JPS63142248A - Nuclear magnetic resonance apparatus - Google Patents
Nuclear magnetic resonance apparatusInfo
- Publication number
- JPS63142248A JPS63142248A JP61289382A JP28938286A JPS63142248A JP S63142248 A JPS63142248 A JP S63142248A JP 61289382 A JP61289382 A JP 61289382A JP 28938286 A JP28938286 A JP 28938286A JP S63142248 A JPS63142248 A JP S63142248A
- Authority
- JP
- Japan
- Prior art keywords
- specimen
- resonance
- observation nucleus
- nucleus
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005481 NMR spectroscopy Methods 0.000 title claims abstract description 15
- 239000000523 sample Substances 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 241001465754 Metazoa Species 0.000 abstract description 9
- 210000001519 tissue Anatomy 0.000 abstract description 7
- 238000001228 spectrum Methods 0.000 abstract description 6
- 230000001360 synchronised effect Effects 0.000 abstract 1
- 230000004304 visual acuity Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011903 deuterated solvents Substances 0.000 description 1
- 150000001975 deuterium Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、生体などの不均一試料測定を行なう核磁気共
鳴装置に係り、特に生体の局所における高分解能な核磁
気共鳴スペクトルを得るのに好適な核磁気共鳴装置に関
する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear magnetic resonance apparatus for measuring a heterogeneous sample such as a living body, and is particularly applicable to obtaining a high-resolution nuclear magnetic resonance spectrum in a local area of a living body. The present invention relates to a suitable nuclear magnetic resonance apparatus.
化合物の構造解析に使用される高分解能の核磁気共鳴装
置では、測定試料を重水素化溶媒で溶がして均一な状態
とし、試料管を回転させ高次の磁場均一度補正を行ない
、また周波数源と磁場はNMRロックをかけて安定させ
ている。In high-resolution nuclear magnetic resonance instruments used for structural analysis of compounds, the sample to be measured is dissolved in a deuterated solvent to make it homogeneous, the sample tube is rotated, and high-order magnetic field homogeneity correction is performed. The frequency source and magnetic field are stabilized by NMR locking.
近年、このNMRの測定技術が進歩してその測定対象が
生物にまで及んできており、これらの分野においては均
一な広い磁場空間に動物を置きその組織の一部を取り出
して高分解能スペクトルを得ることによって生理動態に
情報を得る。これにより、たとえば制御の伝達、薬物投
与による組織変化、代謝などの情報が得られる。In recent years, this NMR measurement technology has progressed and the measurement targets have been extended to living organisms.In these fields, it is necessary to place an animal in a uniform wide magnetic field space and extract a part of its tissue to obtain a high-resolution spectrum. Obtain information on physiological dynamics by obtaining This provides information on, for example, control transmission, tissue changes due to drug administration, and metabolism.
しかし、従来の高分解能のNMRでは、生体の神経、筋
、卵などの細胞や心臓、肝臓、腎臓などの臓器を測定す
る際は、NMR試料管に入れて測定できるようにするに
は複雑な手順が必要となる。However, with conventional high-resolution NMR, when measuring biological cells such as nerves, muscles, and eggs, and organs such as the heart, liver, and kidneys, it is difficult to put them into an NMR sample tube and perform measurements. Steps are required.
しかも測定する臓器や細胞を生かしたまま測定すること
はかなりの困難さがともなう。Moreover, it is extremely difficult to perform measurements while the organs and cells to be measured are still alive.
臓器や細胞をNMR試料管に移すことによって生体が死
ぬと、得られるデータは連続的なものとはならず、この
ためデータの信頼度を増す手段として検体数を増大させ
なければならないという問題がある。When an organism dies by transferring organs or cells to an NMR sample tube, the data obtained is not continuous, and this poses the problem of increasing the number of specimens as a means of increasing the reliability of the data. be.
また、たとえば生体内の81P核のスペクトルはすでに
一般の高分解能のNMRにおいて広く測定されており、
その化学シフト範囲も”ppm程度であることから、装
置の分解能としては10″″7〜10−δが要求される
ものである。したがって、仮に検体である動物を全部入
るような空間を作る磁石では、上記のような分解能、安
定度を得られる装置を形成することはできず、たとえば
分解能にあっては10−8程度が限界となり、高分解能
な測定はできない。Furthermore, for example, the spectrum of 81P nuclei in living organisms has already been widely measured using general high-resolution NMR;
Since the chemical shift range is on the order of ppm, the resolution of the device is required to be 10"7 to 10-δ. Therefore, if a magnet is used to create a space that can accommodate all the animal specimens, In this case, it is not possible to form a device that can obtain the resolution and stability as described above, and, for example, the resolution is limited to about 10-8, and high-resolution measurement cannot be performed.
それ故1本発明はこのような事情に基づいてなされたも
のであり、その目的は、生体の局所における高分解能な
核磁気共鳴スペクトルを得ることのできる核磁気共鳴装
置を得ることにある。Therefore, the present invention has been made based on these circumstances, and its purpose is to obtain a nuclear magnetic resonance apparatus that can obtain a high-resolution nuclear magnetic resonance spectrum locally in a living body.
このような目的を達成するために、本発明は、均一な直
流磁場空間に、移動可能なプローブを備え、このプロー
ブは中空の円筒容器に観測核以外の核種の試料を封入し
前記円筒容器の外側に観測核の共鳴検出コイルと磁場均
一度補正コイルとが備えられているものである。In order to achieve such an object, the present invention includes a movable probe in a uniform DC magnetic field space, and this probe seals a sample of a nuclide other than the observation nucleus in a hollow cylindrical container. A resonance detection coil for the observation nucleus and a magnetic field homogeneity correction coil are provided on the outside.
主体試料を測定する際は、それを生かしたまま、無傷の
状態でとり出すことが重要なこととなり。When measuring a main sample, it is important to keep it alive and take it out in an undamaged state.
生体試料が死なないように組織の取り出しは最小。Tissue removal is minimal to prevent biological specimens from dying.
最後にするため、生体試料全体を直流磁場空間に配置す
る。そして測定すべき局所にプローブをもっていき、そ
の局所の磁場均一度を補正して高分解能スペクトルを得
る。Finally, place the entire biological sample in a DC magnetic field space. The probe is then brought to the area to be measured, and the local magnetic field uniformity is corrected to obtain a high-resolution spectrum.
また、m定する局所の磁場均一度を補正するため、検出
コイルの内側に円筒容器を入れ、その中に重水素化溶液
を入れて、磁場ロツプオンと磁場均一度補正用の共鳴信
号を得る。In addition, in order to correct the local magnetic field uniformity determined by m, a cylindrical container is placed inside the detection coil, and a deuterated solution is placed inside the container to obtain a resonance signal for magnetic field drop-on and magnetic field uniformity correction.
第1図は本発明による該磁気共鳴装置の一実施例を示す
構成図である。FIG. 1 is a block diagram showing an embodiment of the magnetic resonance apparatus according to the present invention.
同図において、均一な直流磁石1の中に測定動物2が配
置され、この測定動物2の局所測定組織3がプローブの
中に入れられて測定が行なわれるようになっている。こ
のプローブは中空円筒容器(例えば2重ガラスの上下端
を封入したもの)4に観測核以外の核種の試料が封入さ
れ、その外側に測定液を励起し、共鳴を検出する検出コ
イル5が巻かれている。この検出コイル5は観測核と円
筒容器4内の試料核の2つの核の共鳴周波数に周期がと
られ高周波スイッチ10と17に接続されて二系統の送
受信器にて2共鳴信号を得るようになっている。円筒容
器4内の試料核は一般に重水素核が使用され、その共鳴
信号は分散波形として増幅器14に加算され、磁場均一
度補正コイル6に帰還電流が流され基準周波数源7と相
関関係が保たれるようになっている。均一度補正回路1
3は複数組の磁場均一度補正コイル6に電流を流し、円
筒状の試料のピーク幅が狭くなるように設定することに
よって、測定試料空間の均一度を向上させるようになっ
ている。In the figure, an animal to be measured 2 is placed inside a uniform DC magnet 1, and a local tissue to be measured 3 of the animal to be measured 2 is inserted into a probe for measurement. In this probe, a sample of nuclides other than the observation nucleus is sealed in a hollow cylindrical container (for example, the top and bottom ends of double glass are sealed) 4, and a detection coil 5 is wound around the outside of the container to excite the measurement liquid and detect resonance. It's dark. This detection coil 5 has a period corresponding to the resonance frequency of two nuclei, the observation nucleus and the sample nucleus in the cylindrical container 4, and is connected to high frequency switches 10 and 17 so that two resonance signals are obtained from two systems of transmitters and receivers. It has become. The sample nucleus in the cylindrical container 4 is generally a deuterium nucleus, and its resonance signal is added to the amplifier 14 as a dispersion waveform, and a feedback current is passed through the magnetic field homogeneity correction coil 6 to maintain the correlation with the reference frequency source 7. It's starting to drip. Uniformity correction circuit 1
3 is designed to improve the uniformity of the measurement sample space by passing current through a plurality of sets of magnetic field uniformity correction coils 6 and setting the peak width of the cylindrical sample to be narrow.
以上述べた二つの動作により、測定部位の磁場と周波数
の安定度を得、測定スペクトルの分解能も得られた。第
1図のブロック図中で基準周波数源7から二種の高周波
周波数源8と15を合成して、装置の安定化系と測定系
の2系統の送受信系を動作させ、測定系の共鳴信号をA
/D変換器20でディジタル化してデータ処理装置W2
1に取込み、フーリエ変換演算や位相補正演算など実行
してスペクトルを得ることは一般の高分解能NMRで構
成されている周知の内容である。Through the two operations described above, stability of the magnetic field and frequency of the measurement site was obtained, and resolution of the measurement spectrum was also obtained. In the block diagram of FIG. 1, two types of high frequency frequency sources 8 and 15 are combined from the reference frequency source 7 to operate the two transmission/reception systems of the device, the stabilization system and the measurement system, and the resonance signal of the measurement system is A
/D converter 20 digitizes and data processing device W2
1 and performing Fourier transform calculations, phase correction calculations, etc. to obtain a spectrum is a well-known process in general high-resolution NMR.
本発明によれば、大きな直流磁石で動物の局所組織の高
分解能の核磁気共鳴スペクトルが感度良く安定に得られ
、測定動物生きたままの測定が可能で、生化学反応速度
、生理活性9代謝などの生きた情報が得られる。According to the present invention, high-resolution nuclear magnetic resonance spectra of local tissues of animals can be obtained stably with high sensitivity using a large DC magnet, and measurement can be performed while the animal is still alive. You can get real information such as
第1図は本発明による核磁気共鳴装置の一実施例を示す
構成図である。
1・・・均一な直流磁石、2・・・測定動物、3・・・
測定組織、4・・・中空円筒容器、5・・・検出コイル
、6・・・均一度補正コイル、7・・・基準周波数源、
8,15・・・周波数源、9.16・・・高周波電力増
幅器、10゜17・・・高周波スイッチ、1.1.18
・・・高周波受信器、12.19・・・位相検波器、1
3・・・均一度補正回路、14・・・増幅器、20・・
・A/D変換器、21・・・データ処理装置。FIG. 1 is a block diagram showing an embodiment of a nuclear magnetic resonance apparatus according to the present invention. 1...Uniform DC magnet, 2...Measurement animal, 3...
Measuring tissue, 4... Hollow cylindrical container, 5... Detection coil, 6... Uniformity correction coil, 7... Reference frequency source,
8,15...Frequency source, 9.16...High frequency power amplifier, 10°17...High frequency switch, 1.1.18
...High frequency receiver, 12.19...Phase detector, 1
3... Uniformity correction circuit, 14... Amplifier, 20...
- A/D converter, 21... data processing device.
Claims (1)
、このプローブは中空の円筒容器に観測核以外の核種の
試料を封入し前記円筒容器の外側に観測核の共鳴検出コ
イルと磁場均一度補正コイルとが備えられていることを
特徴とする核磁気共鳴装置。1. Equipped with a movable probe in a uniform DC magnetic field space, this probe encloses a sample of a nuclide other than the observation nucleus in a hollow cylindrical container, and the resonance detection coil of the observation nucleus and the magnetic field uniformity are placed outside the cylindrical container. A nuclear magnetic resonance apparatus characterized in that it is equipped with a correction coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61289382A JPS63142248A (en) | 1986-12-04 | 1986-12-04 | Nuclear magnetic resonance apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61289382A JPS63142248A (en) | 1986-12-04 | 1986-12-04 | Nuclear magnetic resonance apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63142248A true JPS63142248A (en) | 1988-06-14 |
Family
ID=17742493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61289382A Pending JPS63142248A (en) | 1986-12-04 | 1986-12-04 | Nuclear magnetic resonance apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63142248A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61233348A (en) * | 1985-04-09 | 1986-10-17 | Hitachi Ltd | Magnetic field lock circuit of nuclear magnetic resonance device |
-
1986
- 1986-12-04 JP JP61289382A patent/JPS63142248A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61233348A (en) * | 1985-04-09 | 1986-10-17 | Hitachi Ltd | Magnetic field lock circuit of nuclear magnetic resonance device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4689563A (en) | High-field nuclear magnetic resonance imaging/spectroscopy system | |
Bendel et al. | 31P spectroscopic zeugmatography of phosphorus metabolites | |
Freeman et al. | Determination of the relative signs of proton spin coupling constants by double irradiation | |
US4452250A (en) | NMR System for the non-invasive study of phosphorus metabilism | |
Gross et al. | Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution | |
Nagel et al. | 39K and 23Na relaxation times and MRI of rat head at 21.1 T | |
CA2309944A1 (en) | Resonant magnetic susceptibility imaging (remsi) | |
CN112955767A (en) | Method and system for in vivo and non-invasive measurement of metabolite levels | |
Gerhalter et al. | Assessing the variability of 23Na MRI in skeletal muscle tissue: Reproducibility and repeatability of tissue sodium concentration measurements in the lower leg at 3 T | |
US4528509A (en) | Spatially selective NMR | |
Borowiak et al. | A battery-driven, low-field NMR unit for thermally and hyperpolarized samples | |
US20140132265A1 (en) | Multiple resonance nmr spectroscopy using a single transmitter | |
US20180067176A1 (en) | Motion-robust transmit radio frequency field mapping in magnetic resonance imaging using interleaved bloch-siegert shifting | |
COXON | Conformational analysis via nuclear magnetic resonance spectroscopy | |
US6472874B1 (en) | EPR imaging device using microwave bridge translator | |
CA2405914A1 (en) | Method for increasing the throughput of nmr spectrometers | |
JPS63142248A (en) | Nuclear magnetic resonance apparatus | |
US4769604A (en) | Method of mapping the material properties of an object to be examined | |
Pauli et al. | Quantitative NMR of bioactive natural products | |
JP2002315732A (en) | Magnetic resonance apparatus and method for processing signal in magnetic resonance apparatus | |
Deng et al. | Fast 3D spatial EPR imaging using spiral magnetic field gradient | |
JPH0549610A (en) | Magnetic resonance diagnostic device | |
Righi et al. | Magnetic resonance spectroscopy of live Drosophila melanogaster using magic angle spinning | |
GB2126727A (en) | Method and apparatus for imaging substances in biological samples by nuclear magnetic resonance | |
JPH0250731B2 (en) |