JPS6314209A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS6314209A
JPS6314209A JP15708786A JP15708786A JPS6314209A JP S6314209 A JPS6314209 A JP S6314209A JP 15708786 A JP15708786 A JP 15708786A JP 15708786 A JP15708786 A JP 15708786A JP S6314209 A JPS6314209 A JP S6314209A
Authority
JP
Japan
Prior art keywords
voltage
lead
thermistor
electrolyte
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15708786A
Other languages
Japanese (ja)
Inventor
Teruo Abe
阿部 輝男
Akio Mitomo
三友 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Heating Appliances Co Ltd
Original Assignee
Hitachi Heating Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Heating Appliances Co Ltd filed Critical Hitachi Heating Appliances Co Ltd
Priority to JP15708786A priority Critical patent/JPS6314209A/en
Publication of JPS6314209A publication Critical patent/JPS6314209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To reduce the density of a current which flows in an electrolyte and to prevent an electric field corrosion phenomenon as much as possible by impressing the lead-out body of a thermosensible element with a voltage which is lower than the decomposition voltage of the electrolyte when the lead-out body is used as an electrode in the electrolyte. CONSTITUTION:The thermosensible element 1 is constituted by joining lead-out bodies 21 and 22 for electric feeding to both sides of a thermistor 7 and sealing the thermistor 7 and lead-out bodies 21 and 22 partially with borosilicate glass. The series circuit consisting of the element 1 and a reference resistor 4 is connected to a DC power source 4. A control circuit 5 inputs a signal from the element 1 and performs electric feeding control over a load 6 including a heat generation body on the basis of the voltage VS developed between the lead-out bodies 21 and 22. This voltage VS is set to <=1V according to the relation among the resistance value RS of the thermistor, the resistance value of the resistor 3, and the voltage of a power source 4 at 0 deg.C. The thermistor 7 decreases in resistance value RS when the temperature rises above 0 deg.C, so the voltage VS never rises above 1V. When the temperature is <=0 deg.C, the RS increases and the voltage rises above 1V, but water is frozen and ion activation is suppressed, so that electrolytic corrosion is not caused.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はオーブンレンジ等の家庭用電化製品や。[Detailed description of the invention] Industrial applications The present invention is applicable to household electrical appliances such as microwave ovens.

温水洗浄器付便座等の衛生器具、あるいは感熱センサ一
部を制御回路部分から分離して使用する機器等に使用さ
れる温度コントローラて関するものである。
The present invention relates to a temperature controller used in sanitary appliances such as a toilet seat with a hot water washer, or equipment in which a part of the heat-sensitive sensor is separated from the control circuit part.

従来の技術 従来、温度コントローラに使われる感熱センサーには一
般にサーミスタが用いられている。サーミスタはMn 
、 Co 、 Fe 、 Cuなどの遷移金属を焼成し
た複合酸化物を感熱素子とし9両端にジュメット線やC
P線等よりなる引出体を設け、感熱素子と引出体の一部
をガラスや耐熱樹脂等の電気絶縁体で包込んだものであ
る。しかも、温度コントローラはサーミスタの固有抵抗
の変化を電圧に変換し。
BACKGROUND OF THE INVENTION Conventionally, a thermistor has been generally used as a heat-sensitive sensor used in a temperature controller. The thermistor is Mn
, Co, Fe, Cu, and other transition metals are used as the heat-sensitive element, and Dumet wire or C
A lead-out body made of a P-wire or the like is provided, and the heat-sensitive element and a part of the lead-out body are wrapped in an electrical insulator such as glass or heat-resistant resin. Moreover, the temperature controller converts the change in the thermistor's specific resistance into voltage.

この電圧を制御信号に取入れている。そのため。This voltage is incorporated into the control signal. Therefore.

引出体の両端には常に電圧が印加されており、この電圧
はノイズや誤動作及び制御回路の組立て易さなどから一
般に3〜12Vの値てなっている。
A voltage is always applied to both ends of the drawer, and this voltage is generally set at a value of 3 to 12 V to prevent noise, malfunction, and ease of assembling the control circuit.

発明が解決しようとする問題点 しかるに、オーブンレンジ等に使われる感熱センサー全
体はンリコン樹脂やポリアミド樹脂のエナメルコーテン
グをしている。しかし、エナメルの皮膜は引出体の切断
部の鋭角な部分には完全にコーテングされない。更に、
エナメルに含まれる溶剤がコーテング後蒸発して乾燥す
る時にピンホールを作り、高温の熱ストレスを受けて皮
膜が剥離し、引出体が露出してしまうことが多い。
Problems to be Solved by the Invention However, the entire heat-sensitive sensor used in microwave ovens and the like is coated with enamel coating of phosphor resin or polyamide resin. However, the enamel film does not completely coat the sharp edges of the cut portion of the drawer. Furthermore,
When the solvent contained in the enamel evaporates and dries after coating, pinholes are created, and the film often peels off due to high-temperature stress, exposing the drawer.

かかる状態の下で庫内に取付けられる感熱センサーに塩
分を含む食品の分解物が付着したり、庫内に発生した水
蒸気が結露すると9表面の電気抵抗が著しく低下する。
Under such conditions, if food decomposition products containing salt adhere to the thermal sensor installed in the refrigerator, or if water vapor generated in the refrigerator condenses, the electrical resistance of the surface of the refrigerator 9 will drop significantly.

でた、感熱センサーには常時3〜12Vの電圧が印加さ
れているので両極間で電気の分流が起こり。
Since a voltage of 3 to 12 V is always applied to the heat-sensitive sensor, a shunt of electricity occurs between the two electrodes.

前述ピンホール部から引出体を構成する材料の金属が水
滴中に金属イオンとなって溶解し、電解腐食現象全おこ
す。このことは温水洗浄器付便座等に使用される感熱セ
ンサーにおいても同様である。
The metal of the material constituting the drawer body enters the pinhole portion and dissolves into the water droplets as metal ions, causing a complete galvanic corrosion phenomenon. This also applies to heat-sensitive sensors used in toilet seats with warm water washers and the like.

この腐食現象のため最終的には引出体が断線してしまい
、温度コントロールの機能が不能になる等の問題がある
This corrosion phenomenon eventually causes the drawer to break, causing problems such as the temperature control function becoming impossible.

問題点を解決するだめの手段 本発明は上記の問題点を解決するためになされたもので
あり、感熱素子の引出体にその引出体を電解液内で電極
とした時におこる電解液の分解電圧以下の電圧を印加す
るようにしたものである。
Means for Solving the Problems The present invention has been made to solve the above problems, and it is aimed at reducing the decomposition voltage of the electrolyte that occurs when the lead-out body of a heat-sensitive element is used as an electrode in the electrolyte. The following voltages are applied.

作用 このようにすることばよって腐食にを与する電比の密度
が小さくなる。
Effect: By doing this, the density of electrical ratios that contribute to corrosion is reduced.

実施例 以下9本発明の一実施例を図面て従って説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

本実施例の構成を示す第1図及び第2図において、1は
感熱素子で、サーミスタ7の両側に給電用の引出体21
.22を接合するとともにサーミスタ7と両引出体21
.22の一部を硼珪酸鉛ガラスで封止したものである。
In FIGS. 1 and 2 showing the configuration of this embodiment, 1 is a heat-sensitive element, and power supply drawers 21 are provided on both sides of the thermistor 7.
.. 22 and the thermistor 7 and both drawer bodies 21.
.. 22 is partially sealed with lead borosilicate glass.

3は基準抵抗器で引出体22に接続してあり、感熱素子
1と基準抵抗器3よりなる直列回路を直流電源4に接続
している。5は制御回路で、感熱素子1からの信号を入
力するとともに1例えば発熱体などを含む負荷6を接続
しており、負荷6への通電制御は両引出体21.22間
て発生する電圧信号に基づいて行なわれる。また。
A reference resistor 3 is connected to the lead-out body 22, and a series circuit consisting of the heat-sensitive element 1 and the reference resistor 3 is connected to a DC power source 4. Reference numeral 5 denotes a control circuit, which inputs the signal from the heat-sensitive element 1 and connects a load 6 including a heating element, etc., and controls the energization of the load 6 using a voltage signal generated between the two drawers 21 and 22. It is carried out based on. Also.

両引呂体21.22間の発生電圧Vsは0℃ておけるサ
ーミスタ7の抵抗値Rs、基準抵抗器乙の抵抗値R及び
直流電源4の電圧Eの関係から1V以下になるようにし
である。
The voltage Vs generated between the two coil bodies 21 and 22 is set to be 1V or less based on the relationship between the resistance value Rs of the thermistor 7 at 0°C, the resistance value R of the reference resistor O, and the voltage E of the DC power supply 4. .

即ち。That is.

E=5V、0℃の時のRs/R= 1/ 4とするとV
s = I V・・・・・・・・となる如く。
If E=5V and Rs/R=1/4 at 0°C, then V
So that s = IV......

しかも、サーミスタ7は0℃以上に温度上昇すると抵抗
値Rsは減少する如くしであるため、0℃以上の温度で
は両引出体21.22間の電圧Vsは1℃以上になるこ
とはない。
Furthermore, since the resistance value Rs of the thermistor 7 decreases when the temperature rises above 0°C, the voltage Vs between the two drawer bodies 21 and 22 will not exceed 1°C at a temperature above 0°C.

でた、0℃以下の場合は抵抗値凡Sが増加して電圧Vs
は1℃以上になるが、この温度では水分が凍結するため
イオン活動が抑制され、実用上電解腐食の問題はない。
When the temperature is below 0°C, the resistance value S increases and the voltage Vs
At this temperature, water freezes and ion activity is suppressed, so there is no practical problem of galvanic corrosion.

次に5本実施例の動作について述べる。Next, the operation of the fifth embodiment will be described.

6%食塩水を電解液としてその中にジーメット線を浸漬
し、これを両極の電極とした電極間に直流電圧全印加し
た時の印加電圧と電流密度の関係の実測結果を第6図に
示す。
Figure 6 shows the actual measurement results of the relationship between the applied voltage and current density when a Zimet wire was immersed in 6% saline as an electrolyte, and the entire DC voltage was applied between the electrodes. .

図によると、印加電圧1V以下では電流密度は小ざいが
印加電圧が1Vを越えると急に増大し。
According to the figure, the current density is small when the applied voltage is 1V or less, but increases suddenly when the applied voltage exceeds 1V.

更(′i:印加電圧を上昇させると電流密度は指数関数
的:(増大する。
Furthermore, ('i: When the applied voltage is increased, the current density increases exponentially.

ここで、O〜1V間を残余電圧、 t2V2℃では電極
反応が起っている領域である。この両者領域の父点Ed
金分解電圧と言い、この分解電圧Ed以上になると電極
間を流れる電流の密度が急上昇する。
Here, the residual voltage is between 0 and 1V, and t2V2°C is the region where electrode reaction occurs. The father point of both these areas Ed
This is called the gold decomposition voltage, and when it exceeds this decomposition voltage Ed, the density of the current flowing between the electrodes increases rapidly.

従って9分解電圧Ed以上になると電極の陽極が激しく
消耗する。
Therefore, when the decomposition voltage Ed exceeds 9, the anode of the electrode is severely consumed.

分解電圧は電解液の性質、電極の材質及び電解液の温度
によって異なるが本実施例の3多食塩水20℃の液温で
の実測値では9分解電圧Ed嬌t2Vである。
Although the decomposition voltage varies depending on the properties of the electrolyte, the material of the electrodes, and the temperature of the electrolyte, the actual measured value of the polysaline solution in this example at a temperature of 20° C. is 9 decomposition voltage Ed - t2V.

確認のため、B定数4000 Kのサーミスタ7を用い
て実験してみたところ、液温20〜25℃におけるサー
ミスタ7の抵抗値Rsば0℃の時の172.5〜1/6
に減少し、直流電源電圧E=5Vの時の両引出体21 
、22 間(7) 電圧i1’ Vs = 0.4〜0
.45 V テh ル。
To confirm, we conducted an experiment using a thermistor 7 with a B constant of 4000 K, and found that the resistance value Rs of the thermistor 7 at a liquid temperature of 20 to 25°C was 172.5 to 1/6 of that at 0°C.
When the DC power supply voltage E=5V, both drawer bodies 21
, 22 (7) Voltage i1' Vs = 0.4~0
.. 45 V tel.

更に、0.4φジユメツト線が腐食断線するまでには1
000時間を要した。
Furthermore, it takes 1 for the 0.4φ dim wire to corrode and break.
It took 000 hours.

同じ0.4φジーメノト線を用いて抵抗値Rs/抵抗値
R=110.2.直流電源電圧E = 5 Vとしたと
きには電圧Vs = 3.1〜3.3■となシ、ジュメ
ット線は4〜5時間で腐食断線した。
Using the same 0.4φ Siemenoto wire, resistance value Rs/resistance value R=110.2. When the DC power supply voltage E = 5 V, the voltage Vs = 3.1 to 3.3 cm, and the Dumet wire corroded and broke in 4 to 5 hours.

発明の効果 以上1本発明によれば、内引出体間の印加電圧全それら
引出体を電解液内で電極としたときの電解液の分解電圧
以下にしたことにより、電解液を凭れる電流の密度を小
さくすることができ、電解腐食現象を極力防止出来る温
度コントローラを得ることが出来る。
Effects of the Invention (1) According to the present invention, the voltage applied between the inner drawers is set to be less than the decomposition voltage of the electrolyte when the drawers are used as electrodes in the electrolyte, thereby reducing the current flowing through the electrolyte. It is possible to obtain a temperature controller that can reduce the density and prevent electrolytic corrosion phenomena as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による温度コントローラの電
気回路図、第2図は同感熱素子の断面図。 第3図は電解液における印加電圧と電流密度の関係を示
す特性図である。 1・・・感熱素子、  21.22・・・引出体、6・
・・抵抗。 4・・・直流電源、5・・制御回路、6・・・負荷。
FIG. 1 is an electric circuit diagram of a temperature controller according to an embodiment of the present invention, and FIG. 2 is a sectional view of the heat-sensitive element. FIG. 3 is a characteristic diagram showing the relationship between applied voltage and current density in an electrolytic solution. 1... Heat sensitive element, 21.22... Drawer body, 6.
··resistance. 4...DC power supply, 5...control circuit, 6...load.

Claims (1)

【特許請求の範囲】[Claims] 感熱素子(1)とこれに接続する制御回路(5)とから
なる温度コントローラにおいて、前記感熱素子(1)の
引出体(21、22)に印加する電圧をそれら引出体を
電解液内で電極とした時の前記電解液の分解電圧以下と
したことを特徴とする温度コントローラ。
In a temperature controller consisting of a heat-sensitive element (1) and a control circuit (5) connected thereto, the voltage applied to the lead-out bodies (21, 22) of the heat-sensitive element (1) is applied to the lead-out bodies (21, 22) in an electrolytic solution. A temperature controller characterized in that the temperature is set to be lower than the decomposition voltage of the electrolytic solution when the temperature is lowered.
JP15708786A 1986-07-03 1986-07-03 Temperature controller Pending JPS6314209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15708786A JPS6314209A (en) 1986-07-03 1986-07-03 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15708786A JPS6314209A (en) 1986-07-03 1986-07-03 Temperature controller

Publications (1)

Publication Number Publication Date
JPS6314209A true JPS6314209A (en) 1988-01-21

Family

ID=15641960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15708786A Pending JPS6314209A (en) 1986-07-03 1986-07-03 Temperature controller

Country Status (1)

Country Link
JP (1) JPS6314209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111634A1 (en) * 2010-05-06 2012-05-10 Tracto-Technik Gmbh & Co. Kg Earth boring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111634A1 (en) * 2010-05-06 2012-05-10 Tracto-Technik Gmbh & Co. Kg Earth boring apparatus
US8997891B2 (en) * 2010-05-06 2015-04-07 Tracto-Technik Gmbh & Co. Kg Earth boring apparatus
GB2480151B (en) * 2010-05-06 2015-09-23 Tracto Technik Earth boring apparatus

Similar Documents

Publication Publication Date Title
EP0466188B1 (en) Heat transfer material for heating and heating unit and heating apparatus using
KR100506023B1 (en) Heater-sensor complex
FI87964B (en) UPPVAERMNINGSELEMENT OCH UPPVAERMNINGSENHET
WO2003017726A1 (en) Heater
JPH09506212A (en) Thermosensitive compound, method for producing the same, and method for utilizing the same
JPS6314209A (en) Temperature controller
US3952116A (en) Process for forming electrical resistance heaters
KR20070119459A (en) Cooking vessel
JP3078485B2 (en) Contact combustion type gas sensor
CN105910275A (en) Electric water heater
CN211960911U (en) Temperature measurement and control integrated air heating element
JPH0749416Y2 (en) Liquid conductivity measurement sensor
JP2001237054A (en) Heater
WO2006065059A1 (en) Heating apparatus of electronic hot wind device
KR100679318B1 (en) A sterilizing apparatus
JP3044776B2 (en) Energizing method
JPH0631391Y2 (en) Thermistor unit
CN212165587U (en) Device for preventing glass kettle from being dry-burned
JPS5942434B2 (en) heating element
JPS6313301A (en) Thermistor
US2749425A (en) Immersion heater
JPS6213346Y2 (en)
US2298254A (en) Electric immersion heater for liquid electrolytes
JPH0243004Y2 (en)
JPH09306643A (en) Heating element