JPS63141605A - Gas-liquid contact device - Google Patents

Gas-liquid contact device

Info

Publication number
JPS63141605A
JPS63141605A JP61286956A JP28695686A JPS63141605A JP S63141605 A JPS63141605 A JP S63141605A JP 61286956 A JP61286956 A JP 61286956A JP 28695686 A JP28695686 A JP 28695686A JP S63141605 A JPS63141605 A JP S63141605A
Authority
JP
Japan
Prior art keywords
gas
liquid
liquid contact
shelves
shelf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61286956A
Other languages
Japanese (ja)
Inventor
Ikuo Fujita
幾雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP61286956A priority Critical patent/JPS63141605A/en
Publication of JPS63141605A publication Critical patent/JPS63141605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To uniformize a liq. flow by forming plural passages with two partition plates and two side plates, and providing plural rectangular trays in each passage while alternately shifting the liq. shoots of the adjacent upper and lower trays from each other. CONSTITUTION:The passage 5 is formed by the partition plates 2 and 2 and the side plates 3 and 3. A liq. is supplied from the upper part of the passage 5, flows down through the liq. shoot 7, overflows an inlet weir 11 through a pan 12, is brought into contact with a gas ascending from the underside on a gas-liq. contact plate 10, and overflows a weir 13 on the shoot side into the shoot 7. As a result, the gas-liq. contact is repeated at the gas-liq. contact plate 10 of the tray 6, and the liq. flows down to the lower tray. The joints between the tray 6 and the partition plate 2 and between the tray and a side bar 4 are hermetically sealed, hence bypasses for gas and liq. are not formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は精密、蒸留、吸収等に使用される棚段式気液接
触装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a tray type gas-liquid contact device used for precision, distillation, absorption, etc.

〔従来の技術〕[Conventional technology]

気液接触装置の基本的型式には、回転流式と直交流式と
があり、これらの型式に対して従来から多数の改良改善
が行われてきている。
There are two basic types of gas-liquid contact devices: a rotary flow type and a cross flow type, and many improvements have been made to these types.

円筒形耐圧容器内に水平に直交流式棚段を設置した場合
、入口堰中央部から落口堰中央部に至る液流と入口堰端
部から落口堰端部に至る液流とでは流路長、流速が大き
く相違するために、棚段上の液流は不均一となる。この
ため液流の棚段上での滞留時間が筒中8部と筒周辺部と
で著しくWなることとなり、段効率を低下さゼている。
When a cross-flow shelf is installed horizontally in a cylindrical pressure vessel, the liquid flow from the center of the inlet weir to the center of the drop weir and the liquid flow from the end of the inlet weir to the end of the drop weir are different. Due to the large difference in path length and flow velocity, the liquid flow on the tray becomes non-uniform. For this reason, the residence time of the liquid flow on the shelf becomes significantly W in the 8th part inside the cylinder and the peripheral part of the cylinder, which reduces the stage efficiency.

特に単心交流式では、周辺部の液流は入口堰から落口堰
へ至る途中の流路中央部で淀みを形成し、気液接触有効
面積を減少させている。
In particular, in the single-core AC type, the liquid flow in the peripheral area forms a stagnation in the center of the flow path on the way from the inlet weir to the drop weir, reducing the effective air-liquid contact area.

このような不均一な液流を改善する手段として、棚段上
にスロットを設け、このスロットから上シI気体を棚段
上の液に噴出さけ1強制的に均一な液流を形成させるこ
とが特公昭57−43042号。公報に開示されている
。あるいは、円筒形耐圧容器内に矩形の棚段を配設し、
入口堰から落]」堰へ至る流路長を同一として均一な液
流を形成する手段が特開昭57−84738号公報に開
示されている。
As a means to improve such non-uniform liquid flow, a slot is provided on the shelf, and an upper gas is ejected from this slot to the liquid on the shelf to forcibly form a uniform liquid flow. is Special Publication No. 57-43042. Disclosed in the official gazette. Alternatively, a rectangular shelf can be arranged inside a cylindrical pressure vessel,
JP-A-57-84738 discloses means for forming a uniform liquid flow by keeping the length of the flow path from the inlet weir to the weir the same.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述の円筒形の気液接触装置では、棚段
が傾斜して取付けられた場合や、棚段自身が凹凸の歪み
を有する場合に、棚段上の液はより低い曲を流れるので
、棚段上の液深は棚段傾斜面の高面から低面に向って高
くなる。一方上昇気体は液深の低い部分を優先して流れ
るので、棚段の傾斜によって局部的な気液比が相違し段
効率を低下させる。極端な状態においでは、液深が高い
部分では発泡せずに棚段の通気孔から液が流下する、い
わゆるウィービング現蒙を起し、−h液深の浅い部分で
は気液接触が十分に行われず、上昇気体が上段の棚段ヘ
バイパスする堤象を生じ段効率が著しく損われる。従っ
て棚段の水平度を確保するために、棚段自身の構造強度
設計から、棚段組立加工、棚段の筒への組込み作業、輸
送IIz付作業に至るまで、細心の注意と多大な労力、
費用を要している。
However, in the above-mentioned cylindrical gas-liquid contact device, when the shelves are installed at an angle or when the shelves themselves have an uneven distortion, the liquid on the shelves flows in a lower curve. The liquid depth on the shelf increases from the high side to the low side of the slope of the shelf. On the other hand, since the rising gas preferentially flows through the lower liquid depth portion, the inclination of the tray causes local differences in the gas-liquid ratio, reducing the tray efficiency. In extreme conditions, so-called weaving occurs, in which the liquid flows down from the ventilation holes of the tray without foaming in areas where the liquid depth is high, and gas-liquid contact is sufficient in areas where the liquid depth is shallow. This causes an embankment phenomenon in which the rising gas bypasses the upper shelf, and the efficiency of the stage is significantly impaired. Therefore, in order to ensure the levelness of the shelves, great care and effort are required in everything from the structural strength design of the shelves themselves, to the assembly and processing of the shelves, to the work of assembling the shelves into the cylinder, and to the work of attaching them to transportation IIz. ,
It costs money.

また、従来技術による気液接触5A置では、処理量に対
応させて、最適な筒径、棚段の通気孔径とピッチ、段間
隔等を適宜決定しているため、処理吊毎に気液接触装置
の棚段部分の形状寸法が異なるばかりでなく、棚段自身
の構成部品数も多く、棚段の加工組立作業には多大な工
数を必要としでいる。従って同一形状寸法の構成部品を
処理量に対応させて組合せて使用するという合理的な設
計、製作方法を採用することは不可能であった。
In addition, in the conventional gas-liquid contact 5A system, the optimum cylinder diameter, the ventilation hole diameter and pitch of the trays, the interval between the trays, etc. are appropriately determined in accordance with the processing amount, so that the gas-liquid contact is not carried out for each processing hanger. Not only do the shelves of the device have different shapes and dimensions, but the shelves themselves have a large number of component parts, and the processing and assembly of the shelves requires a large number of man-hours. Therefore, it has been impossible to adopt a rational design and manufacturing method that uses component parts of the same shape and size in combination in accordance with the throughput.

そして、低温液化ガスの深冷分離装置のように、粘留筒
と熱交換器をコールドボックス内に設δし、コールドボ
ックスと各設置機器との空間に断熱材を充填し、外部か
らの熱侵入を防止する構造においては、コールドボック
スの外表面積を最小とするのが熱浸入迅を減少させる上
で有効である。しかるに従来の粘留筒は円筒形であ・す
、熱交換器は矩形のプレートフィン型熱交換器であるた
めに、円形と矩形の機器を矩形の]−ルドボックス内に
配置しなくてはならず、コールドボックスの横断面積を
最小とする上で構造上限界があり、無駄な空間を右して
いた。
Then, like a cryogenic separation device for low-temperature liquefied gas, a viscosity cylinder and a heat exchanger are installed inside a cold box, and the space between the cold box and each installed equipment is filled with heat insulating material to prevent heat from outside. In structures that prevent intrusion, minimizing the outside surface area of the cold box is effective in reducing the rate of heat intrusion. However, since the conventional viscosity cylinder is cylindrical and the heat exchanger is a rectangular plate-fin type heat exchanger, circular and rectangular equipment must be placed in a rectangular field box. However, there was a structural limit to minimizing the cross-sectional area of the cold box, resulting in wasted space.

さらに、従来の円筒形気液接触装置は減量運転限界が約
70%であり、これ以上の減量運転を可能とするために
は、大幅な装置の改″造が必要であり、事実上不可能で
あった。
Furthermore, the conventional cylindrical gas-liquid contact device has a reduction operation limit of approximately 70%, and in order to enable further reduction operation, significant equipment modification is required, which is virtually impossible. Met.

また、前述の特開昭57−84738号公報の手段では
、従来の直交流式気液接触筒と比較して円筒断面積に占
める棚段の気液接触有効面積の比率が減少している。
Furthermore, in the means disclosed in Japanese Patent Application Laid-Open No. 57-84738, the ratio of the effective gas-liquid contact area of the tray to the cross-sectional area of the cylinder is reduced compared to the conventional cross-flow type gas-liquid contact cylinder.

本発明は、上記問題点を解決して、菰首を]ンバクトに
まとめるとともに、液流を均一にすることのできる気液
接触装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a gas-liquid contacting device that is capable of consolidating the neck of the head and making the liquid flow uniform.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的達成のため、本発明は、気液接触用の複数枚の
棚段と、該棚段に液体を流下させるための液落口とを備
え、前記棚段に穿設された通気孔を通して気体を上界さ
せ、前記液落口より液体を順次下段の棚段に流下させて
、該S環上で気液を接触さゼる気液接触装置において、
垂直方向平行に立設された少なくとも2枚の仕切板と、
該仕切板の両側端部を密に接合する少なくとも2枚の側
壁板とによって横断面矩形の通路部を複数列形成し、該
通路部内に矩形状の棚段を隣接する上下の棚段の液落口
を交互に位相をずらして、上下多段に配置したことを特
徴としている。
In order to achieve the above object, the present invention includes a plurality of shelves for gas-liquid contact, and a liquid droplet for causing liquid to flow down the shelves, and allows the liquid to flow through a ventilation hole bored in the shelves. In a gas-liquid contacting device that allows gas to flow upward, and causes the liquid to sequentially flow down from the liquid droplet to the lower shelf to bring the gas and liquid into contact on the S ring,
at least two partition plates vertically arranged in parallel;
A plurality of rows of passages having a rectangular cross section are formed by at least two side wall plates closely joining both side ends of the partition plate, and rectangular shelves are arranged in the passages so that the liquid of the adjacent upper and lower shelves is formed. It is characterized by the fact that the openings are arranged in multiple stages, upper and lower, with the phases alternately shifted.

〔作 用〕[For production]

本発明は、上記した構成により、気液接触装置の形状を
矩形形状とすることができ、気液接触装置の横断面積を
縮小して装置のコンパクト化を図り、また棚段を矩形と
することで液流れを均一とするとともに、堰幅を従来よ
りも大幅に広くできるので棚段トの液深を低減すること
により棚段圧力損失を減少し動力原単位を削減する。
According to the present invention, with the above configuration, the shape of the gas-liquid contact device can be made into a rectangular shape, the cross-sectional area of the gas-liquid contact device can be reduced to make the device compact, and the shelves can be made rectangular. In addition to making the liquid flow uniform, the weir width can be made much wider than before, which reduces the liquid depth of the tray, reduces tray pressure loss, and reduces power consumption.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図に基づいて
説明する。第1図は本発明による気液接触装置のM木構
造を示す一部を切欠いた斜視図、第2図は棚段の斜視図
であり、液の流れ方向を実線の矢印、1讐気体の流れ方
向を破線の矢印で示す。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 and 2. Fig. 1 is a partially cutaway perspective view showing the M-tree structure of the gas-liquid contact device according to the present invention, and Fig. 2 is a perspective view of the shelves, with solid arrows indicating the flow direction of the liquid, Flow direction is indicated by dashed arrows.

気液接触装置1は、垂直方向平行に配置した複数の仕切
板2,2.・・・と、側壁板3を構成するサイドパー4
,4.・・・とで構成されるもので、仕切板2の両側端
部をサイドパー4で密に接合して横断面矩形状の液及び
上昇気体の通路となる通路部5.5.・・・を形成して
おり、最外側の仕切板2は気液接触装置1の外壁を兼ね
ている。
The gas-liquid contact device 1 includes a plurality of partition plates 2, 2 . ...and the side par 4 that constitutes the side wall plate 3
,4. . . . The both ends of the partition plate 2 are tightly joined by the side pars 4, and the passage portion 5.5. has a rectangular cross section and serves as a passage for liquid and rising gas. ..., and the outermost partition plate 2 also serves as the outer wall of the gas-liquid contacting device 1.

前記通路部5に上下多段に配置される棚段6は、短冊状
に切断された薄板の一端を下方に折曲して液落ロアの壁
板8とし、水平部を上昇気体の通気7t 9を穿孔され
た気液接触1fj10として形成されるもので、壁板8
とは反対側の気液接触板10の上面に、端部を折り曲げ
て入口堰11を形成した薄板をスポット溶接して受皿1
2を形成し、気液接触板10の壁板s OJI+の端部
上面に1字状の薄板をスポット溶接して落口堰13を形
成する。
The shelves 6 arranged vertically in multiple stages in the passage section 5 are made by bending one end of a thin plate cut into strips downward to form a wall plate 8 of the droplet lower, and the horizontal part is used as a vent for rising gas 7t 9 It is formed as a perforated gas-liquid contact 1fj10, and the wall plate 8
A thin plate whose end is bent to form an inlet weir 11 is spot-welded to the upper surface of the gas-liquid contact plate 10 on the opposite side to the saucer 1.
A drop weir 13 is formed by spot welding a single-shaped thin plate to the upper end of the wall plate sOJI+ of the gas-liquid contact plate 10.

次に本装置の製作手順を説明する。Next, the manufacturing procedure of this device will be explained.

まず、仕切板2を平坦な治具上に載ゼて、仕切板2の両
側端部にサイドパー4.4を配置し、前記の如く形成さ
れた棚段6,6.・・・をサイドパー4.4間の仕切板
2上に壁板8を交互に向きを変え、隣接する上下の棚段
6の液溶ロアを交互に位相をずらして、受皿12側をサ
イドパー4の内壁に当接させて所定段数、順次配置する
First, the partition plate 2 is placed on a flat jig, the side pars 4.4 are arranged at both ends of the partition plate 2, and the shelves 6, 6.4 formed as described above are placed. ... by alternately changing the orientation of the wall plates 8 on the partition plates 2 between the side pars 4 and 4, alternately shifting the phases of the liquid lowers of the upper and lower adjacent shelves 6, and placing the saucer 12 side on the side par 4. A predetermined number of stages are sequentially arranged in contact with the inner wall of the stage.

各棚段6の上下の間隔は、液溶ロアの壁板8の下端と、
下段の棚段6の入口堰11の上端との高さ関係を、受皿
12に溜った液によって液封できるようにして、上昇気
体が液溶ロアから上段へバイパスして段効率を低下させ
ることの無いようにしている。
The vertical interval of each shelf 6 is between the lower end of the wall plate 8 of the liquid solution lower and
The height relationship between the lower shelf 6 and the upper end of the inlet weir 11 can be liquid-sealed by the liquid accumulated in the saucer 12, so that rising gas bypasses the liquid solution lower to the upper stage and reduces the stage efficiency. I try not to have any.

棚段6,6を配置した上に、次の仕切板2を載せること
により、矩形状の通路部5が構成される。
By placing the next partition plate 2 on top of the shelves 6, 6, a rectangular passage portion 5 is constructed.

同様な作業を所定の通路数繰返ずことにより、装置の全
通路が構成される。
By repeating the same operation a predetermined number of passages, all the passages of the device are constructed.

次いで、仕切板2とり゛イドバー4及び棚段6の各接触
面をろう付等により接合する。
Next, the contact surfaces of the partition plate 2, guide bar 4, and shelf 6 are joined by brazing or the like.

このように本装置の製作は、棚段6の構造からも明らか
なように、仕切板2上に棚段6を載せる作業だけで、棚
段6の気液接触板10を仕切板2の面に垂直に設置でき
るから、気液接触板10の幅方向の水平度が容易に得ら
れる。
As is clear from the structure of the shelves 6, the production of this device requires only the work of placing the shelves 6 on the partition plate 2, and the gas-liquid contact plate 10 of the shelves 6 can be placed on the surface of the partition plate 2. Since the gas-liquid contact plate 10 can be installed vertically, horizontality in the width direction of the gas-liquid contact plate 10 can be easily obtained.

次に本装置の作用を説明する。Next, the operation of this device will be explained.

気液接触装置1に上方から導入された液は、仕切板2,
2とサイドパー4及び棚段−6の壁板8とで構成される
液溶ロアを流下し、受皿12上に溜った後、壁板8の下
端を通過し入口¥111を乗り越えて気液接触板10上
を落口堰13に向って、気液接触板10の下側から上昇
してくる気体と気液接触しながら流れ、落口堰13を乗
り越えて液溶ロアへ流下する。
The liquid introduced from above into the gas-liquid contact device 1 is passed through the partition plate 2,
2, the side par 4, and the wall plate 8 of the shelf 6. After flowing down the liquid lower layer composed of the side par 4 and the wall plate 8 of the shelf 6, and collecting on the saucer 12, it passes through the lower end of the wall plate 8 and passes over the inlet ¥111 to form gas-liquid contact. The liquid flows over the plate 10 toward the drop weir 13 while being in gas-liquid contact with the gas rising from the lower side of the gas-liquid contact plate 10, overcomes the drop weir 13, and flows down to the liquid solution lower.

このようにして、液は矩形の通路部5内に上下多段に配
置した棚段6の気液接触板10上で気液接触を繰り返し
ながら順次下段へ流下する。
In this way, the liquid sequentially flows down to the lower stages while repeating gas-liquid contact on the gas-liquid contact plates 10 of the shelves 6 arranged in multiple stages above and below in the rectangular passage section 5.

一方、上昇気体は、気液接触板10の通気孔9を通過し
、気液接触板10上の液と気液接触を繰り返しながら、
順次上段へと上背する。
On the other hand, the rising gas passes through the vent hole 9 of the gas-liquid contact plate 10 and repeatedly contacts the liquid on the gas-liquid contact plate 10, while
Sequentially move up to the top.

落口堰13は、気液接触板10上の液の液深を確保し、
気液接触効果を向上させているものであるが、落口堰1
3が無くとも気液接触が行われるので1必ずしも落口堰
13を設りる必要はない。
The Ochiguchi weir 13 ensures the depth of the liquid on the gas-liquid contact plate 10,
Ochiguchi Weir 1 improves the gas-liquid contact effect.
Since gas-liquid contact can be carried out even without 3, it is not necessarily necessary to provide the drop weir 13.

入口堰11から落口堰13に至る液の流路長は、棚段6
の幅方向のいずれの部分においても同一であるため均一
な液流の分布が得られ、従来構造の装置よりも段効率を
向上できる。
The length of the liquid flow path from the inlet weir 11 to the drop weir 13 is
Since it is the same in all parts in the width direction, a uniform liquid flow distribution can be obtained, and the stage efficiency can be improved compared to devices with conventional structures.

また、装置への液及び気体の導入部にd3いて、偏流に
よって個々の通路部5内への流入量が不均一となること
を防出するため、仕切板2の液溶ロアに対応する位置に
開口14を設けて、受111112上に溜った液を隣り
合う通路を流れる液と均一化し、また気液接触板10の
段間の仕切板2に開口15を設けて、上昇気体を隣り合
う通路を流れる上昇気体と均一化している。この段間の
開口15を気液接触板10の上面の間近に配置ザれば、
気体とともに気液接触板10上の液を隣り合う通路の気
液接触板10上を流れる液と均一化することができる。
In addition, in order to prevent the inflow amount into the individual passage parts 5 from becoming uneven due to uneven flow, there is a position d3 at the introduction part of the liquid and gas into the device, which corresponds to the liquid solution lower part of the partition plate 2. An opening 14 is provided in the partition plate 2 between the stages of the gas-liquid contact plate 10 to equalize the liquid accumulated on the receiver 111112 with the liquid flowing in the adjacent passage.An opening 15 is provided in the partition plate 2 between the stages of the gas-liquid contact plate 10 to distribute the rising gas It is homogenized with the rising gas flowing through the passage. If the opening 15 between the stages is placed close to the upper surface of the gas-liquid contact plate 10,
Together with the gas, the liquid on the gas-liquid contact plate 10 can be made uniform with the liquid flowing on the gas-liquid contact plate 10 in the adjacent passage.

このように容易かつ単純な形状の部品と、単純な加工組
立作業によって、本発明の気液接触装置を製作できる。
As described above, the gas-liquid contact device of the present invention can be manufactured using easily and simply shaped parts and simple processing and assembly operations.

所定の気液接触効果を得るためには、棚段6を高さ方向
に必要段数積み重ねればよく、また、仕切板2とサイド
パー4の積み重ね数によって、通路部5の数が自由に設
定できるので、液量負荷に対して最適数の通路部5を形
成することができる。
In order to obtain a predetermined gas-liquid contact effect, the required number of shelves 6 may be stacked in the height direction, and the number of passages 5 can be freely set depending on the number of stacked partition plates 2 and side pars 4. Therefore, the optimum number of passages 5 can be formed for the liquid volume load.

上界気体n荷に対しては、幅方向に最適数の通路部5を
積み重ねて構成するか、または気液接触板10の寸法を
長さ方向に調節するかのいずれかによって、上昇気体の
通気孔9の面積を調節できる。
For upper boundary gas n loads, the rising gas can be controlled either by stacking an optimum number of passages 5 in the width direction or by adjusting the dimensions of the gas-liquid contact plate 10 in the length direction. The area of the ventilation hole 9 can be adjusted.

尚、本実施例では、各棚段6は液溶ロアを片側−個しか
有していないが、複数個設けて構成することもできる。
In this embodiment, each shelf 6 has only one liquid solution lower on one side, but it can also be configured with a plurality of liquid lowers.

開口14.15は、同目的のために小径の円孔を仕切板
2に多数穿孔してもよい。
For the openings 14 and 15, a large number of small diameter circular holes may be bored in the partition plate 2 for the same purpose.

また、気液接触板10の通気孔9の形状は円孔に限らず
、気液接触に適した発泡が可能な形状であればよい。
Further, the shape of the ventilation hole 9 of the gas-liquid contact plate 10 is not limited to a circular hole, but may be any shape that allows foaming suitable for gas-liquid contact.

気液接触’I置1は、棚段6と仕切板2及びサイドパー
4との接合部の隙間から上昇気体が上段へバイパスした
り、液が下段へバイパス流下すると気液接触効率を低下
させる。従っで棚段6とこれらの接合部は密封構造とし
な番プればならない。
The gas-liquid contact position 1 reduces the gas-liquid contact efficiency when rising gas bypasses to the upper stage or liquid flows down to the lower stage from the gap between the joints of the shelf 6, the partition plate 2, and the side par 4. Therefore, the shelves 6 and their joints must be kept in a sealed structure.

棚段6と仕切板2及びサイドバー4との各接合部を密封
するには、接合面をろう骨接合する手段や、接合面にシ
ール材を挟み込み、圧縮荷重を加えて機械的に接合する
手段等があり、機械的接合手段は、定期的に分解洗浄を
必要とする用途に適している。
In order to seal the respective joints between the shelf 6, the partition plate 2, and the side bar 4, the joining surfaces may be joined with fissure bones, or a sealing material may be sandwiched between the joining surfaces and a compressive load may be applied to mechanically join them. Mechanical joining means are suitable for applications that require periodic disassembly and cleaning.

その他の場合には、ろう骨接合によって製造する方が気
密性の点でも信頼性が高く、製造コストも経済的であり
、気液接触装冒用材料としてアルミニウム合金を使用す
る場合には特にろう骨接合法が右利である。
In other cases, it is more reliable in terms of airtightness and economical to manufacture by soldering, especially when aluminum alloys are used as the material for gas-liquid contact dressings. The osteosynthesis method is right-handed.

このろう骨接合法によって製造する場合は、仕切板2の
棚段6と接触する而、及びサイドパー4の受fln12
と接触する面にろう材を塗布又はクラッドしておくこと
により、装置の仮組立て後に冶具で全体を拘束固定して
ろう付炉に搬入し、ろう付温度まで昇温することにより
装置の全接合部を同時に接合することができる。
When manufactured by this wax bone bonding method, the part that contacts the shelf 6 of the partition plate 2, and the receiving fln12 of the side par 4.
After temporary assembly of the device, the whole device is restrained and fixed with a jig and transported to a brazing furnace, where the temperature is raised to the brazing temperature to complete the entire bonding of the device. parts can be joined at the same time.

第3図に示す棚段6は、仕切板2あるいはりイドバー4
との接合性を向上させるために周辺に折り返し面16を
形成したものである。
The shelves 6 shown in FIG.
A folded surface 16 is formed around the periphery in order to improve the bondability with the holder.

本発明の気液接触装置1の内部を圧力流体が流れる場合
、サイドパ−4の内面と装置の最外側の仕切板2に圧力
が作用する。
When pressure fluid flows inside the gas-liquid contact device 1 of the present invention, pressure acts on the inner surface of the side par 4 and the outermost partition plate 2 of the device.

本装置をろう骨接合した場合に、サイドパー4は仕切板
2との接合部のせん断強度と、仕切板2の艮ざ方向の引
張強度によって支持されており、装置の外壁となる最外
側の仕切板2に作用する圧力は棚段6がステーの役割を
果して支持している。
When this device is joined to the fistula, the side par 4 is supported by the shear strength of the joint with the partition plate 2 and the tensile strength of the partition plate 2 in the distal direction. The pressure acting on the plate 2 is supported by the shelf 6 which plays the role of a stay.

保持圧力が高くなるほど、最外側の仕切板2の耐圧強度
を向上させねばならないが、この耐圧強度を向上さける
には、最外側の仕切板2の板厚を厚くする手段、あるい
は最外側の仕切板2を波形フィンで補強して通路部5の
圧力と均圧としたいわゆるダミー通路とする手段、及び
棚段6の取付間隔を縮めて、密にステーを配置したと同
様な構造とする手段などがある。
As the holding pressure increases, the pressure resistance of the outermost partition plate 2 must be improved, but in order to avoid improving this pressure resistance, it is necessary to increase the thickness of the outermost partition plate 2 or to increase the pressure resistance of the outermost partition plate 2. A means of reinforcing the plate 2 with corrugated fins to create a so-called dummy passage whose pressure is equalized to the pressure of the passage part 5, and a means of reducing the mounting interval of the shelves 6 to create a structure similar to that of densely arranging stays. and so on.

しかし、液溝ロアには上段から流下してきた液が壁板8
の下端部と入口堰11とで液封された状態で受皿12の
上に溜っており、この液高さより上下の棚段6の間隔を
縮めると、棚段6上の液が液溝ロアを通って下段へ流下
できなくなる、いわゆるフラッディング現蒙を生じて気
液接触が不可能となるため、ステーとしての役割も有す
る棚段の段間隔を縮めることには限界がある。
However, the liquid flowing down from the upper part of the liquid groove lowers into the wall plate 8.
The liquid is sealed between the lower end and the inlet weir 11 and accumulates on the saucer 12. When the distance between the shelves 6 above and below this liquid level is reduced, the liquid on the shelves 6 will flow into the lower liquid groove. There is a limit to reducing the interval between the shelves, which also serve as stays, because a so-called flooding phenomenon occurs in which the liquid cannot flow down to the lower tier, making it impossible to make gas-liquid contact.

第4図及び第5図に示す装置は、段間隔を縮める代りに
上下の棚段6の間に隣接する仕切板2゜2と接合される
新たな補強部材17を配設することにより、仕切板2の
耐圧強度を向上させたものである。尚、第4図は、装置
の縦断面図を示すもので、第5図は第4図のv−■矢視
図である。
The device shown in FIGS. 4 and 5 has a new reinforcing member 17 that is connected to the adjacent partition plate 2°2 between the upper and lower shelves 6 instead of reducing the space between the partitions. This improves the pressure resistance of the plate 2. Incidentally, FIG. 4 shows a longitudinal sectional view of the apparatus, and FIG. 5 is a view taken along the line v-■ in FIG. 4.

この補強部材17は、気液接触板10と受ll112及
び液溝ロアの上面近傍には配設されておらず、棚段6上
の液の流動を妨げないようにしている。
This reinforcing member 17 is not disposed near the upper surface of the gas-liquid contact plate 10, the receiver 112, and the lower liquid groove, so as not to impede the flow of the liquid on the shelf 6.

また、図では液溝ロアの部分にも補強部材17を配置し
ているが、液溝ロアを流下する液の流動抵抗となる場合
は、この補強部材17を省略してもよい。
Furthermore, although the reinforcing member 17 is also arranged in the lower liquid groove portion in the figure, this reinforcing member 17 may be omitted if it becomes a flow resistance for the liquid flowing down the lower liquid groove.

補強部材17の8S造は、棚段6と一体となって仕切板
2にろう付接合することができ、上昇気体の流れ抵抗の
小さい構造材であればよく、例えば棚段6の幅と同一幅
を有する薄板や、同一高さを有する波形成形薄板が使用
できる。また、補強部材17は、上下の棚段6間の空間
を上昇する気体が補強部材17内を自由に流通し、上昇
気体流の均一化が甜れるように、通孔や切込みのような
開口部を右する構造とするのが好ましい。
The 8S structure of the reinforcing member 17 may be any structural material that can be integrated with the shelf 6 and brazed to the partition plate 2 and has low resistance to the flow of rising gas, for example, the same width as the shelf 6. A thin plate having a width or a corrugated thin plate having the same height can be used. The reinforcing member 17 also has openings such as through holes and notches so that the gas rising in the space between the upper and lower shelves 6 can freely flow through the reinforcing member 17 and the rising gas flow can be made uniform. It is preferable to have a structure in which the parts are on the right side.

圧縮荷重を加えて機械的に接合して圧力を保持する場合
に、補強部材17を棚段6が圧縮座屈するのを防止する
目的で配設してもよい。
When applying a compressive load and mechanically joining to maintain pressure, the reinforcing member 17 may be provided for the purpose of preventing the shelf 6 from compressive buckling.

本発明による気液接触装置1は、気液の通路部5の梢戟
数が自由に設定できるので、処理液のhlに応じて入口
堰11と落口堰13の合計幅、いわゆる堰幅を自由に設
定でき、また棚段6の幅を変えて堰の中位長さ当りの処
理液fを減少させることにより、気液接触板10上の液
深を小さくし、各棚段6での圧力損失を減少させ、気液
接触装置1の動力費を低減することができる。
In the gas-liquid contacting device 1 according to the present invention, the number of holes in the gas-liquid passage section 5 can be freely set, so the total width of the inlet weir 11 and drop weir 13, the so-called weir width, can be adjusted according to the hl of the processing liquid. It can be set freely, and by changing the width of the shelves 6 to reduce the amount of treated liquid f per medium length of the weir, the liquid depth on the gas-liquid contact plate 10 can be reduced, and the width of each shelf 6 can be reduced. Pressure loss can be reduced, and the power cost of the gas-liquid contact device 1 can be reduced.

第6図は、本発明を、原料ガスの空気から製品として液
体酸素を取り出す深冷空気液化分離装置の精留筒に適用
し1=例を示す精留筒20の縦断面図である。尚、前述
の基本構造と同一の要素のらのには同一符号を付して詳
mな説明は省略する。
FIG. 6 is a longitudinal sectional view of a rectification column 20 showing an example in which the present invention is applied to a rectification column of a cryogenic air liquefaction separation device for extracting liquid oxygen as a product from air as a raw material gas. Incidentally, the same reference numerals are given to the same elements as those in the basic structure described above, and detailed explanation thereof will be omitted.

原料液体空気LAは、精留筒20の側部に配置されたヘ
ッダー21からサイドパー4の開[1部22を通して精
留筒20内へ導入され、環流液となって各棚段6の気液
接触板10の上で気液接触を繰返して、液溝ロアから順
次T:段の棚段6へと流下して行き、酸素成分に富む液
化ガスとなる。
The raw material liquid air LA is introduced into the rectification column 20 from the header 21 disposed on the side of the rectification column 20 through the opening [1 part 22 of the side par 4, and becomes a reflux liquid, which flows into the gas and liquid of each shelf 6. Gas-liquid contact is repeated on the contact plate 10, and the gas sequentially flows down from the lower liquid groove to the T: stage shelf 6, becoming a liquefied gas rich in oxygen components.

また原料ガス空気GAは、筒中間部のヘッダー23から
サイドパー4の開口部24を通して精密筒20内へ吹込
まれ、上界ガスとして気液接触板10上の液化ガスと気
液接触を繰返しながら、順次上段の棚段6へと上界して
行き、窒素成分に富むガスGNとなる。
In addition, the raw material gas air GA is blown into the precision cylinder 20 from the header 23 in the middle part of the cylinder through the opening 24 of the side par 4, and while repeating gas-liquid contact with the liquefied gas on the gas-liquid contact plate 10 as an upper field gas, The gas gradually ascends to the upper shelf 6 and becomes gas GN rich in nitrogen components.

精留筒20の頂部側面のヘッダー25からは、液体窒素
LNが還流液としてサイドパー4の開口部26を通して
精留筒20内に導入され、順次下段の棚段6へと液溶ロ
アを通し流下して行く。
From the header 25 on the top side of the rectification column 20, liquid nitrogen LN is introduced into the rectification column 20 as a reflux liquid through the opening 26 of the side par 4, and sequentially flows down to the lower tray 6 through the liquid lower. I'll go.

ヘッダー27からは気液接触後の窒素成分に富む廃ガス
GNを取り出している。
From the header 27, waste gas GN rich in nitrogen components is taken out after gas-liquid contact.

精留筒20内を流下してきた液化ガスは、最下段で所定
の1lli度の液体M素LOとなり、サイドパー4の開
口部28を通してヘッダー29から導出され、この液体
酸素LOの一部は製品として液化ガス貯槽へ導かれ、残
部の液体酸素は熱交換器で気化され精留筒20の下部の
ヘッダー30から導入され精留操作の上昇ガスGoとな
る。
The liquefied gas flowing down inside the rectification column 20 becomes liquid M element LO at a predetermined 1lli degree at the lowest stage, and is led out from the header 29 through the opening 28 of the side par 4, and a part of this liquid oxygen LO is converted into a product. The remaining liquid oxygen is guided to a liquefied gas storage tank, and is vaporized in a heat exchanger and introduced from the header 30 at the bottom of the rectifying column 20 to become the ascending gas Go for the rectifying operation.

本実施例では精留筒20の横断面形状を矩形としたこと
により、従来の円筒形精留筒の場合に比較して横断面積
で約22%縮小できた。
In this embodiment, by making the cross-sectional shape of the rectifying tube 20 rectangular, the cross-sectional area can be reduced by about 22% compared to the case of a conventional cylindrical rectifying tube.

深冷空気液化分離装置の深冷分離機器はコールドボック
スと呼ばれる断熱箱内にKU ffiされてJ3す、こ
の内の最大の横断面積を占める精゛留筒の横断面積を低
減したことにより従来のコールドボックスの横断面積よ
り約11%縮小できた。
The cryogenic separation equipment of the cryogenic air liquefaction separation equipment is housed in an insulated box called a cold box.By reducing the cross-sectional area of the rectifying column, which occupies the largest cross-sectional area of this box, it is possible to The cross-sectional area of the cold box was reduced by approximately 11%.

また、横断面積の減少によりコールドボックス自身の容
積を縮小し、コールドボックス市川とコールドボックス
内に充填する断熱材の型開を削減できた。
In addition, by reducing the cross-sectional area, we were able to reduce the volume of the cold box itself, reducing the need to open the cold box Ichikawa and the insulation material filled inside the cold box.

同時に、コールドボックスの表面積も従来より約7%削
減でき、コールドボックスの表面からの熱侵入による寒
冷損失を減少できた。
At the same time, the surface area of the cold box has been reduced by approximately 7% compared to conventional models, reducing cooling loss due to heat intrusion from the surface of the cold box.

さらに、前述のとおり、本発明による気液接触筒では層
幅が構造的に制限されないので、層幅を従来よりも3.
4倍に広げて棚段上の液深を低減させることにより、棚
段圧力閥失を約25%削減でき、精留筒を従来よりも低
い圧力で運転することが可能となり、前記寒冷旧失の減
少と合わせて深冷空気分離装置の動力原単位を低減でき
た。
Furthermore, as mentioned above, in the gas-liquid contact tube according to the present invention, the layer width is not structurally limited, so the layer width is 3.
By expanding the liquid depth by four times and reducing the liquid depth above the tray, the tray pressure loss can be reduced by about 25%, and the rectification column can be operated at a lower pressure than before, reducing the cold water loss. In addition to this reduction, the power consumption of the cryogenic air separation equipment was also reduced.

第7図は処理能力の同じ精留筒20,20aを2基並列
に組合せて構成した例を示ず全体斜視図である。
FIG. 7 is an overall perspective view, not showing an example in which two rectifying columns 20, 20a having the same processing capacity are combined in parallel.

精留筒20を2基並列としたものでは2基の内、一方の
精IfI筒2Oa側の配管31aを閉塞するだけの改善
で50%減単運転が可能であり、一方の精留筒2Oa側
の配管31aに弁を設け−Cお1プば、減ω運転のため
の配管改造が不要となる。
In the case where two rectifying columns 20 are arranged in parallel, a 50% reduction operation is possible by simply blocking the piping 31a on the side of one of the rectifying columns 2Oa, and one of the rectifying columns 20a If a valve is provided in the side piping 31a to reduce -C, there is no need to modify the piping for reduced ω operation.

このように、精留筒の横断面形状を矩形としたので、精
留筒をN基に分割して並列に構成しても場所をとらずに
配置でき、1/Nの減m運転を容易に行なうことができ
る。
In this way, since the cross-sectional shape of the rectification column is rectangular, even if the rectification column is divided into N groups and configured in parallel, they can be arranged without taking up much space, making it easy to operate with a 1/N reduction in meters. can be done.

また、一般に精留筒は中間部からガスを抜き出したり液
化ガスを導入したりするので、精留筒内部の還流液量と
上昇ガス量との比は上部段から下部段で種々変化するが
、この液/ガス比に対して最適な精留筒を得るために、
本発明による精留筒を高さ方向に分割し、直列に配置し
て構成する事も可能である。
In addition, since the rectification column generally extracts gas or introduces liquefied gas from the middle part, the ratio between the amount of refluxed liquid and the amount of rising gas inside the rectification column changes variously from the upper stage to the lower stage. In order to obtain the optimal rectification column for this liquid/gas ratio,
It is also possible to configure the rectifying column according to the present invention by dividing it in the height direction and arranging it in series.

その池水発明の構造上の利点として、矩形の気液接触装
置の頂部に従来構造の矩形プレートフィン型凝縮器を、
底部にプレートフィン型蒸発器を本装置と一体構)告で
付設することが可能となり、v2胃全体をコンパクトな
構造とすることが可能となったことがあげられる。
As a structural advantage of the pond water invention, a conventional rectangular plate fin type condenser is installed at the top of the rectangular gas-liquid contact device.
It has become possible to attach a plate-fin type evaporator to the bottom part as an integral part of the device, making it possible to make the entire v2 stomach a compact structure.

〔発明の効果〕〔Effect of the invention〕

本発明の気液接触装置は以上説明したにうに、垂直方向
平行に立設された仕切板と、その両側端部を密に接合す
る側壁板とによって横断面矩形の通路部を形成し、該通
路部内に矩形状の気液接触用の棚段を配置したので、構
造が単純化され、同一寸法の棚段の組合せ数を増減する
だけで各種処理量の気液接触装置を容易に製作可能とな
り、また矩形状の棚段を仕切板上に載せて配設するだけ
で棚段の水平度が容易に出せるので、均一な液流れが得
られ、段効率が向上する。さらに、眼幅を自由に設定で
きるので眼幅を広くし棚段上の液深を低減づることによ
り棚段の圧損失を減少できる。
As explained above, the gas-liquid contacting device of the present invention forms a passage section with a rectangular cross section by the partition plates vertically arranged in parallel and the side wall plates closely joining both ends of the partition plates. Since rectangular gas-liquid contact shelves are placed inside the passage, the structure is simplified, and gas-liquid contact devices with various throughputs can be easily manufactured by simply increasing or decreasing the number of combinations of shelves of the same size. In addition, the levelness of the rectangular shelves can be easily achieved simply by placing the rectangular shelves on the partition plate, so that a uniform liquid flow is obtained and the efficiency of the shelves is improved. Furthermore, since the interpupillary distance can be freely set, the pressure loss on the shelf can be reduced by widening the interpupillary distance and reducing the liquid depth above the shelf.

また、装置形状を矩形とすることにより、従来の円筒形
装置よりも横断面積を縮小でき、装置を複数に分割して
も場所をとらずに設置できる。
Moreover, by making the device shape rectangular, the cross-sectional area can be reduced compared to a conventional cylindrical device, and even if the device is divided into a plurality of pieces, it can be installed without taking up much space.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の気液接触装置の実施例を示すしので、第
1図は気液接触装置の基本構造を示す一部を切欠いた斜
視図、第2図は棚段の斜視図、第3図は棚段の他の実施
例を示す斜視図、第4図は気液接触装置に補強部材を配
設した実施例を示す縦断面図、第5図は第4図のv−■
断面図、第6図は精留筒に適用した例を示す縦断面図、
第7図は精留筒を2基並列に組合せた例を示す斜視図で
ある。 1・・・気液接触装置  2・・・仕切板  3・・・
側壁板  4・・・サイドパー  5・・・通路部  
6・・・棚段  7・・・液溶口  9・・・通気孔 
 10・・・気液接触板  11・・・堰板  14.
15・・・開口16・・・折り返し而  17・・・補
強部材  20・・・精留筒 【 瑯2圀 旦     11 第3因 1 岸4因
The drawings show an embodiment of the gas-liquid contact device of the present invention, and FIG. 1 is a partially cutaway perspective view showing the basic structure of the gas-liquid contact device, FIG. 2 is a perspective view of a shelf, and FIG. The figure is a perspective view showing another embodiment of the shelf, FIG. 4 is a longitudinal cross-sectional view showing an embodiment in which a reinforcing member is provided in the gas-liquid contact device, and FIG. 5 is v-■ in FIG. 4.
A cross-sectional view, FIG. 6 is a vertical cross-sectional view showing an example of application to a rectification column,
FIG. 7 is a perspective view showing an example in which two rectifying columns are combined in parallel. 1... Gas-liquid contact device 2... Partition plate 3...
Side wall plate 4... Side par 5... Passage part
6...Shelf 7...Liquid inlet 9...Vent hole
10... Gas-liquid contact plate 11... Weir plate 14.
15...Opening 16...Folding 17...Reinforcement member 20...Rectifying tube [Kiro 2 Kokutan 11 3rd factor 1 Kishi 4 factor

Claims (1)

【特許請求の範囲】 1、気液接触用の複数枚の棚段と、該棚段に液体を流下
させるための液落口とを備え、前記棚段に穿設された通
気孔を通して気体を上昇させ、前記液落口より液体を順
次下段の棚段に流下させて、該棚段上で気液を接触させ
る気液接触装置において、垂直方向平行に立設された少
なくとも2枚の仕切板と、該仕切板の両側端部を密に接
合する少なくとも2枚の側壁板とによって横断面矩形の
通路部を複数列形成し、該通路部内に矩形状の棚段を隣
接する上下の棚段の液落口を交互に位相をずらして、上
下多段に配置したことを特徴とする気液接触装置。 2、前記仕切板は、隣接する通路部間の通気、通液用の
開口を設けた特許請求の範囲第1項記載の気液接触装置
。 3、前記仕切板の間の通路部に、薄板で構成される補強
部材を配設した特許請求の範囲第1項記載の気液接触装
置。 4、前記通路部を構成する仕切板と棚段及び側壁の各接
合部に、予めろう材を塗布またはクラッドしておくこと
により、これらの接合部の一部または全部をろう付接合
した特許請求の範囲第1項記載の気液接触装置。 5 前記通路部を構成する仕切板と棚段及び側壁の各接
合部間に、シール材を設けた特許請求の範囲第1項記載
の気液接触装置。 6、前記棚段の周辺の仕切板との接合部に、折り返し面
を形成した特許請求の範囲第1項記載の気液接触装置。
[Scope of Claims] 1. A device comprising a plurality of shelves for gas-liquid contact and a liquid droplet for causing liquid to flow down the shelves, and allowing gas to flow through ventilation holes drilled in the shelves. In the gas-liquid contact device, the liquid is raised and the liquid sequentially flows down from the liquid droplet to the lower shelf, and the gas and liquid come into contact with each other on the shelf, at least two partition plates vertically arranged in parallel. and at least two side wall plates closely joining both side ends of the partition plate to form a plurality of rows of passages each having a rectangular cross section, and rectangular shelves are arranged in the passages to form adjacent upper and lower shelves. A gas-liquid contact device characterized in that liquid drop ports are arranged in multiple stages, upper and lower, with the phases alternately shifted. 2. The gas-liquid contact device according to claim 1, wherein the partition plate is provided with openings for ventilation and liquid passage between adjacent passage sections. 3. The gas-liquid contact device according to claim 1, wherein a reinforcing member made of a thin plate is provided in the passage between the partition plates. 4. A patent claim in which a part or all of these joints are brazed by applying or cladding a brazing material to each joint of the partition plate, shelf, and side wall constituting the passage section in advance. The gas-liquid contact device according to item 1. 5. The gas-liquid contact device according to claim 1, wherein a sealing material is provided between each joint between the partition plate, the shelf, and the side wall constituting the passage. 6. The gas-liquid contact device according to claim 1, wherein a folded surface is formed at a joint portion with a partition plate around the shelf.
JP61286956A 1986-12-01 1986-12-01 Gas-liquid contact device Pending JPS63141605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286956A JPS63141605A (en) 1986-12-01 1986-12-01 Gas-liquid contact device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286956A JPS63141605A (en) 1986-12-01 1986-12-01 Gas-liquid contact device

Publications (1)

Publication Number Publication Date
JPS63141605A true JPS63141605A (en) 1988-06-14

Family

ID=17711130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286956A Pending JPS63141605A (en) 1986-12-01 1986-12-01 Gas-liquid contact device

Country Status (1)

Country Link
JP (1) JPS63141605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264083A (en) * 1990-05-07 1993-11-23 Metaleurop S.A. Distillation column tray
JP2008260005A (en) * 2007-03-18 2008-10-30 Fujika:Kk Scraping/gathering apparatus
RU2484876C1 (en) * 2012-03-11 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный технологический университет" (СибГТУ) Vortex contact stage for contacting gas or vapor with fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264083A (en) * 1990-05-07 1993-11-23 Metaleurop S.A. Distillation column tray
JP2008260005A (en) * 2007-03-18 2008-10-30 Fujika:Kk Scraping/gathering apparatus
RU2484876C1 (en) * 2012-03-11 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный технологический университет" (СибГТУ) Vortex contact stage for contacting gas or vapor with fluid

Similar Documents

Publication Publication Date Title
US2885195A (en) Fractionating apparatus
US4606745A (en) Condenser-evaporator for large air separation plant
US4401155A (en) Heat exchanger with extruded flow channels
US7610775B2 (en) Distillation process using microchannel technology
EP2412415A1 (en) Distillation Process Using Microchannel Technology
US7111673B2 (en) System for stripping and rectifying a fluid mixture
US4719970A (en) Plate exchangers and novel type of plate for obtaining such exchangers
EP0797065A2 (en) Heat exchanger of falling film type
US20090049864A1 (en) Liquid Collector and Redistributor For Packed Columns
CN1321313C (en) Heat exchange fin and method for manufacturing same
US11448466B2 (en) Cross-flow heat exchanger
JP2006226563A (en) Evaporator for carbon dioxide air conditioner
EP1048915B1 (en) Heat exchanger
US20080230212A1 (en) Fin for Heat Exchanger and Heat Exchanger Equipped with Such Fins
KR100547320B1 (en) Micro Channel Heat Exchanger
EP0415584A2 (en) Stack type evaporator
JP2001133173A (en) Thermal siphon evaporating condenser and air distilation device
JPH09206588A (en) Liquid-vapor contactor
US4133709A (en) Method of making flexible multi-columnar fluid treatment cellular apparatus
JPS63141605A (en) Gas-liquid contact device
US5718127A (en) Liquid vapor contact apparatus
JP2002098495A (en) Heat exchanger and reboiler condenser having the same
US2760351A (en) Fractionating apparatus
JPH0682038B2 (en) Heat exchanger
US2833527A (en) Liquid and gas contacting columns and their tray structures