JPS6314093B2 - - Google Patents

Info

Publication number
JPS6314093B2
JPS6314093B2 JP5520981A JP5520981A JPS6314093B2 JP S6314093 B2 JPS6314093 B2 JP S6314093B2 JP 5520981 A JP5520981 A JP 5520981A JP 5520981 A JP5520981 A JP 5520981A JP S6314093 B2 JPS6314093 B2 JP S6314093B2
Authority
JP
Japan
Prior art keywords
treatment
fibers
acrylonitrile
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5520981A
Other languages
Japanese (ja)
Other versions
JPS57171721A (en
Inventor
Takashi Kaneko
Hajime Asai
Yukio Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5520981A priority Critical patent/JPS57171721A/en
Publication of JPS57171721A publication Critical patent/JPS57171721A/en
Publication of JPS6314093B2 publication Critical patent/JPS6314093B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアクリロニトリル系重合体から炭素繊
維を製造する方法に関するものであり、すでによ
く知られているアクリロニトリル系繊維から炭素
繊維を製造する工程中の熱酸化工程を、まつたく
省略できるかあるいはその処理を著しく短縮する
ことのできる方法を提供するものである。 炭素繊維は比強度、比弾性率が高い特性を活用
して樹脂等の強化材として使用したりあるいは耐
熱性、耐薬品性、電気伝導性を利用した分野への
用途が展開されている。しかしながら、今日炭素
繊維の用途開発において最も大きな障害の1つは
高価格であり、高品質で低コストの炭素繊維の開
発が望まれているところである。 アクリロニトリル系合成繊維を前駆体とする炭
素繊維は高品質のものが得られるが、その製造は
熱酸化工程と炭素化工程の2つの工程からなり、
しかも特に熱酸化工程は長時間を要することが大
きな問題である。したがつて、この熱酸化工程を
短縮あるいは省略することの意義は大きく、かか
る観点から炭素繊維の製造方法に関して検討した
ところ、繊維化前の重合体粉体を不活性雰囲気中
で加熱処理した後溶剤に溶解せしめて繊維化する
ことで、従来必要であつて熱酸化工程なしにある
いは熱酸化工程に要する時間を著しく短縮するこ
とのできる本発明を完成するに至つた。 アクリロニトリル系合成繊維はアクリロニトリ
ルモノマーを溶液重合あるいは懸濁重合等により
高分子化したあと賦形して繊維化する。この時繊
維重合の場合等では重合体を一たん粉体化し、こ
れを溶剤に溶解せしめて紡糸液とし、その後凝固
浴に吐出して繊維化する。この重合体の粉体を溶
剤に溶解するに際しては水分量をコントロールし
なければならないため乾燥工程を必要とする。本
発明はこの乾燥後に粉体の状態で効率よく加熱処
理して適度な不融性を付与することが特徴であ
る。 本発明に用いられるアクリロニトリル重合体と
してはアクリロニトリルが80重量%以上からなる
ものであればよく、アクリロニトリルと共重合可
能な単量体との共重合体あるいはアクリロニトリ
ルのみからなる重合体であつてもよい。共重合可
能な単量体としてはとくに制限されるものはな
く、一般に汎用されているアクリル酸メチル、ア
クリル酸エチル等のアクリル酸エステル類あるい
はメタクリル酸、アクリル酸、イタコン酸等の不
飽和カルボン酸、さらに塩化ビニル、酢酸ビニ
ル、スチレン、アクリルアミド、ジアセトンアク
リルアミド、アクリスルホン酸等の一種あるいは
二種以上を用いることができる。 つぎにアクリロニトリル系重合体粉体の加熱処
理であるが、重合体粉体の乾燥工程後にとくに不
活性雰囲気に維持した乾燥機あるいは釜で行な
う。この場合、雰囲気としては酸素を含まない不
活性ガスが望ましい。温度は通常200〜400℃の範
囲で行なうが、処理時間を短縮する点からはでき
るだけ温度を高くすることが有利であるる。 処理時間は処理温度と処理の程度によつて決め
られるべきものであるが、最低数分で充分に目的
を達成することが可能である。 次にここでの処理の程度は、その後の熱処理条
件あるいは溶剤への溶解性と繊維化に影響をおよ
ぼす重要な因子であり、通常密度で1.20g/cm3
上となるように処理せしめることが望ましい。こ
の程度に反応を進めると有機溶剤には不溶となる
が、硝酸、硫酸あるいはギ酸には可溶であり、こ
れらの酸に溶解して繊維化することができる。 繊維化は密度で1.20g/cm3以上に反応せしめた
粉体を、濃度が約15〜30%となるよう前記の酸の
いずれかに溶解せしめ、その後凝固さらに適度な
延伸操作を行なうことによつてなし得る。 延伸条件等は得られる炭素繊維の物性に敏感に
反映されるため、適切な配向を賦与することが望
ましい。 このようにして得られた繊維は、反応の程度に
よつて着色の程度は異なるが、反応度が低い場合
の黄色から、反応の進行とともに茶色→茶褐色→
黒色という特有の色相をもつて得られる。この繊
維をついで酸化処理なしであるいは酸化処理した
後熱処理して炭素繊維とする。 すなわち熱処理は、窒素中での反応度が1.20
g/cm3以上であれば酸化処理なしにいきなり不活
性雰囲気中で約1000℃以上まで昇温して炭素繊維
を得ることができる。しかし、反応度が1.20g/
cm3に近いか又はそれよりも低いときには処理温度
が500〜600℃にいたるまでの昇温速度はできれば
ゆるやかにする方が炭素繊維物性の面からは好ま
しい。したがつて、場合によつては反応度が約
1.20〜1.25g/cm3と低い繊維については、酸化性
雰囲気中でごく短時間処理して後の急激な炭素化
熱処理が可能となるような方法をとることもでき
る。 反応度が1.25g/cm3以上であれば、現在通常に
実施されている条件と同等で、しかも酸化処理を
除いた炭素化処理のみで十分高品質の炭素繊維を
得ることができる。 現在一般的に実施されている酸化処理は熱風循
環炉を用いることが多いが、酸化処理に長時間を
要することと熱効率向上のため炉内を何往復かさ
せており、処理が煩雑となりトラブルも多く発生
する。また酸化処理は発熱を伴なうため、処理す
るトウの巾出しと温度の制御は厳しいものが要求
される等装置的な設備費も大きくなる。 一方、本発明ではそれに代る処理として不活性
雰囲気中で加熱処理を行なうが、この場合たとえ
ば密閉式の釜型装置とすれば、熱風循環炉等とは
格段に熱効率は向上し、かつ使用する不活性雰囲
気の使用もごく少量でよい。特に安価な窒素ガス
等を使用すれば不活性ガスを使用することのコス
ト的な面への影響は極めて小さくなる。加熱処理
温度も高くできることから処理時間も通常の酸化
処理の数分の1以下にすることができる。したが
つて、製造時間の短縮化と製造工程の簡略化に伴
なう炭素繊維の製造コストは現在市販されている
炭素繊維より大巾に低減できる。 以下実施によつて本発明を更に詳細に説明す
る。 実施例 1 アクリロニトリル/メチルアクリレート/メタ
クリレート酸=95/4/1なる共重合体の粉体
を、窒素置換した乾燥機中280℃で5分、10分又
は30分間撹拌しながら加熱処理し3種の熱処理重
合体粉体を作成した。 処理後の粉体は黄色から黒褐色となつていた
が、密度はそれぞれ1.211g/cm3、1.252g/cm3
1.306g/cm3であつた。 この粉体を61%硝酸に溶解せしめて紡糸液を調
製した後、25%硝酸水浴中に吐出して凝固し、そ
の後沸水中で延伸して繊維を得た。 この繊維を熱酸化処理することなく、窒素中で
300℃から1300℃までの平均的昇温速度が100℃/
分となるよう昇温して炭素化した。 得られた炭素繊維は、試長25mmで単繊維引張試
験を行ない力学特性を評価したが、その結果は表
−1のごとくであつた。
The present invention relates to a method for producing carbon fibers from acrylonitrile polymers, and it is possible to omit the thermal oxidation step in the already well-known process of producing carbon fibers from acrylonitrile fibers, or to improve the process thereof. The present invention provides a method that can significantly shorten the time period. Carbon fiber is being used as a reinforcing material for resins and the like by taking advantage of its high specific strength and specific modulus, and is being used in fields that utilize its heat resistance, chemical resistance, and electrical conductivity. However, one of the biggest obstacles in the development of carbon fiber applications today is the high price, and there is a desire to develop high quality, low cost carbon fibers. High quality carbon fibers can be obtained using acrylonitrile synthetic fibers as precursors, but their production consists of two steps: a thermal oxidation process and a carbonization process.
Moreover, a particularly serious problem is that the thermal oxidation step requires a long time. Therefore, it is of great significance to shorten or omit this thermal oxidation step, and from this point of view, we investigated the manufacturing method of carbon fibers and found that after heating the polymer powder before fiberization in an inert atmosphere, By dissolving it in a solvent and making it into fibers, we have completed the present invention, which can eliminate the conventionally necessary thermal oxidation process or significantly shorten the time required for the thermal oxidation process. Acrylonitrile-based synthetic fibers are produced by polymerizing acrylonitrile monomers by solution polymerization or suspension polymerization, and then shaping them into fibers. At this time, in the case of fiber polymerization, the polymer is once pulverized, dissolved in a solvent to form a spinning solution, and then discharged into a coagulation bath to form fibers. When dissolving this polymer powder in a solvent, a drying step is required because the amount of water must be controlled. The present invention is characterized in that after this drying, the powder is efficiently heat-treated to impart appropriate infusibility. The acrylonitrile polymer used in the present invention may be one containing 80% by weight or more of acrylonitrile, and may be a copolymer of acrylonitrile and a copolymerizable monomer or a polymer consisting only of acrylonitrile. . There are no particular restrictions on the monomers that can be copolymerized, and commonly used acrylic esters such as methyl acrylate and ethyl acrylate, or unsaturated carboxylic acids such as methacrylic acid, acrylic acid, and itaconic acid. Furthermore, one or more of vinyl chloride, vinyl acetate, styrene, acrylamide, diacetone acrylamide, acrylsulfonic acid, etc. can be used. Next, heat treatment of the acrylonitrile polymer powder is carried out after the drying step of the polymer powder, particularly in a dryer or a pot maintained in an inert atmosphere. In this case, the atmosphere is preferably an inert gas that does not contain oxygen. The temperature is usually in the range of 200 to 400°C, but it is advantageous to raise the temperature as high as possible in order to shorten the processing time. Although the treatment time should be determined depending on the treatment temperature and degree of treatment, it is possible to sufficiently achieve the purpose with a minimum of several minutes. Next, the degree of treatment here is an important factor that affects the subsequent heat treatment conditions, solubility in solvents, and fiber formation, and it is usually treated to have a density of 1.20 g/cm 3 or more. desirable. When the reaction proceeds to this extent, it becomes insoluble in organic solvents, but it is soluble in nitric acid, sulfuric acid, or formic acid, and can be dissolved in these acids to form fibers. Fiberization is accomplished by dissolving the reacted powder with a density of 1.20 g/cm 3 or higher in one of the acids mentioned above to a concentration of approximately 15 to 30%, followed by solidification and appropriate stretching. It can be done. Since the stretching conditions etc. are sensitively reflected in the physical properties of the obtained carbon fiber, it is desirable to impart appropriate orientation. The degree of coloration of the fibers obtained in this way varies depending on the degree of reaction, but from yellow when the degree of reaction is low, to brown, brown, and brown as the reaction progresses.
It has a unique hue of black. This fiber is then heat treated without oxidation treatment or after oxidation treatment to obtain carbon fiber. In other words, the heat treatment reduces the reactivity in nitrogen to 1.20.
g/cm 3 or more, carbon fibers can be obtained by suddenly raising the temperature to about 1000° C. or more in an inert atmosphere without oxidation treatment. However, the reactivity is 1.20g/
When the temperature is close to or lower than cm 3 , it is preferable from the viewpoint of carbon fiber physical properties that the temperature increase rate until the treatment temperature reaches 500 to 600° C. be slow if possible. Therefore, in some cases the reactivity is approximately
For fibers with a low weight of 1.20 to 1.25 g/cm 3 , it is also possible to use a method that allows rapid carbonization heat treatment after treatment in an oxidizing atmosphere for a very short time. If the degree of reactivity is 1.25 g/cm 3 or more, carbon fibers of sufficiently high quality can be obtained under the same conditions as currently commonly used, and only by carbonization treatment excluding oxidation treatment. The oxidation treatment commonly carried out today often uses a hot air circulation furnace, but the oxidation treatment takes a long time and the furnace must be moved back and forth several times in order to improve thermal efficiency, making the treatment complicated and causing problems. Occurs often. Furthermore, since the oxidation treatment is accompanied by heat generation, strict control of the width and temperature of the tow to be treated is required, which increases equipment costs. On the other hand, in the present invention, heat treatment is performed in an inert atmosphere as an alternative treatment, but in this case, for example, if a closed pot-type device is used, the thermal efficiency is significantly improved compared to a hot air circulation furnace, etc. Only a small amount of inert atmosphere is required. In particular, if inexpensive nitrogen gas or the like is used, the cost impact of using an inert gas will be extremely small. Since the heat treatment temperature can also be increased, the treatment time can also be reduced to a fraction of that of ordinary oxidation treatment. Therefore, the manufacturing cost of carbon fiber due to shortening of manufacturing time and simplification of the manufacturing process can be significantly reduced compared to carbon fibers currently available on the market. The present invention will be explained in more detail by the following examples. Example 1 Powder of a copolymer of acrylonitrile/methyl acrylate/methacrylate acid = 95/4/1 was heat-treated at 280°C for 5 minutes, 10 minutes, or 30 minutes with stirring in a nitrogen-substituted dryer to produce three types. A heat-treated polymer powder was prepared. After treatment, the powder was yellow to blackish brown in color, with densities of 1.211g/cm 3 , 1.252g/cm 3 , and 1.252g/cm 3 , respectively.
It was 1.306g/ cm3 . This powder was dissolved in 61% nitric acid to prepare a spinning solution, then discharged into a 25% nitric acid water bath to solidify, and then stretched in boiling water to obtain fibers. This fiber is heated in nitrogen without being subjected to thermal oxidation treatment.
The average temperature increase rate from 300℃ to 1300℃ is 100℃/
Carbonization was carried out by raising the temperature to a temperature of 100 min. The obtained carbon fibers were subjected to a single fiber tensile test with a sample length of 25 mm to evaluate their mechanical properties, and the results were as shown in Table 1.

【表】 実施例 2 実施例1で用いたアクリロニトリル系重合体粉
体を窒素中で280℃で5分処理した重合体を紡糸
して得た繊維を、炭素化に先だち、空気中270℃
で5分定長下に酸化処理を行ない、その後実施例
1と同条件で炭素化処理して炭素繊維を得た。実
施例1と同様に評価した結果は次のとおりであつ
た。 引張強度 240Kg/mm2 引張弾性率 20.2ton/mm2
[Table] Example 2 A fiber obtained by spinning the acrylonitrile polymer powder used in Example 1 at 280°C in nitrogen for 5 minutes was heated at 270°C in air prior to carbonization.
The fibers were oxidized for 5 minutes at a constant length, and then carbonized under the same conditions as in Example 1 to obtain carbon fibers. The results of evaluation in the same manner as in Example 1 were as follows. Tensile strength 240Kg/mm 2 Tensile modulus 20.2ton/mm 2

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリル系重合体粉体を不活性雰囲
気中で密度が1.20g/cm3以上となるまで加熱処理
した後、溶剤に溶解して繊維化せしめた繊維状物
を熱処理することを特徴とする炭素繊維の製法。
1 Carbon characterized by heat-treating acrylonitrile-based polymer powder in an inert atmosphere until the density becomes 1.20 g/cm 3 or more, and then heat-treating the fibrous material obtained by dissolving it in a solvent and making it into fibers. Fiber manufacturing method.
JP5520981A 1981-04-13 1981-04-13 Production of carbon fiber Granted JPS57171721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5520981A JPS57171721A (en) 1981-04-13 1981-04-13 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5520981A JPS57171721A (en) 1981-04-13 1981-04-13 Production of carbon fiber

Publications (2)

Publication Number Publication Date
JPS57171721A JPS57171721A (en) 1982-10-22
JPS6314093B2 true JPS6314093B2 (en) 1988-03-29

Family

ID=12992247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5520981A Granted JPS57171721A (en) 1981-04-13 1981-04-13 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS57171721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018136A1 (en) 2005-08-09 2007-02-15 Toray Industries, Inc. Flame-resistant fiber, carbon fiber, and processes for the production of both
WO2009078099A1 (en) 2007-12-19 2009-06-25 Toray Industries, Inc. Dispersion containing flame-resistant polymer, flame-resistant fiber, and carbon fiber
JP2012522142A (en) * 2009-03-31 2012-09-20 ドンファ ユニバーシティー Carbon fiber, its yarn, and preoxidized fiber manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277933B1 (en) 1998-04-03 2001-08-21 Solutia Inc. Polyacrylonitrile particles by surfmer polymerization and sodium removal by chemical exchange
US6143835A (en) * 1998-04-03 2000-11-07 Solutia Inc. Polyacrylonitrile polymer treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018136A1 (en) 2005-08-09 2007-02-15 Toray Industries, Inc. Flame-resistant fiber, carbon fiber, and processes for the production of both
US7976945B2 (en) 2005-08-09 2011-07-12 Toray Industires, Inc. Flame resistant fiber, carbon fiber and production method thereof
WO2009078099A1 (en) 2007-12-19 2009-06-25 Toray Industries, Inc. Dispersion containing flame-resistant polymer, flame-resistant fiber, and carbon fiber
US9006323B2 (en) 2007-12-19 2015-04-14 Toray Industries, Inc. Dispersion containing flame-resistant polymer, flame-resistant fiber, and carbon fiber
JP2012522142A (en) * 2009-03-31 2012-09-20 ドンファ ユニバーシティー Carbon fiber, its yarn, and preoxidized fiber manufacturing method

Also Published As

Publication number Publication date
JPS57171721A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
JP3933712B2 (en) Acrylonitrile-based precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
US10745828B2 (en) Process of making polyacrylonitrile fibers
CA1040370A (en) Process for producing carbon fibers having excellent physical properties
CN102953153B (en) A kind of preparation method of polyacrylonitrile-based carbon fibre
US5804108A (en) Process for the preparation of carbon fiber
JPS6314093B2 (en)
US3733386A (en) Process for producing acrylic synthetic fibers improved in the hydrophilicity
CN102953151A (en) Preparation method for polyacrylonitrile-based carbon fiber
JP6998923B2 (en) Flame resistant fiber, its manufacturing method, and carbon fiber manufacturing method
JPS6257723B2 (en)
US3993719A (en) Process for producing carbon fibers
CN102953138B (en) A kind of manufacture method of polyacrylonitrile base carbon fiber precursors
US4154807A (en) Process for the production of carbon fibers
JP7166524B2 (en) Carbon material precursor compact, method for producing same, and method for producing carbon material using same
US4079122A (en) Preparation of carbon fibres
CA1113647A (en) Organic polymers
JPH11117123A (en) Acrylic precursor fiber for carbon fiber excellent in resistance to pre-oxidation
JP7168909B2 (en) Precursor material for producing carbon material and method for producing carbon material using the same
US12006595B2 (en) Method for producing carbon fiber
CN102953154B (en) A kind of manufacture method of polyacrylonitrile-based carbon fibre
KR0139851B1 (en) Process for preparing acryl copolymers
KR970007241B1 (en) Process of acrylic copolymer for production of carbon fiber
CN102953140B (en) Polyacrylonitrile base carbon fiber precursors preparation method
CN102953152B (en) Preparation method for polyacrylonitrile-based carbon fiber
DE3029145A1 (en) PREPRODUCTS FOR ACRYLIC CARBON OR GRAPHITE FIBERS