JPS6314290B2 - - Google Patents
Info
- Publication number
- JPS6314290B2 JPS6314290B2 JP11228579A JP11228579A JPS6314290B2 JP S6314290 B2 JPS6314290 B2 JP S6314290B2 JP 11228579 A JP11228579 A JP 11228579A JP 11228579 A JP11228579 A JP 11228579A JP S6314290 B2 JPS6314290 B2 JP S6314290B2
- Authority
- JP
- Japan
- Prior art keywords
- slit width
- spectrophotometer
- width
- slit
- memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000012935 Averaging Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/04—Slit arrangements slit adjustment
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Description
【発明の詳細な説明】
本発明はS/N比を改善した分光光度計に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectrophotometer with improved signal-to-noise ratio.
一般に測定結果にスムージングと云われる価重
を掛けた平均化処理を施すとS/N比が改善され
る。簡単に云えば測定結果の細かい凹凸が平均化
されて滑らかな曲線になる。従つて測定結果が歪
み測定対象が有していた真の値の変化も一部失わ
れると云う欠点がある。分光光度計の場合につい
て云えばスペクトルの分解能が劣化する。 Generally, the S/N ratio is improved by applying an averaging process called smoothing to the measurement results by multiplying them by a value weight. Simply put, the fine irregularities in the measurement results are averaged out to form a smooth curve. Therefore, there is a drawback that the measurement results are distorted and some of the true value changes that the object to be measured have are also lost. In the case of a spectrophotometer, the spectral resolution deteriorates.
本発明はスムージング操作における上述した欠
点の改善を計るためになされたもので平均化処理
に用いる価重の分布形を分光光度計のスリツト幅
と連動させて変化させ、分解能の低下を最小限に
とどめつゝS/N比の向上を可能とした。分光光
度計によつて得られるスペクトルの波長分解能は
スリツト幅によつて定まる。分光光度計によつて
得られるスペクトル図形の空間周波数分布はスリ
ツト幅によつて定まる或る周波数より高い周波数
成分を持つていない。従つて実際の測定結果に現
れる高い周波数成分は雑音である。そこで分光光
度計で得られる生のデータでスリツト幅によつて
定まる空間周波数成分のうち最も高い周波数成分
より高い周波数の成分を除去するような関数フイ
ルタを用いて生のデータから上記周波数よりも高
い空間周波数成分を除くようにした。この場合関
数フイルタの特性はスリツト幅と連動して変化せ
しめられる。以下実施例によつて本発明を説明す
る。 The present invention was made in order to improve the above-mentioned drawbacks in the smoothing operation, and the distribution shape of the value weight used in the averaging process is changed in conjunction with the slit width of the spectrophotometer, thereby minimizing the decrease in resolution. Finally, it made it possible to improve the S/N ratio. The wavelength resolution of the spectrum obtained by a spectrophotometer is determined by the slit width. The spatial frequency distribution of the spectral figure obtained by the spectrophotometer does not have frequency components higher than a certain frequency determined by the slit width. Therefore, high frequency components appearing in actual measurement results are noise. Therefore, from the raw data obtained by the spectrophotometer, we use a functional filter that removes components with a frequency higher than the highest frequency component determined by the slit width among the spatial frequency components determined by the slit width. Spatial frequency components were removed. In this case, the characteristics of the functional filter are changed in conjunction with the slit width. The present invention will be explained below with reference to Examples.
第1図は理想化された分光スペクトルで仮にs
(λ)で表わす。第2図は分光光度計の光学的な
装置関数で単一波長の光を分光光度計に入れて波
長走査を行つたときの出力で曲線下の面積が1に
なるように法化したものであり、仮に(λ)で
表わす。これは理想的な分光光度計であればa→
0である。実際には図のように或る幅を持ちその
幅2aはスリツト幅と関係してスリツト幅が広く
なる程広くなり、曲線の高さは低くなる。第3図
は第2図に示す装置関数を持つた分光光度計によ
つて得られるスペクトル像でx(λ)で表わすと、
x(λ)=∫∝-∝s(u)(u−λ)du ……(1)
の関係にある。(1)式の両辺をフーリエ変換する
と、
X(ω)=S(ω)・F(ω) ……(2)
但し、X(ω)=∫∝-∝x(u)e-i〓udu
の形に書ける。フーリエ変換はもとの関数が種々
な周波数を持つ正弦関数の総和とみてその周波数
分布を示すものであるから、X(ω)は第3図の
スペクトル像の空間周波数分布を示すものであ
り、これを第4図に示す。第4図によればX(ω)
は|ω|>2π/aで殆ど0でありω=2π/aよ
り高い周波数成分を含んでいないことが判る。従
つて第4図にB(ω)で示すような特性を有する
ローパスフイルタを用い、x(λ)を構成してい
る周波数成分からω>2π/aの周波数成分を除
去してもx(λ)の形は変らない。B(ω)は或る
関数をフーリエ変換したものであるから、これの
もとの関数を求めると第5図のb(λ)のように
なる。分光光度計の出力x(λ)を第5図に示す
ような装置関数を持つた装置に入力したとき、そ
の出力は殆ど形が変つておらず、x(λ)に後か
ら空間周波数が2π/aより大きいような雑音が
混入して来た場合このような雑音は除去されるこ
とになる。数学的にはx(λ)に、
∫∝-∝x(u)b(λ−u)du ……(3)
なる変換を施すことであり、具体的には第6図に
示すように或る波長λにおける最終的な測定値を
得るにはλの前後a/2程度の範囲で多数の点で
x(λ)の値を採り、それに対応するb(u)の値
を掛けたものゝ総和を求めることである。 Figure 1 shows an idealized spectroscopic spectrum, hypothetically s
(λ). Figure 2 shows the optical device function of a spectrophotometer, which is the output when a single wavelength of light is put into the spectrophotometer and wavelength scanned, and is modulated so that the area under the curve is 1. Yes, temporarily expressed as (λ). If this is an ideal spectrophotometer, this would be a →
It is 0. Actually, it has a certain width as shown in the figure, and its width 2a is related to the slit width, and the wider the slit width is, the wider it becomes, and the height of the curve becomes lower. Figure 3 is a spectral image obtained by a spectrophotometer with the instrument function shown in Figure 2. When expressed as x (λ), x (λ) = ∫∝ - ∝s (u) (u - λ )du ……(1) is the relationship. When both sides of equation ( 1) are Fourier transformed, X ( ω)=S(ω)・F(ω)...(2) However , It can be written in the form of du. Since the Fourier transform shows the frequency distribution by considering the original function as the sum of sine functions with various frequencies, X(ω) shows the spatial frequency distribution of the spectral image in Figure 3, This is shown in FIG. According to Figure 4, X(ω)
It can be seen that |ω| > 2π/a, which means that it is almost 0 and does not contain any frequency components higher than ω=2π/a. Therefore, even if a low-pass filter having the characteristics shown by B(ω) in FIG. ) does not change its shape. Since B(ω) is a Fourier transform of a certain function, when the original function is determined, it becomes b(λ) in FIG. When the output x(λ) of a spectrophotometer is input to a device having the device function shown in Figure 5, the shape of the output hardly changes; If noise larger than /a is mixed in, such noise will be removed. Mathematically, it is a transformation of x(λ) as follows: ∫∝ - ∝x(u)b(λ−u)du...(3) Specifically, as shown in Figure 6, To obtain the final measured value at the wavelength λ, take the value of x(λ) at many points in a range of about a/2 before and after λ, and multiply it by the corresponding value of b(u). It is to seek the sum.
本発明は従来分光光度計において光電変換出力
を単に増幅して記録していたのを、更に上記(3)式
の演算を行う回路に通してから記録するようにし
たもので、(3)式における関数b(λ)を分光光度
計のスリツト幅の設定に連動して可変としたもの
である。第7図に本発明装置の構成を示す。 In the present invention, the photoelectric conversion output was simply amplified and recorded in the conventional spectrophotometer, but it is further passed through a circuit that calculates the above equation (3) before being recorded. The function b(λ) in is made variable in conjunction with the setting of the slit width of the spectrophotometer. FIG. 7 shows the configuration of the apparatus of the present invention.
1は光源、Mは分光器、2,2は入口及び出口
スリツト、3はスリツト幅検知器、4は試料、5
は光電変換器、6は増幅器で7が上述(3)式の演算
を行う加重平均回路である。 1 is a light source, M is a spectrometer, 2, 2 is an entrance and exit slit, 3 is a slit width detector, 4 is a sample, 5
is a photoelectric converter, 6 is an amplifier, and 7 is a weighted average circuit that performs the calculation of equation (3) above.
加重平均回路7は分光器Mの波長走査と連動し
て適当に設定した波長間隔毎に増幅器6の出力を
サンプリングしてA−D変換し、これを記憶する
第1のメモリとb(u)の値をuの一単位毎に記
憶させた第2のメモリと指定された波長λに対
し、その前後各n個の増幅器6の出力のサンプリ
ング値(単にサンプリング値と云う)を第1のメ
モリから順に読出し第2のメモリから対応するb
(u)の値を読出して両者の掛算をし、掛算結果
を累積加算して、全部の加算結果を表示或は記録
させるためのシーケンス制御装置とよりなつてい
る。こゝでb(u)の形をスリツト幅の設定と連
動して変えるには次のようにする。b(u)は第
5図に示すように左右対称な関数でa/2の点が
スリツト幅の設定に連動して変わり、スリツト幅
を広くするとそれに比例して山の幅が広がり反比
例して山の高さが低くなる。そこでスリツト幅の
最小から最大までを適当な単位で区分し、最小区
分内の幅であるときはb(u)のメモリをp単位
毎に読出すようにし、それより幅が1区分ずつ広
くなるに従いpより1個ずつ減じた単位数毎にb
(u)のメモリを読出すようにし、他方読出した
数値にp/(p−k)を掛けたものを加重平均演
算に用いる。他方第1のメモリから読出すサンプ
リング値もスリツト幅が広くなるに従い広い範囲
から読出すことになる。このようにするとスリツ
ト幅が広い程加重平均演算に使用されるデータの
数が増すことになる。スリツト幅が広いと云うこ
とはそれだけ分解能を低く設定しているのである
から計算は簡単でよい筈なので、上記関係で第1
メモリから読出したデータと第2メモリから読出
したデータとの対広関係をつけることゝし、実際
の計算では適当にデータを間引けばよくどのよう
な法則で間引くようにするかは任意であり、これ
らは制御回路に与えるプログラムによつて指定さ
れる。 The weighted average circuit 7 samples the output of the amplifier 6 at suitably set wavelength intervals in conjunction with the wavelength scanning of the spectrometer M, converts it from analog to digital, and stores the sampled output in the first memory b(u). A second memory stores values of u for each unit of u, and a first memory stores sampling values (simply referred to as sampling values) of the outputs of n amplifiers 6 before and after the specified wavelength λ. The corresponding b is read out from the second memory in order from
It consists of a sequence control device that reads out the value of (u), multiplies the two, cumulatively adds the multiplication results, and displays or records all the addition results. Here, the shape of b(u) can be changed in conjunction with the slit width setting as follows. b(u) is a symmetrical function as shown in Figure 5, and the point a/2 changes in conjunction with the setting of the slit width, and as the slit width increases, the width of the peak increases in proportion to it and is inversely proportional to the width of the slit. The height of the mountains decreases. Therefore, the slit width is divided into appropriate units from the minimum to the maximum, and when the width is within the minimum division, the memory of b(u) is read every p units, and the width becomes wider by one division. b for each unit subtracted by one from p according to
The memory of (u) is read out, and the value obtained by multiplying the other read value by p/(p-k) is used for the weighted average calculation. On the other hand, as the slit width becomes wider, the sampling values read from the first memory are also read from a wider range. In this way, the wider the slit width, the more data will be used for the weighted average calculation. The fact that the slit width is wide means that the resolution is set that low, so calculations should be easy, so based on the above relationship,
The data read from the memory and the data read from the second memory are related to each other, and in actual calculations, it is sufficient to thin out the data appropriately, and the law for thinning is arbitrary. , these are specified by a program given to the control circuit.
分光光度計では始めに述べたようにスリツト幅
と関係して純光学的に既に真のスペクトル像に対
し加重平均処理が加えられていて空間周波数成分
のうち2π/a以上のものはカツトされているの
で、実際に得られたスペクトル記録に空間周波数
2π/a以上の変動成分が含まれているときは、
それは純光学的以外の原因例えば光源の変動、電
気回路の雑音等によつて生じた雑音である。本発
明は装置の最終段でこのような雑音を除き、しか
も分光光度計が純光学的に伝送を許容した空間周
波数のデータには変形を加えないので、歪みが少
くしかもS/N比の良好なスペクトルデータを得
ることができる。 As mentioned at the beginning, in a spectrophotometer, weighted average processing is already applied to the true spectral image in a purely optical manner in relation to the slit width, and spatial frequency components of 2π/a or higher are cut out. Therefore, the spatial frequency in the actually obtained spectral recording
When a fluctuation component of 2π/a or more is included,
This is noise caused by causes other than purely optical, such as fluctuations in the light source, noise in electrical circuits, etc. The present invention removes such noise at the final stage of the device, and does not modify the spatial frequency data that the spectrophotometer allows to be transmitted purely optically, resulting in less distortion and a good S/N ratio. Spectral data can be obtained.
第1図は理想化されたスペクトル像のグラフ、
第2図は分光光度計の光学的な装置関数のグラ
フ、第3図は実際に得られるスペクトル像のグラ
フ、第4図は第3図のフーリエ変換を示すグラ
フ、第5図は本発明に用いる空間周波数フイルタ
ーの特性を示すグラフ、第6図は加重平均処理操
作を説明する図、第7図は本発明装置の構成を示
すブロツク図である。
1……光源、M……分光器、2……スリツト、
3……スリツト幅検出器、4……試料、5……光
電変換器、6……増幅器、7……加重平均回路。
Figure 1 is a graph of an idealized spectral image,
Fig. 2 is a graph of the optical device function of the spectrophotometer, Fig. 3 is a graph of the spectral image actually obtained, Fig. 4 is a graph showing the Fourier transform of Fig. 3, and Fig. 5 is a graph of the optical device function of the spectrophotometer. FIG. 6 is a graph showing the characteristics of the spatial frequency filter used, FIG. 6 is a diagram explaining the weighted average processing operation, and FIG. 7 is a block diagram showing the configuration of the apparatus of the present invention. 1...Light source, M...Spectrometer, 2...Slit,
3... Slit width detector, 4... Sample, 5... Photoelectric converter, 6... Amplifier, 7... Weighted average circuit.
Claims (1)
するときフーリエ変換した形が±2π/aを両端
とする矩形をなすような価重関数を発生する手段
と、この装置から読出した価重関数を用い光電変
換された最終出力に加重平均処理を施す加重平均
回路とを備えた分光光度計。1. Means for generating a value weight function in conjunction with the setting of the slit width so that when the slit width is a, the Fourier transformed form forms a rectangle with both ends at ±2π/a, and a value weight function read from this device. A spectrophotometer equipped with a weighted averaging circuit that performs weighted averaging processing on the final output that has been photoelectrically converted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11228579A JPS5636026A (en) | 1979-08-31 | 1979-08-31 | Spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11228579A JPS5636026A (en) | 1979-08-31 | 1979-08-31 | Spectrophotometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5636026A JPS5636026A (en) | 1981-04-09 |
JPS6314290B2 true JPS6314290B2 (en) | 1988-03-30 |
Family
ID=14582858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11228579A Granted JPS5636026A (en) | 1979-08-31 | 1979-08-31 | Spectrophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5636026A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432204Y2 (en) * | 1985-09-07 | 1992-08-03 |
-
1979
- 1979-08-31 JP JP11228579A patent/JPS5636026A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5636026A (en) | 1981-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5923422A (en) | Method of obtaining an optical FT spectrum | |
US5094532A (en) | Method and apparatus for measuring small particle size distribution | |
Hirschfeld | Fellgett's advantage in UV-VIS multiplex spectroscopy | |
JP3731902B2 (en) | Method and apparatus for optical spectrum analysis | |
US8014965B2 (en) | Spectral estimation of spectrometers time-sampled signals using fast implementation of the reverse non-uniform discrete fourier transform | |
JP3211861B2 (en) | Fourier spectrometer | |
JP3304692B2 (en) | Spectrometer | |
EP0833144A2 (en) | Method for measuring a spectral response | |
US5253183A (en) | Obtaining a spectrogram from a single scanning of interference fringes | |
JPS6314290B2 (en) | ||
JPH0829255A (en) | Waveform analyzer | |
JPS6140928B2 (en) | ||
Zhao et al. | Multichannel FT-Raman spectroscopy: noise analysis and performance assessment | |
JP2624696B2 (en) | Spectrum estimator | |
Ricort et al. | Solar granulation study in partial eclipse conditions using speckle interferometric techniques | |
JP2606407Y2 (en) | Fourier spectroscopy and dispersion spectroscopy optical spectrum analyzer | |
JP3055716B2 (en) | Optical spectrum analyzer | |
JP2801951B2 (en) | Double modulation spectroscopy | |
Yamashita et al. | Optimum smoothing of infrared spectroscopic data with numerical filters | |
Kellman et al. | Acousto-optic channelized receivers | |
Hurt | Spectral effects of sampling a continuous-scan Fourier-transform spectrometer with a capacitive transampedance amplifier | |
SU1550529A2 (en) | Computing device for measuring characteristics of photographic systems | |
US20040118995A1 (en) | Correction for non-linearities in FTIR photo detectors | |
GB2071844A (en) | Spectrophotometer | |
JP2509154B2 (en) | Optical spectrum analyzer |