and 18 each having a circular cross section may be integrally formed and supported by bearings).

中央制御弁10、制御弁12の各々の内壁面はいずれも
ローターケーシング4の内周面の一部を形成しており、
各々レバー15、16によって移動せしめられる様にな
っている。
The inner wall surfaces of each of the central control valve 10 and the control valve 12 form part of the inner peripheral surface of the rotor casing 4,
They are adapted to be moved by levers 15 and 16, respectively.

レバー15、16は各々専用の駆動装置により駆動する
様にしても良いし、レバー16のみを駆動装置によって
駆動すると共にレバー15をレバー16にカムを介して
連動させ、このカムのプロフィールを適宜に定める事に
よってレバー15の制御位置がレバー16のそれに対応
して自在に定められる様にしても良い(圧縮機の容量が
最大となる様に制御される時は、中央制御弁10、制御
弁12の制御位置は第8図に示す通りとする)。
The levers 15 and 16 may each be driven by a dedicated drive device, or only the lever 16 may be driven by the drive device, and the lever 15 may be interlocked with the lever 16 via a cam, and the profile of this cam may be adjusted as appropriate. By determining the control position of the lever 15, the control position of the lever 15 may be freely determined corresponding to that of the lever 16. The control position is as shown in Fig. 8).

圧縮機の容量制御時はレバー15、16によって中央制
御弁10、制御弁12は図示(第6図)の位置まで移動
せしめられており、作動室3内に一杯に吸入された流体
は溝9、11の吸入側へ連通する部分を介して通路13
から所定量だけ吸入側へそのまま戻され、然る後に同作
動室3内に残留した流体を同作動室3の容積の縮小によ
って密閉的に圧縮し、吐出側の圧力にほぼ等しくなった
時点で溝9の吐出側へ連通する部分を介して通路14か
ら吐出側へ吐出する様になっている。
When controlling the capacity of the compressor, the levers 15 and 16 move the central control valve 10 and the control valve 12 to the positions shown in the figure (Fig. 6), and the fluid fully sucked into the working chamber 3 flows through the groove 9. , 11 through a portion communicating with the suction side of the passage 13.
The fluid remaining in the working chamber 3 is then hermetically compressed by reducing the volume of the working chamber 3, until the pressure becomes almost equal to the pressure on the discharge side. The liquid is discharged from the passage 14 to the discharge side via the portion of the groove 9 that communicates with the discharge side.

この様な場合において、吐出側に圧力の変動が起り規準
値よりも高くなったり又は低くなったりした時にはレバ
ー15により中央制御弁10を移動せしめて、作動室3
内の圧力が吐出側の圧力にほぼ等しくなった時点で吐出
を開始する様に制御するのである。
In such a case, when pressure fluctuation occurs on the discharge side and becomes higher or lower than the standard value, the central control valve 10 is moved by the lever 15 and the working chamber 3
Control is performed so that the discharge is started when the pressure inside becomes almost equal to the pressure on the discharge side.

従って作動室3内での圧縮の過不足が消滅し、第3図に
おける斜線の部分に相当する仕事損失、即ち動力損失が
なくなり、騒音の発生もない。
Therefore, the excess or deficiency of compression within the working chamber 3 disappears, and there is no work loss, ie, power loss, corresponding to the shaded area in FIG. 3, and no noise is generated.

かくして圧縮機の容量制御の度合に対して作動室3内の
流体の吐出開始時期を状況に応じて自在に変化させ、本
発明の目的を達成しているのである。
In this way, the timing of starting discharge of the fluid in the working chamber 3 can be freely changed according to the situation with respect to the degree of capacity control of the compressor, thereby achieving the object of the present invention.

圧縮機の容量を制御する際には、制御弁12を移動させ
ると共に中央制御弁10をも同時的に移動させる場合も
あるし、状況によっては制御弁12は移動させるが中央
制御弁10は移動させない場合もあり得るのである。
When controlling the capacity of the compressor, the control valve 12 may be moved and the central control valve 10 may also be moved at the same time, or depending on the situation, the control valve 12 may be moved but the central control valve 10 may be moved. There may be cases where it is not allowed.

即ち本発明においては、中央制御弁10及び制御弁12
を同時的に又は非同時的に移動させる事によって、作動
室3内の流体を溝9、11の吸入側へ連通する部分を介
して吸入側へ戻す時の戻し終り時期及び同作動室3内に
残留した流体を溝9の吐出側へ連通する部分を介して吐
出側へ吐出する時の吐出開始時期を同時的に又は非同時
的に変化させる様にしているのである。
That is, in the present invention, the central control valve 10 and the control valve 12
By moving the fluid in the working chamber 3 simultaneously or asynchronously, the timing of the return end when the fluid in the working chamber 3 is returned to the suction side through the portions communicating with the suction side of the grooves 9 and 11 and the inside of the working chamber 3 can be determined. When the remaining fluid is discharged to the discharge side through the portion of the groove 9 that communicates with the discharge side, the discharge start timing is changed simultaneously or asynchronously.

次にこの様なスクリュー圧縮機を内燃機関の過給機とし
て使用する場合を考えると、過給機の容量が最大となる
様に制御して一杯に過給を行う時には中央制御弁10、
制御弁12は第8図に示す位置にあるが、機関の部分負
荷域では第6図に示す如く制御弁12を適宜に移動させ
て過給機の無駄な給気圧縮仕事損失を減少させると共に
、中央制御弁10を適宜に移動させて作動室3内の吸気
の吐出開始時期を制御して、作動質3内での圧縮の過不
足を防いでいるのである。
Next, considering the case where such a screw compressor is used as a supercharger for an internal combustion engine, when controlling the supercharger to maximize its capacity and fully supercharging, the central control valve 10,
The control valve 12 is in the position shown in Fig. 8, but in the partial load range of the engine, the control valve 12 is moved appropriately as shown in Fig. 6 to reduce wasteful charge air compression work loss of the supercharger and The central control valve 10 is appropriately moved to control the discharge start timing of the intake air in the working chamber 3, thereby preventing over- or under-compression within the working mass 3.

かくして過給機の容量制御の度合に対して作動室3内の
吸気の吐出開始時期を自在に変化させ、本発明の目的を
達成しているのである。
In this way, the timing of the discharge start of the intake air in the working chamber 3 can be freely changed according to the degree of capacity control of the supercharger, thereby achieving the object of the present invention.

従って中央制御弁10、制御弁12を一杯に移動させて
過給機の容量を吐出側の圧力が負圧となるまで制御(減
少)させ(これによりオットー機関では空転状態を保つ
様にし、ディーゼル機関では空転状態を含む低負荷域を
保つ様にする)、作動室3内の吸気を吸入側へ戻し終る
時点の近傍(通常は直前)でこの作動室3と吐出側との
連通が開始される様にする事ができるから、第5図の斜
線の部分に相当する仕事、即ち動力が過給機に発生し、
機関の燃費を改善させ得る事も容易に理解されよう(こ
の時、作動室3内の吸気をサイドケーシング6に形成さ
れた小さな吐出口をも介して吐出する様にしても良い)
Therefore, the central control valve 10 and the control valve 12 are moved fully to control (reduce) the capacity of the supercharger until the pressure on the discharge side becomes negative pressure. (In the engine, the engine is kept in a low load range including the idling state), and communication between the working chamber 3 and the discharge side is started near (usually just before) the time when the intake air in the working chamber 3 finishes returning to the suction side. Therefore, the work corresponding to the shaded area in Figure 5, that is, the power, is generated in the supercharger,
It will be easily understood that the fuel efficiency of the engine can be improved (at this time, the intake air in the working chamber 3 may also be discharged through a small discharge port formed in the side casing 6).
.

この場合、中央制御弁10は(レバー15は)適当なプ
ロフィールを有するカムを介して制御弁12に(レバー
16に)連動させ、アクセルペダルにより制御弁12を
(レバー16を)駆動する様にする。
In this case, the central control valve 10 (lever 15) is linked to the control valve 12 (lever 16) via a cam with a suitable profile, so that the accelerator pedal drives the control valve 12 (lever 16). do.

又、前記カムを立体カムとし、この立体カムをその軸方
向に移動させる事によって種々の条件に最適の制御位置
に中央制御弁10を移動させる事も可能である。
Furthermore, by using a three-dimensional cam as the cam and moving the three-dimensional cam in its axial direction, it is also possible to move the central control valve 10 to the optimal control position for various conditions.

機関へ供給される吸気が更に要求される場合には、制御
弁12、中央制御弁10を移動せしめて過給機を介して
更に吸気を機関へ供給する様にする。
If more intake air is required to be supplied to the engine, the control valve 12 and central control valve 10 are moved to supply more intake air to the engine via the supercharger.

制御弁12(レバー16)をアクセルペダルにより駆動
する代りに、ニューマチックガバナー付ディーゼル機関
においてはガバナーへ導入される負圧を利用する事もで
きる。
Instead of driving the control valve 12 (lever 16) with an accelerator pedal, in a diesel engine with a pneumatic governor, negative pressure introduced into the governor can be used.

即ち、第9図に示す様に過給機の吸入側へ接続する吸気
通路19に備えられた小ベンチェリ21で発生した負圧
により作動する駆動装置22(ダイアフラム装置)によ
って制御弁12(レバー16)を駆動するのである。
That is, as shown in FIG. 9, the control valve 12 (lever 16 ).

20はアクセルペダルに連動する絞弁であって、小ベン
チェリ21で発生した負圧はニューマチックガバナーへ
導入されているから、駆動装置22は燃料噴射量に応じ
た制御位置に制御弁12を移動せしめる事になる。
Reference numeral 20 is a throttle valve that is linked to the accelerator pedal, and since the negative pressure generated by the small ventilator 21 is introduced into the pneumatic governor, the drive device 22 moves the control valve 12 to a control position according to the fuel injection amount. It will be forced.

制御弁12を移動させる方法としては、この他コンピュ
ーターによる方法がある。
As a method for moving the control valve 12, there is another method using a computer.

即ち、アクセルペダルの開度、機関の回転速度等を電気
信号としてコンピューターに入力すると、コンピュータ
ーはこれらの入力値に相応する演算結果を出力し、この
コンピューターからの出力信号によりステッピングモー
ターを作動させて制御弁12を移動せしめる様にするの
である。
In other words, when information such as the degree of opening of the accelerator pedal and the rotational speed of the engine are input into the computer as electrical signals, the computer outputs calculation results corresponding to these input values, and the output signal from this computer operates the stepping motor. The control valve 12 is moved.

かくして本発明の目的を完全に達成する。The objective of the invention is thus fully achieved.

第6図において中央制御弁10が作動室3内の流体を吸
入側へ戻す時の戻し終り時期を変化させる役割を果し、
制御弁12が作動室3内に残留した流体を吐出側へ吐出
する時の吐出開始時期を変化させる役割を果す様に構成
した実施例を、第10図に示す(中央制御弁10、制御
弁12を移動せしめるレバーは省略してある)。
In FIG. 6, the central control valve 10 plays the role of changing the return end timing when returning the fluid in the working chamber 3 to the suction side,
FIG. 10 shows an embodiment in which the control valve 12 plays the role of changing the discharge start timing when discharging the fluid remaining in the working chamber 3 to the discharge side (the central control valve 10, the control valve (The lever for moving 12 is omitted.)

即ち第10図においては、中央制御弁10及び制御弁1
2を同時的に又は非同時的に移動させる事によって作動
室3内の流体を溝9の吸入側へ連通する部分を介して吸
入側へ戻す時の戻し終り時期及び同作動室3内に残留し
た流体を溝11(溝9を含む場合もある)の吐出側へ連
通する部分を介して吐出側へ吐出する時の吐出開始時期
を同時的に又は非同時的に変化させる様にしているので
ある。
That is, in FIG. 10, the central control valve 10 and the control valve 1
2 simultaneously or asynchronously to return the fluid in the working chamber 3 to the suction side through the part of the groove 9 that communicates with the suction side, and when the fluid remains in the working chamber 3. The discharge start timing when the fluid is discharged to the discharge side through the part of the groove 11 (which may include the groove 9) that communicates with the discharge side is changed simultaneously or asynchronously. be.

かくして圧縮機の容量制御の度合に対して作動室3内の
流体の吐出開始時期を状況に応じて自在に変化させ、本
発明の目的を達成するのである。
In this way, the timing of starting discharge of the fluid in the working chamber 3 can be freely changed according to the situation with respect to the degree of capacity control of the compressor, thereby achieving the object of the present invention.

中央制御弁10、制御弁12を移動させる手段としては
レバーを用いる他に、ラックとピニオンを用いる方法も
ある。
As a means for moving the central control valve 10 and the control valve 12, in addition to using a lever, there is also a method using a rack and pinion.

本発明は以上の如く構成されているので、圧縮機の容量
制御の度合に対して作動室内の流体を吐出開始時期を自
在に変化させる事ができる。
Since the present invention is configured as described above, the timing at which fluid in the working chamber starts to be discharged can be freely changed depending on the degree of capacity control of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスクリュー圧縮機の容量制御装置の図、
第2・3・5図はP−V線図、第4図は過給機付内燃機
関の図、第6・7・8・10図は本発明によるスクリュ
ー圧縮機の容量制御装置の図、第9図は駆動装置の図で
ある。 1は雄ローター、2は雌ローター、3は作動室、4はロ
ーターケーシング、5・6はサイドケーシング、7・9
・11は溝、8はスライド弁、10は中央制御弁、12
は制御弁、13・14は通路、15・16はレバー、1
7・18は軸、19は吸気通路、20は絞弁、21は小
ベンチェリ、22は駆動装置である。
Figure 1 is a diagram of the capacity control device of a conventional screw compressor.
Figures 2, 3, and 5 are PV diagrams, Figure 4 is a diagram of an internal combustion engine with a supercharger, Figures 6, 7, 8, and 10 are diagrams of a capacity control device for a screw compressor according to the present invention, FIG. 9 is a diagram of the drive device. 1 is a male rotor, 2 is a female rotor, 3 is a working chamber, 4 is a rotor casing, 5 and 6 are side casings, 7 and 9
・11 is a groove, 8 is a slide valve, 10 is a central control valve, 12
is a control valve, 13 and 14 are passages, 15 and 16 are levers, 1
7 and 18 are shafts, 19 is an intake passage, 20 is a throttle valve, 21 is a small vent cherry, and 22 is a drive device.

Claims (1)

【特許請求の範囲】[Claims] (1)雄ローターと雌ローターとを有するスクリュー圧
縮機のローターケーシングに形成された溝の中をロータ
ー軸方向に移動可能な中央制御弁を備えると共に前記中
央制御弁が嵌り込んでいる溝の両側に形成されかつ前記
ローターケーシングに形成された溝の中をローター軸方
向に移動可能な制御弁を備え、前記中央制御弁及び制御
弁の各々の内壁面はいずれも前記ローターケーシングの
内周面の一部を形成しており、前記中央制御弁及び制御
弁を同時的に又は非同時的に移動させる事によって、ス
クリュー圧縮機の作動室内の流体を前記溝の吸入側へ連
通する部分を介して吸入側へ戻す時の戻し終り時期及び
前記作動室内に残留した流体を前記溝の吐出側へ連通す
る部分を介して吐出側へ吐出する時の吐出開始時期を同
時的に又は非同時的に変化させる様にした事を特徴とす
るスクリュー圧縮機の容量制御装置。
(1) A screw compressor having a male rotor and a female rotor is provided with a central control valve movable in the axial direction of the rotor in a groove formed in a rotor casing, and both sides of the groove into which the central control valve is fitted. a control valve that is movable in the rotor axial direction in a groove formed in the rotor casing, and the inner wall surface of each of the central control valve and the control valve is in contact with the inner circumferential surface of the rotor casing. forming a part and communicating the fluid in the working chamber of the screw compressor to the suction side of the groove by moving the central control valve and the control valve simultaneously or asynchronously. Simultaneously or non-simultaneously changing the return end timing when returning to the suction side and the discharge start timing when discharging the fluid remaining in the working chamber to the discharge side via a portion communicating with the discharge side of the groove. A capacity control device for a screw compressor.
JP28969986A 1986-12-04 1986-12-04 Capacity control device of screw compressor Pending JPS63143396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28969986A JPS63143396A (en) 1986-12-04 1986-12-04 Capacity control device of screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28969986A JPS63143396A (en) 1986-12-04 1986-12-04 Capacity control device of screw compressor

Publications (1)

Publication Number Publication Date
JPS63143396A true JPS63143396A (en) 1988-06-15

Family

ID=17746600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28969986A Pending JPS63143396A (en) 1986-12-04 1986-12-04 Capacity control device of screw compressor

Country Status (1)

Country Link
JP (1) JPS63143396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433869A (en) * 1992-12-22 1995-07-18 Colgate-Palmolive Co. Liquid fabric conditioning composition containing amidoamine softening compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433869A (en) * 1992-12-22 1995-07-18 Colgate-Palmolive Co. Liquid fabric conditioning composition containing amidoamine softening compound

Similar Documents

Publication Publication Date Title
US6182449B1 (en) Charge air systems for two-cycle internal combustion engines
US4826412A (en) Mechanically driven screw supercharger
EP0681657B1 (en) Control system for screw type supercharging apparatus
JPH10317980A (en) Automobile screw type supercharger
EP0484885A2 (en) Screw type pump
JPS63143396A (en) Capacity control device of screw compressor
CN115163295B (en) Rotary oil-electricity hybrid engine
EP0288738A1 (en) Supercharger device for internal combustion engines, particularly for motor vehicles
JPS63227984A (en) Capacity controller for screw compressor
JPS63131881A (en) Delivery control device for screw compressor
US4759324A (en) Intake system for rotary piston engine
JPS6010181B2 (en) distribution type fuel injection pump
JPS63170524A (en) Internal combustion engine with supercharger
JPS593111A (en) Internal combustion engine
JP2829533B2 (en) Engine mechanical supercharger controller
JP2727662B2 (en) Machine driven supercharger
JP2513546Y2 (en) Air intake device for automobile
JPH03117693A (en) Screw type engine-driven supercharger
JPS6225851B2 (en)
CA2058121A1 (en) Turbo-charged internal combustion engine
JPS59213923A (en) Diesel engine with pump
JPH0240272Y2 (en)
US4750458A (en) Intake system for rotary piston engine
JP2535530Y2 (en) Screw compressor
JPS6045719A (en) Internal-combustion system with supercharger