JPS63143034A - Respiration detection method and apparatus - Google Patents
Respiration detection method and apparatusInfo
- Publication number
- JPS63143034A JPS63143034A JP29039586A JP29039586A JPS63143034A JP S63143034 A JPS63143034 A JP S63143034A JP 29039586 A JP29039586 A JP 29039586A JP 29039586 A JP29039586 A JP 29039586A JP S63143034 A JPS63143034 A JP S63143034A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- exhalation
- breathing
- amplifier
- threshold level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000029058 respiratory gaseous exchange Effects 0.000 title claims description 30
- 238000001514 detection method Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 claims description 15
- 230000000241 respiratory effect Effects 0.000 claims description 12
- 230000004069 differentiation Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 description 10
- 230000007257 malfunction Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 210000000038 chest Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、呼気と吸気による鼻孔内もしくは鼻孔近傍の
温度差を検出し、呼吸の有無、呼吸数、呼気相から吸気
相への移行時期等を検出する呼吸センサーに関するもの
である。[Detailed Description of the Invention] [Field of Industrial Application] The present invention detects the temperature difference in or near the nostrils due to expiration and inspiration, and detects the presence or absence of breathing, the rate of breathing, and the timing of transition from the exhalation phase to the inhalation phase. This relates to a respiration sensor that detects, etc.
手術後の呼吸管理や新生児の生命維持等において、何ら
かの手段で呼吸を検知しその様相を監視する事は、異常
事態の発生に対する迅速な対処、ひいては患者の生存と
いう事項に関して最も重要な役割を果すものである。In post-operative respiratory management, neonatal life support, etc., detecting breathing by some means and monitoring its behavior plays the most important role in quickly responding to abnormal situations and ultimately ensuring patient survival. It is something.
この呼吸を検知する手段としては、従来例えば、特開昭
55−108343号公報や、特開昭56−63341
号公報のように胸部のインピーダンスを測定するもの、
特公昭58−30047号公報のように胸部に付属した
電気抵抗体の伸縮による抵抗値変化を測定するもの、特
開昭50−39544 @公報や特開昭59−4810
6号公報のように呼吸気流の圧力を検知するもの、特開
昭58−112529号公報のように呼吸音をマイクで
検出するもの、特開昭58−183143号公報のよう
に呼気と吸気の湿度の変化をキャパシタンスの変化でと
らえるもの、特開昭51−124080号公報、特開昭
56−31736号公報、特開昭59−46940号公
報、特開昭60−836870号公報等のようにサーミ
スタ等の温度計を用いて呼気と吸気の温度差を検出する
もの、また、特開昭58−173534号公報のように
胸部インピーダンスと温度の両方を測定するもの等が知
られている。As means for detecting this respiration, there are conventional methods such as those disclosed in Japanese Patent Application Laid-open No. 55-108343 and Japanese Patent Application Laid-Open No. 56-63341.
One that measures the impedance of the chest as in the publication,
Those that measure the change in resistance value due to expansion and contraction of an electrical resistor attached to the chest as in Japanese Patent Publication No. 58-30047;
6, which detects the pressure of the respiratory airflow, JP-A-58-112529, which detects breathing sounds with a microphone, and JP-A-58-183143, which detects the pressure of breathing airflow. Those that capture changes in humidity by changes in capacitance, such as those disclosed in JP-A-51-124080, JP-A-56-31736, JP-A-59-46940, JP-A-60-836870, etc. There are known devices that use a thermometer such as a thermistor to detect the temperature difference between exhaled air and inhaled air, and those that measure both chest impedance and temperature as disclosed in Japanese Patent Application Laid-Open No. 173534/1983.
こうした呼吸を検知する手段の中で、特に呼気が呼吸回
路内を通らない開放系の場合、呼気と吸気の温度差を検
出する方法が最も鋭敏で雑音が少なく一般的であるが、
酸素供給システムや、鉄の肺として知られている陽圧式
人工呼吸器等における呼吸同調等のように、開放系で呼
吸の補助を行う場合、特に呼気と吸気の変わり目、すな
わち呼気相から吸気相への移行時期を明確に検知し、効
果的な治療を行うことが必要である。これらの方法とし
ては、特開昭59−8972号公報、特開昭61−13
1756号公報、特開昭61−176325号公報等の
方法が知られているが、いずれも演算処理が複雑であり
、患者の呼吸パターンが変化した時には追従できなかっ
たり、その呼吸が微弱なために感知できないか、または
呼吸に関係ない信号(体動、電磁干渉等)の影響が大き
くζ結果としてしばしば誤動作を起す等の欠点があった
。Among these means for detecting breathing, especially in the case of an open system in which exhaled air does not pass through the breathing circuit, the method of detecting the temperature difference between exhaled and inhaled air is the most sensitive, has the least noise, and is the most common.
When assisting breathing in an open system, such as in an oxygen supply system or respiratory synchronization in a positive pressure ventilator known as an iron lung, it is especially important to It is necessary to clearly detect the transition period and provide effective treatment. These methods are disclosed in Japanese Patent Application Laid-open No. 59-8972 and Japanese Patent Application Laid-open No. 61-13.
Methods such as those disclosed in Japanese Patent Application Laid-open No. 1756 and Japanese Patent Application Laid-open No. 176325/1988 are known, but these methods require complicated calculation processing and may not be able to follow changes in the patient's breathing pattern, or the breathing may be weak. However, there are drawbacks such as the inability to sense the air, or the large influence of signals unrelated to breathing (body movement, electromagnetic interference, etc.), resulting in frequent malfunctions.
本発明は、従来の呼吸センサーのこうした誤動作を回避
し、呼吸の減弱した患者でもその呼気、吸気を正確に検
知することができ、また、患者の呼吸パターンが変化し
ても正確に追従することのできる呼吸検知の方法・装置
を提供することを目的としたもので、温度センサーによ
って検出された電気信号に微分処理を行なうことで、良
好な判定が可能になることを見い出し、更に研究を進め
て本発明を完成させるに至ったものである。The present invention avoids such malfunctions of conventional respiratory sensors, can accurately detect exhalation and inhalation even in patients with weakened breathing, and can accurately follow changes in the patient's breathing pattern. The purpose of this research was to provide a breathing detection method and device that could detect respiration.We discovered that good judgments could be made by performing differential processing on the electrical signals detected by temperature sensors, and we continued our research. This led to the completion of the present invention.
すなわち本発明は、呼吸気流の温度変化を電気信号とし
て検出し、該電気信号を微分し、微分値が予め定められ
た値に達した時を呼気もしくは吸気の開始時期とするこ
とを特徴とする呼吸検知方法、および呼吸気流の温度変
化を検出する温度センサー、該温度センサーからの出力
を増幅する増幅器、該増幅器により増幅された信号を微
分する微分回路、スレッシュホールドレベルを調節する
可変抵抗器、および微分回路により得られた微分波形と
予め調節されたスレッシュホールドレベルとを比較する
コンパレータより成り、酸素供給システムや陽圧式人工
呼吸器等の制御に用いる呼吸検知装置である。That is, the present invention is characterized in that a temperature change in the respiratory airflow is detected as an electrical signal, the electrical signal is differentiated, and the time when the differential value reaches a predetermined value is set as the start time of exhalation or inspiration. A respiration detection method, a temperature sensor that detects a temperature change in a respiratory airflow, an amplifier that amplifies the output from the temperature sensor, a differentiation circuit that differentiates the signal amplified by the amplifier, a variable resistor that adjusts a threshold level, It is a respiration detection device used to control oxygen supply systems, positive pressure ventilators, etc., and consists of a comparator that compares the differential waveform obtained by the differential circuit with a pre-adjusted threshold level.
第1図にクロメルーアロメル熱電対を鼻孔近傍に設置し
た時の温度出力値の経時的変化を示す。Figure 1 shows the change in temperature output value over time when a chrome-allomel thermocouple was installed near the nostril.
外気温と等温である熱電気対に、体温で暖められた呼気
が当ると温度が上昇する。この温度上昇は熱電対と呼気
との温度差、呼気速度が息の吐き始めに最も速いこと等
からこの時が最大で、呼気終末ではほとんどOとなり、
鼻孔からやや離れたところでは、第1図に示すように外
気により冷やさて
れ得温度低下がおこる場合がおる。従って、例えば、温
度の上昇過程を呼気、下降過程を吸気とするような判定
方法では、呼気終末ですでに吸気開始と判断してしまう
誤動作を生じる。これは感温素子としてサーミスタを用
いた場合でも同様である。When exhaled air warmed by body temperature hits a thermocouple that is isothermal to the outside temperature, the temperature rises. This temperature increase is greatest due to the temperature difference between the thermocouple and exhaled air, and the exhalation rate is fastest at the beginning of exhalation, and reaches almost O at the end of expiration.
At some distance from the nostrils, as shown in FIG. 1, the temperature may drop due to being cooled by the outside air. Therefore, for example, in a determination method in which the process of temperature rise is considered as exhalation and the process of temperature decrease as inhalation, an erroneous operation occurs in which the end of expiration is already determined to be the start of inhalation. This also applies when a thermistor is used as the temperature sensing element.
そこで本発明者らは、温度の変化率の絶対値が呼気およ
び吸気の開始時期に最も大きいことに着目し、温度に比
例する信号を微分することによって呼気、吸気の変わり
目を明確に示す信号を得ることができた。この微分信号
は第2図に示すようなもので、呼気、吸気の変わり目に
鋭いピークを示す。このピークの検出は、一般に例えば
心電図モニターにおける心拍数の測定に用いられている
ような方法を用いれば良く、可変のあらかじめ定められ
た値に達した時を呼気または吸気の開始とすれば、誤動
作がなく時間遅れのない呼吸と同期した信号を得ること
ができる。Therefore, the present inventors focused on the fact that the absolute value of the rate of change in temperature is greatest at the beginning of expiration and inspiration, and by differentiating the signal proportional to temperature, a signal that clearly indicates the transition between expiration and inspiration was obtained. I was able to get it. This differential signal is as shown in FIG. 2, and shows a sharp peak at the transition between exhalation and inspiration. This peak can be detected using a method that is generally used for measuring heart rate on an electrocardiogram monitor. It is possible to obtain a signal synchronized with breathing without any time delay.
本発明の方法は、以下に示すような簡便なる回路の組み
合わせで実現することができる。すなわち、本発明の装
置で用いられる温度センサーを構成する感温素子は、例
えばサーミスタや熱電対のような温度に比例した出力を
示すものであれば特に制約を加えるものではないが、後
の電気回路による処理のためには一気信号出力の得られ
るものが望ましい。また、感温素子の大きさは、熱応答
性、装着性等の理由からできる限り小さいものが望まし
い。また、本発明で使用される増幅器は、温度センサー
からの出力を増幅するもので、一般のサーミスタや熱電
対温度計の計器として用いられているものと何ら変るも
のではない。The method of the present invention can be realized by a simple combination of circuits as shown below. In other words, there are no particular restrictions on the temperature-sensitive element constituting the temperature sensor used in the device of the present invention, as long as it exhibits an output proportional to temperature, such as a thermistor or thermocouple; For processing by circuits, it is desirable to have one that can output a signal all at once. Further, the size of the temperature sensing element is desirably as small as possible for reasons such as thermal responsiveness and wearability. Further, the amplifier used in the present invention amplifies the output from the temperature sensor, and is no different from those used as instruments for general thermistors and thermocouple thermometers.
本発明の方法に従えば、上記で増幅された信号を順次時
間微分して微分波形を得る必要がある。According to the method of the present invention, it is necessary to sequentially time differentiate the amplified signal described above to obtain a differentiated waveform.
しかし、温度変化を示す信号が電気信号で与えられてい
れば、例えば第3図に示されるような一般的な微分回路
を用いることによって、容易に微分波形を得ることがで
きる。微分回路によって得られた微分波形は、第2図に
示すようなものであり、この波形のピークの立ち上がり
が呼気開始、下方のピークの下がり始めが吸気開始であ
る。従って、可変抵抗器によって製筒可能な一定電圧の
スレッシュホールドレベルと、微分波形とをコンパレー
タに入力し、この差がOとなる最初の点を呼気もしくは
吸気の開始点として検出すれば良い。この時のスレッシ
ュホールドレベルは、もちろん呼気用、吸気用の2種類
が必要であることは言うまでもない。このスレッシュホ
ールドレベルは、患者の個人差や呼吸の強さ、会話時等
によって異なる微分波形に対応できるように、可変抵抗
器により調節することによって、誤動作がなく呼気、吸
気を判定することができる。However, if the signal indicating the temperature change is given as an electrical signal, a differential waveform can be easily obtained by using, for example, a general differential circuit as shown in FIG. The differential waveform obtained by the differential circuit is as shown in FIG. 2, and the rise of the peak of this waveform is the start of exhalation, and the start of fall of the lower peak is the start of inspiration. Therefore, it is sufficient to input the threshold level of a constant voltage that allows cylinder production using a variable resistor and the differential waveform to a comparator, and detect the first point at which the difference becomes O as the starting point of exhalation or inspiration. It goes without saying that two types of threshold levels are required at this time, one for exhalation and one for inhalation. This threshold level can be adjusted using a variable resistor to accommodate differential waveforms that vary depending on individual patient differences, breathing strength, conversation, etc., making it possible to judge expiration and inspiration without malfunction. .
また、例えば、呼吸波形が第4図に示すような場合には
、1呼吸のうちに2ケ所の呼気開始点を検知してしまう
が、例えば、連続した同一の信号を無視して吸気、呼気
開始信号が必ず交互に入るようにするフリップ70ツブ
により、切り換える方式にすれば、第4図の例では吸気
開始信号が入らない限り、呼気開始信号を2回以上続け
て数えるのを防ぐことができる。また、例えば1回呼気
信号が入ったら、その後何秒間かは呼気信号は検知しな
いような回路構成としても良い。これらの方法を用いる
ことによって、“呼吸数も正確に測定することができ、
例えば新生児モニターとしても使用することができる。Furthermore, for example, when the respiratory waveform is as shown in Figure 4, two exhalation start points are detected in one breath, but for example, continuous identical signals are ignored and the inhalation and exhalation start points are detected. If the switching method is adopted using a flip 70 knob that ensures that the start signals are input alternately, in the example shown in Fig. 4, it is possible to prevent the expiration start signal from being counted more than once in a row unless the inhalation start signal is input. can. Further, the circuit may be configured such that, for example, once an exhalation signal is input, the exhalation signal is not detected for several seconds thereafter. By using these methods, “respiration rate can also be measured accurately,
For example, it can also be used as a neonatal monitor.
本発明の方法に従うと、複雑な回路系や演算処を必要と
しないため、時間的遅れが非常に少なく、変化する呼吸
パターンにも十分に追従できるうえに、誤動作を大幅に
減少させることができ、また、本発明の装置は簡単な回
路構成で実現できるため、安価でしかも故障が少なく、
従って、本発明は医療産業上極めて有益である。According to the method of the present invention, there is no need for complicated circuit systems or calculation processing, so there is very little time delay, it is possible to sufficiently follow changing breathing patterns, and malfunctions can be greatly reduced. Furthermore, since the device of the present invention can be realized with a simple circuit configuration, it is inexpensive and has few failures.
Therefore, the present invention is extremely useful in the medical industry.
本発明の方法に従い、第5図に示すようなブロックダイ
ヤグラムで表わされる構成からなる装置を作成し、感温
素子としてサーミスタを用いた温度センサーを患者の鼻
孔内へ挿入し、クリップで固定した。According to the method of the present invention, a device having the configuration shown in the block diagram shown in FIG. 5 was created, and a temperature sensor using a thermistor as a temperature sensing element was inserted into the patient's nostril and fixed with a clip.
可変抵抗によってスレッシュホールドレベルを調節し、
また、微分回路の時定数を変えることによって、正確に
時間的なずれのない、呼吸同調を行うことができた。Adjust the threshold level with a variable resistor,
In addition, by changing the time constant of the differential circuit, we were able to perform respiratory synchronization accurately without any time lag.
また、本装置の信号を利用して、陽圧式人工呼吸器の呼
吸同調に応用した。すなわち、吸気時には、ドーム内の
圧力を陽圧として胸腔外陰圧を作り出すべく陽圧ライン
の弁を開け、呼気時にはこれを閉じて大気開放となるよ
うに開放弁を開けた。In addition, the signals from this device were used to synchronize the breathing of a positive pressure ventilator. That is, during inspiration, the valve of the positive pressure line was opened to make the pressure inside the dome positive and negative pressure outside the thoracic cavity was created, and during expiration, this was closed and the release valve was opened to release to the atmosphere.
本装置の使用により、患者の意志に合った呼吸の補助を
行うことができた。By using this device, we were able to provide respiratory assistance that matched the patient's wishes.
第1図は鼻孔近傍にクロメルーアロメル熱電対を設置し
た時の温度出力値の経時変化を表わす図、第2図は呼吸
による温度変化の信号を時間微分した微分信号の経時的
変化とスレッシュホールドレベルを示す図、第3図は本
発明で使用される微分回路の1例を示す図、第4図は呼
吸による温度変化の微分波形を示す1例:第5図は本発
明の一実施例となる呼吸検知装置のブロックダイヤグラ
ムである。
特許出願人 住友ベークライト株式会社第 1 面
嘘
第2図Figure 1 shows the change over time in the temperature output value when a chrome-allomel thermocouple is installed near the nostril, and Figure 2 shows the change over time in the differential signal obtained by time-differentiating the temperature change signal due to breathing and the threshold. Figure 3 is a diagram showing an example of a differential circuit used in the present invention; Figure 4 is an example of a differential waveform of temperature change due to respiration; Figure 5 is an example of an embodiment of the present invention. This is a block diagram of a breathing detection device. Patent applicant Sumitomo Bakelite Co., Ltd. First page Lie Figure 2
Claims (3)
電気信号を微分し、微分値が予め定められた値に達した
時を呼気もしくは吸気の開始時期とすることを特徴とす
る呼吸検知方法。(1) Breathing detection characterized by detecting temperature changes in respiratory airflow as electrical signals, differentiating the electrical signals, and determining the time when the differential value reaches a predetermined value as the start time of exhalation or inspiration. Method.
温度センサーからの出力を増幅する増幅器、該増幅器に
より増幅された信号を微分する微分回路、スレッシュホ
ールドレベルを調節する可変抵抗器、および微分回路に
より得られた微分波形と予め調節されたスレッシュホー
ルドレベルとを比較するコンパレータより成ることを特
徴とする呼吸検知装置。(2) A temperature sensor that detects temperature changes in the respiratory airflow, an amplifier that amplifies the output from the temperature sensor, a differentiation circuit that differentiates the signal amplified by the amplifier, a variable resistor that adjusts the threshold level, and a differentiation circuit. A respiration detection device comprising a comparator that compares a differential waveform obtained by a circuit with a pre-adjusted threshold level.
温度センサーからの出力を増幅する増幅器、該増幅器に
より増幅された信号を微分する微分回路、スレッシュホ
ールドレベルを調節する可変抵抗器、微分回路により微
分された信号のレベルと予め調節されたスレッシュホー
ルドレベルとを比較するコンパレータ、および連続した
同一の信号を無視して呼気と吸気の信号を確実に交互に
出力させるフリップフロップより成ることを特徴とする
呼吸検知装置。(3) A temperature sensor that detects temperature changes in respiratory airflow, an amplifier that amplifies the output from the temperature sensor, a differentiation circuit that differentiates the signal amplified by the amplifier, a variable resistor that adjusts the threshold level, and a differentiation circuit. It is characterized by comprising a comparator that compares the level of the differentiated signal with a pre-adjusted threshold level, and a flip-flop that ignores consecutive identical signals and ensures that exhalation and inspiration signals are output alternately. Breathing detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29039586A JPS63143034A (en) | 1986-12-08 | 1986-12-08 | Respiration detection method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29039586A JPS63143034A (en) | 1986-12-08 | 1986-12-08 | Respiration detection method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63143034A true JPS63143034A (en) | 1988-06-15 |
JPH0317489B2 JPH0317489B2 (en) | 1991-03-08 |
Family
ID=17755455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29039586A Granted JPS63143034A (en) | 1986-12-08 | 1986-12-08 | Respiration detection method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63143034A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010200901A (en) * | 2009-03-02 | 2010-09-16 | Nippon Koden Corp | Biological signal measuring apparatus |
-
1986
- 1986-12-08 JP JP29039586A patent/JPS63143034A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010200901A (en) * | 2009-03-02 | 2010-09-16 | Nippon Koden Corp | Biological signal measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0317489B2 (en) | 1991-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11351319B2 (en) | Determination of apnea/hypopnea during CPAP treatment | |
US9808590B2 (en) | Method and device for carrying out a signal-processing viewing of a measurement signal that is correlated to the respiratory activity of an individual | |
US4915103A (en) | Ventilation synchronizer | |
US8652065B2 (en) | Breathing transition detection | |
JP3566285B2 (en) | Automatic CPAP system | |
US6165133A (en) | Apparatus and method for monitoring breathing patterns | |
US4648407A (en) | Method for detecting and differentiating central and obstructive apneas in newborns | |
US4860766A (en) | Noninvasive method for measuring and monitoring intrapleural pressure in newborns | |
US20060060198A1 (en) | Method and system of scoring sleep disordered breathing | |
EP0065539A4 (en) | Method and apparatus for monitoring lung compliance. | |
EP2274036A1 (en) | Methods and devices for sensing respiration and controlling ventilator functions | |
Tatara et al. | An apnea monitor using a rapid-response hygrometer | |
JP2010131264A (en) | Respired air information measurement sensor | |
JPS63143034A (en) | Respiration detection method and apparatus | |
JPH06118B2 (en) | Respiratory tuning sensor | |
JPS63177836A (en) | Detection of respiration | |
JP2007260127A (en) | Respiration measuring instrument, and sleeping condition discrimination system | |
JPS6311133A (en) | Breathing sensor | |
Smye et al. | A temperature-sensitive respiratory alarm | |
JPS63161938A (en) | Sensor for respiration tuning |