JPS6314089A - Device for solidifying super-cooling liquid - Google Patents

Device for solidifying super-cooling liquid

Info

Publication number
JPS6314089A
JPS6314089A JP61154892A JP15489286A JPS6314089A JP S6314089 A JPS6314089 A JP S6314089A JP 61154892 A JP61154892 A JP 61154892A JP 15489286 A JP15489286 A JP 15489286A JP S6314089 A JPS6314089 A JP S6314089A
Authority
JP
Japan
Prior art keywords
heat storage
container
hollow container
heat accumulating
accumulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61154892A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP61154892A priority Critical patent/JPS6314089A/en
Publication of JPS6314089A publication Critical patent/JPS6314089A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To allow solidifying of super-cooling liquid selectively by slidably disposing a hollow container filled with solid heat accumulating material in a casing filled with a super-cooling liquid comprising latent heat type heat accumulating material integrally with a sealing bushing or through a resilient valve structure having a same bushing. CONSTITUTION:A hollow container 5 is slid in its axial direction to pass its inner production 7 through a resilient valve structure 4 integrally having a busing 3 to insert its opening 8 into a heat accumulating material super-cooling liquid L. Then, the heat accumulating material super-cooling liquid L in a casing 1 contacts the solid heat accumulating material S in the hollow container 5 to solidify the super-cooling liquid L to generate a latent heat which is high enough to be the melting temperature of the heat accumulating material. After the solidification, the hollow container 5 is slid back, and the resilient valve structure is closed to completely separate the solid heat accumulating material S in the hollow container 5 from the heat accumulating material in the casing 1 to hold it in abeyance until the next solidification operation. In this manner, the solidification of the heat accumulating material super-cooling liquid L in the casing 1 can be repeated as needed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過冷却状態にある潜熱蓄熱材を必要に応じて
固化させ、所定温度での潜熱の放出を可能ならしめる装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device that solidifies a latent heat storage material in a supercooled state as necessary, and makes it possible to release latent heat at a predetermined temperature. .

(従来の技術) 潜熱型の蓄熱システムは、高い蓄熱密度を有し、理想状
態では蓄熱時に蓄熱材の温度が変化せず、一定温度の熱
エネルギーを容易に得ることができる。しかしながら、
蓄熱材に過冷却が生ずると、潜熱が放出されず、一定温
度の熱エネルギーを得ることが困難となる。そのような
過冷却を避けようとすると、蓄熱材の種類が限定され、
また効率も悪くなる。また、一般的には、蓄熱材の過冷
却を防止する方法として、発核剤を添加する方法が行な
われているが、この方法では過冷却防止に有効な発核剤
は蓄熱材の種類によって異なるため、それぞれ蓄熱材の
種類によって発核剤を使い分ける必要がある。
(Prior Art) A latent heat type heat storage system has a high heat storage density, and in an ideal state, the temperature of the heat storage material does not change during heat storage, and thermal energy at a constant temperature can be easily obtained. however,
When supercooling occurs in the heat storage material, latent heat is not released, making it difficult to obtain thermal energy at a constant temperature. In order to avoid such supercooling, the types of heat storage materials are limited, and
Also, the efficiency will be poor. In addition, generally speaking, a method of adding a nucleating agent to prevent supercooling of heat storage materials is carried out, but in this method, the nucleating agent that is effective in preventing supercooling depends on the type of heat storage material. Since they are different, it is necessary to use different nucleating agents depending on the type of heat storage material.

具体的には、潜熱型蓄熱材として無掘水和物が多く使用
されているが、例えばチオ硫酸ナトリウム・5水和物、
硝酸亜鉛・6水和物、リン酸水素二ナトリウム・12水
和物、硝酸カルシウム・4水和物、塩化カルシウム・6
水和物、酢酸ナトリウム・3水和物などは特に過冷却の
程度が大きく、室温においても固化しない。そのために
、それぞれの蓄熱材に対して特定の発核剤が選定され、
添加される。
Specifically, uncut hydrates are often used as latent heat storage materials, such as sodium thiosulfate pentahydrate,
Zinc nitrate hexahydrate, disodium hydrogen phosphate dodecahydrate, calcium nitrate tetrahydrate, calcium chloride hexahydrate
Hydrates, sodium acetate trihydrate, etc. have a particularly large degree of supercooling and do not solidify even at room temperature. To this end, a specific nucleating agent is selected for each heat storage material,
added.

かかる制限を有しない通論L】防止法として、特殊電極
を使用し、過冷却状態になった潜熱蓄熱材に電圧を印加
して結晶の生成を開始させる方法(特開昭57−174
693号公報)、潜熱型蓄熱材に特定波長の音波を加え
て凝固させる方法(特開昭59−120676号公報)
などが提案されている。
[General theory that does not have such restrictions] As a prevention method, a method is proposed in which a special electrode is used to apply a voltage to a latent heat storage material that has become supercooled to start crystal formation (Japanese Patent Laid-Open No. 57-174
693), a method of solidifying a latent heat type heat storage material by applying sound waves of a specific wavelength (Japanese Patent Application Laid-open No. 120676/1983)
etc. have been proposed.

しかしながら、上記従来技術では、装置が非常に高価と
なり、更には固化の再現性が悪い等の問題があるため、
未だ実用化されるには至っていない。
However, with the above conventional technology, the equipment is very expensive and there are further problems such as poor solidification reproducibility.
It has not yet been put into practical use.

一方、過冷却液体にその自結晶を入れて、過冷却液体を
固化させることは、晶析工学上の基本的操作としてよく
知られている。この操作を潜熱型蓄熱材の過冷却液体を
固化させるのに適用できると、非常に便利である。
On the other hand, putting the self-crystals into a supercooled liquid and solidifying the supercooled liquid is well known as a basic operation in crystallization engineering. It would be very convenient if this operation could be applied to solidify the supercooled liquid of the latent heat storage material.

(発明が解決しようとする問題点) ところが、蓄熱材として多く使用される無機水和物は、
密封状態での使用が必須であるため、密封されている蓄
熱材へ、その自結晶を必要に応じて繰り返し投入するこ
とは、装置上極めて困ガである。
(Problems to be solved by the invention) However, inorganic hydrates, which are often used as heat storage materials,
Since it is essential to use it in a sealed state, it is extremely troublesome for the equipment to repeatedly introduce the self-crystals into the sealed heat storage material as needed.

本発明の目的は、このような密封状態にある蓄熱材の過
冷却液体へ、その自結晶を容易に繰り返して投入し、過
冷却液体を任意に固化させることのできる装置を提供す
るにある。
An object of the present invention is to provide an apparatus that can easily and repeatedly inject self-crystals into the supercooled liquid of a heat storage material in such a sealed state and solidify the supercooled liquid as desired.

(問題点を解決するための手段) 本発明は、上記目的を達成するためになされたものであ
り、潜熱型蓄熱材の適冷fJ]lf体を充填した蓄熱器
の本体容器に、本体容器外側への密閉した突出部と本体
容器内側への開孔部を有する突出部とから成り、前記蓄
熱材の固体を充填した中空容器を、シール用ブツシュと
一体に設【プるか若しくはシール用ブツシュに′iJl
設した弾性弁4M1体を介して摺動自在に設けたことを
特徴とする過冷却液体の固化装置である。
(Means for Solving the Problems) The present invention has been made to achieve the above object, and includes a main body container of a heat storage device filled with an appropriately cooled fJ]lf body of a latent heat type heat storage material. A hollow container consisting of a sealed protrusion to the outside and a protrusion having an opening to the inside of the main container, and filled with the solid heat storage material, is installed integrally with a sealing bushing or a sealing bushing is provided. Bushi ni'iJl
This is a supercooled liquid solidification device characterized in that it is slidably provided via an elastic valve 4M1 body.

以下、図面により本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は、本発明の過冷却液体の固化装置の一例を示す
縦断面図であり、1は蓄熱材の過冷却液体りを密閉充填
した蓄熱器の本体容器、2は断熱材層、3はシール用ブ
ツシュ、4はシール用ブツシュ3と一体に設(プるか若
しくはシール用ブツシュ3に連設した弾性弁構造体、5
は蓄熱材の固体Sを充填した中空容器である。中空容器
5は、シール用ブツシュ3及び弾性弁構造体4を介して
本体容器1に摺動自在に取付けられており、本体容器外
側への突出部6と本体容器内側への突出部7とで構成さ
れている。中空容器5の本体容器外側への突出部6は密
閉されており、本体容器内側への突出部7には開孔部8
が設けられている。
FIG. 1 is a vertical cross-sectional view showing an example of the supercooled liquid solidification device of the present invention, in which 1 is a main body container of a heat storage device hermetically filled with a supercooled liquid as a heat storage material, 2 is a heat insulating material layer, and 3 4 is a sealing bushing, 4 is an elastic valve structure that is integrated with the sealing bushing 3 (or is connected to the sealing bushing 3, and 5 is an elastic valve structure that is connected to the sealing bushing 3;
is a hollow container filled with solid S as a heat storage material. The hollow container 5 is slidably attached to the main container 1 via a sealing bush 3 and an elastic valve structure 4, and has a protrusion 6 to the outside of the main container and a protrusion 7 to the inside of the main container. It is configured. The protrusion 6 of the hollow container 5 to the outside of the main container is sealed, and the protrusion 7 to the inside of the main container has an opening 8.
is provided.

弾性弁構造体4は、ゴム等の弾性体によって構成されて
おり、中空容器5を内側に挿入覆ると聞き、中空容器5
を外側に引き出すと閉じるようになっている。第1図の
装置では、この弾性弁@還体4は、シール用ブツシュ3
と一体に構成されているが、シール用ブツシュ3とは別
体にして、このブツシュ3にM設させてもよい。
The elastic valve structure 4 is made of an elastic body such as rubber, and it is said that the hollow container 5 is inserted and covered inside the hollow container 5.
It closes when you pull it outward. In the device shown in FIG. 1, this elastic valve @ return body 4 is
Although it is configured integrally with the sealing bushing 3, it may be made separate from the sealing bushing 3 and the bushing 3 may be provided with the M.

中空容器5は、弾性弁構造体4への挿入を容易にするた
めに、第2図に示すように、本体容器内側への突出部7
の先端を球状又は円錐状に形成するのが望ましい。更に
、本体容器内側への突出部7の開孔部8はこの突出部7
の先端近傍に設け、中空容器5を本体容器外側へ摺動さ
せた場合、開孔部8がシール用ブツシュ3の内面で閉塞
されるようにするのが好ましい。一方、本体容器1内の
蓄熱材へ熱を貯蔵する際に、中空容器5内の蓄熱材固体
にも熱が伝わって、この固体までが完全に融解してしま
ったのでは、適冷気液体を任意に繰り返し固化させるこ
とができなくなるので、中空容器5の一端を、蓄熱時に
は常に外気温度となるよう本体容器1の外側へ突出させ
ておき、中空容器5内に蓄熱材が固体状態で保存される
ようにすることが必要である。更に、中空容器5の熱容
吊は、本体容器1の熱容量に対し無視し得る程度に小さ
くなければならないため、中空容器5は、細長い注射針
に似た形状にするのが好ましい。また、シール用ブツシ
ュ3及び弾性弁構造体4に対する中空容器5の活動を円
滑に行なわせるために、中空容器5の外壁をテフロン等
の低摩擦材料で被覆することは有効な手段である 尚、本発明の装置は、室温にて過冷却状態となり得るす
べての潜熱型蓄熱材に適用することができる。
The hollow container 5 has a protrusion 7 inside the main container, as shown in FIG. 2, to facilitate insertion into the elastic valve structure 4.
It is desirable to form the tip into a spherical or conical shape. Furthermore, the opening 8 of the protrusion 7 toward the inside of the main container is
It is preferable to provide the opening 8 near the tip of the sealing bushing 3 so that the opening 8 is closed by the inner surface of the sealing bushing 3 when the hollow container 5 is slid to the outside of the main container. On the other hand, when storing heat in the heat storage material in the main body container 1, the heat may also be transmitted to the heat storage material solid in the hollow container 5, and this solid may completely melt. Since solidification cannot be repeated arbitrarily, one end of the hollow container 5 is made to protrude to the outside of the main container 1 so that the temperature is always at the outside temperature during heat storage, and the heat storage material is stored in the hollow container 5 in a solid state. It is necessary to ensure that Further, since the heat capacity of the hollow container 5 must be negligibly small compared to the heat capacity of the main container 1, it is preferable that the hollow container 5 has a shape resembling an elongated injection needle. Furthermore, in order to allow the hollow container 5 to operate smoothly with respect to the seal bushing 3 and the elastic valve structure 4, it is an effective means to coat the outer wall of the hollow container 5 with a low-friction material such as Teflon. The device of the present invention can be applied to all latent heat type heat storage materials that can be in a supercooled state at room temperature.

(作用) まず、蓄熱器の中空容器1内に密1′4充填した蓄熱材
の過冷却液体りから潜熱を取出ず場合には、第1図の状
態から、中空容器5をその軸方向に活動さゼて、第3図
に示すように、内側突出部7をシール用ブツシュ3と一
体に構成した弾性弁構造体4内に貫通させ、突出部7に
設けた開孔部8を蓄熱材過冷却液体り中へ挿入する。こ
の操作によって、本体容器1内の蓄熱材過冷却液体りと
中空容器5内の蓄熱材固体Sとが接触し、過冷却液体り
が固化して、蓄熱材の融解温度に近い潜熱が発生する。
(Function) First, if the latent heat is not extracted from the supercooled liquid of the heat storage material packed in the hollow container 1 of the heat storage device 1'4, the hollow container 5 is moved in the axial direction from the state shown in FIG. During activation, as shown in FIG. 3, the inner protrusion 7 is penetrated into the elastic valve structure 4 which is integrated with the seal bushing 3, and the opening 8 provided in the protrusion 7 is inserted into the heat storage material. Insert into supercooled liquid tank. Through this operation, the supercooled liquid heat storage material in the main container 1 and the solid heat storage material S in the hollow container 5 come into contact, the supercooled liquid solidifies, and latent heat close to the melting temperature of the heat storage material is generated. .

過冷却液体りが固化した後は、中空容器5を逆方向に摺
動させて弾性弁構造体4を閉じ、第1図の状態に戻し、
開孔部8と過冷却液体しどの接触を断つ。かくして、中
空容器5内の蓄熱材固体Sは、本体容器1内の蓄熱材か
ら完全に隔離され、次回の固化操作のために待機させら
れる。
After the supercooled liquid solidifies, the hollow container 5 is slid in the opposite direction to close the elastic valve structure 4 and return to the state shown in FIG.
The contact between the opening 8 and the supercooled liquid is cut off. In this way, the solid heat storage material S in the hollow container 5 is completely isolated from the heat storage material in the main container 1, and is kept on standby for the next solidification operation.

このようにして、蓄熱器の本体容器1内の蓄熱材過冷却
液体りを必要に応じ繰り返し固化させることができる。
In this way, the heat storage material supercooled liquid in the main body container 1 of the heat storage device can be repeatedly solidified as required.

(実施例) 以下、実施例により、本発明装置を更に詳細に説明する
(Example) Hereinafter, the apparatus of the present invention will be explained in more detail with reference to Examples.

実施例 第1図に示すように、断熱材層2で包まれた蓄熱器の本
体容器1に、シール用ブツシュ3及びこのブツシュ3と
一体に構成したフッ素ゴムの弾性弁4113a体4を介
して、中空容1a5をHHした。中空容器5としては、
外径1順のステンレススチール製チューブを使用し、そ
れは本体容器外側への突出部6と本体容器内側への突出
部7とで構成されており、本体容器内側への突出部7の
先端は、第2図の如く球状であり、その先端近傍に開孔
部8が設けられてている。
Embodiment As shown in FIG. 1, a sealing bushing 3 and a fluororubber elastic valve 4113a body 4 formed integrally with the bushing 3 are inserted into the main body container 1 of the heat storage device wrapped with a heat insulating material layer 2. , the hollow volume 1a5 was HHed. As the hollow container 5,
A stainless steel tube with an outer diameter of 1 is used, and it is composed of a protruding part 6 to the outside of the main container and a protruding part 7 to the inside of the main container, and the tip of the protruding part 7 to the inside of the main container is As shown in FIG. 2, it is spherical and has an opening 8 near its tip.

このステンレススチール製チューブを注射器に接続し、
蓄熱材として使用する酢酸ナトリウム・3水和物(融点
58℃)の過冷却液体をこのチューブ内へ吸い上げた後
、固化させることにより、蓄熱材固体Sを中空容器(デ
ユープ)5に充填した。この際、中空容器(チューブ)
5の本体容器外側への突出6に該当する側を、その先端
から50 IRaの位置で切断し、その切断部をシリコ
ーンシーリング材で閉塞した。
Connect this stainless steel tubing to the syringe and
A supercooled liquid of sodium acetate trihydrate (melting point 58° C.) used as a heat storage material was sucked up into this tube and solidified to fill the hollow container (dupe) 5 with the solid heat storage material S. At this time, a hollow container (tube)
The side corresponding to the protrusion 6 to the outside of the main container of 5 was cut at a position of 50 IRa from the tip, and the cut portion was closed with a silicone sealant.

弾性弁構造体4は、シール用ブツシュ3と一体にフッ素
ゴムで作られており、その中を活動する中空容器5によ
って開閉できるようにした。
The elastic valve structure 4 is made of fluororubber integrally with the sealing bush 3, and can be opened and closed by a hollow container 5 moving inside.

次いで、本体容器1に蓄熱材として酢酸ナトリウム・3
水和物(融点58℃)を充填し、第1図に示ずように、
中空容器5を本体容器外側へ引き出し、本体容器1内の
蓄熱材との接触を断った状態で、本体容器1内に付設し
である熱交換器(図示せず)を用いて、蓄熱材を加熱融
解させた後、−晩装置して過冷却液体りとした。
Next, sodium acetate 3 was added to the main container 1 as a heat storage material.
Filled with hydrate (melting point 58°C), as shown in Figure 1,
With the hollow container 5 pulled out to the outside of the main container 1 and contact with the heat storage material inside the main container 1 cut off, the heat storage material is removed using a heat exchanger (not shown) attached to the main container 1. After heating and melting, the mixture was kept overnight to form a supercooled liquid.

次いで、中空容器5を本体容器内側へ活動させて第3図
に示すように、中空容器5の開孔部を本体容器1内の過
冷却液体り内に挿入したところ、過冷却液体りに中空容
器5内の蓄熱材固体Sが作用して、過冷却液体りは固化
し、蓄熱材の融解温度に近い潜熱が発生した。
Next, when the hollow container 5 is moved inside the main container and the opening of the hollow container 5 is inserted into the supercooled liquid reservoir in the main container 1, as shown in FIG. The solid heat storage material S in the container 5 acted to solidify the supercooled liquid, generating latent heat close to the melting temperature of the heat storage material.

過冷却液体りの固化後は、中空容器5を本体容器外側へ
摺動させで、第1図に示ず状態に戻し、本体容器1内の
蓄熱材と中空容器5内の蓄熱材固体との接触を断って、
次の固化操作のために待機させた。
After the supercooled liquid solidifies, the hollow container 5 is slid to the outside of the main container to return to the state not shown in FIG. Cut off contact,
It was kept on standby for the next solidification operation.

この操作を10回繰り返したが、中空容器5を活動させ
て、中空容器5の開孔部8を本体容器1内の過冷却液体
り内に挿入することによって、任意に再現性よく、蓄熱
材過冷却液体を固化さゼることができた。
This operation was repeated 10 times, and by activating the hollow container 5 and inserting the opening 8 of the hollow container 5 into the supercooled liquid tank in the main container 1, the heat storage material could be The supercooled liquid could be solidified.

(弁明の効果) 本発明の装置によれば、次のような効果を秦することが
できる。
(Effects of explanation) According to the device of the present invention, the following effects can be achieved.

1)過冷却状態の蓄熱材を必要時に固化させることによ
り、容易に潜熱を取り出1ことができ、それによって、
潜熱の長期蓄熱が可能となる。
1) By solidifying the supercooled heat storage material when necessary, latent heat can be easily extracted1, thereby
Long-term storage of latent heat becomes possible.

2)構造が非常に簡単であり、しかも過冷却状態で潜熱
を蓄えるために本体容器の断熱材の吊が少なくてすむの
で、′!7造コストを低減させることができる。
2) The structure is very simple, and because it stores latent heat in a supercooled state, there is less need to hang the insulation material of the main container.'! 7 construction cost can be reduced.

3)過冷却液体の固化を、開孔部の開閉によって行なえ
るようにしたので、過冷却液体を任意に繰り返して固化
させることができる。
3) Since the supercooled liquid can be solidified by opening and closing the opening, the supercooled liquid can be solidified repeatedly as desired.

4)室温にて、過冷却状態となり得る全ての蓄熱材に対
して適用可能であり、蓄熱材として融点が高いものを用
いると、緊急用の加熱装置として使用することができる
4) It is applicable to all heat storage materials that can become supercooled at room temperature, and if a heat storage material with a high melting point is used, it can be used as an emergency heating device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置の一例を示す縦断面図、第2図は
、本発明装置に使用する中空容器の例を示す縦断面図、
第3図は、第1図に示した本発明装置の作動状態を説明
するための要部縦断面図である。 1・・・本体容器 3・・・シール用ブツシュ 4・・・弾性弁4M造体 5・・・中空容器 6・・・中空容器の外側突出部 7・・・中空容器の内側突出部 8・・・開孔部 L・・・蓄熱材適冷fJJ液体 S・・・蓄熱材固体 代理人 弁狸士 吉 1)俊 夫 手続補正書(自発) 昭和61年10月30日 昭和61年特許願第154892号 2 発明の名称 過冷却液体の同化装置 3 補正をする者 事件との関係 特許出願人 名称 (438)エヌオーケー株式会社4 代理人 (
〒105) 住所 東京都港区芝大門−丁目2番7号5 補正の対象 6 補正の内容 第6真下第6行の「適冷気液体」を「過冷却液体−に訂
正する。
FIG. 1 is a vertical cross-sectional view showing an example of the device of the present invention, FIG. 2 is a vertical cross-sectional view showing an example of a hollow container used in the device of the present invention,
FIG. 3 is a longitudinal sectional view of a main part for explaining the operating state of the device of the present invention shown in FIG. 1... Main body container 3... Sealing bush 4... Elastic valve 4M structure 5... Hollow container 6... Outer protrusion of hollow container 7... Inner protrusion of hollow container 8. ...Opening part L...Heat storage material suitable cooling fJJ liquid S...Heat storage material solid representative Bentanushi Yoshi 1) Toshio Procedural amendment (voluntary) October 30, 1985 Patent application filed in 1988 No. 154892 2 Name of the invention Assimilation device for supercooled liquid 3 Relationship with the case of the person making the amendment Name of the patent applicant (438) NK Co., Ltd. 4 Agent (
Address: 2-7-5 Shiba Daimon-chome, Minato-ku, Tokyo Target of amendment 6 Contents of the amendment In the 6th line directly below the 6th line, ``appropriately cooled gas liquid'' is corrected to ``supercooled liquid.''

Claims (1)

【特許請求の範囲】 1、潜熱型蓄熱材の過冷却液体を充填した蓄熱器の本体
容器に、本体容器外側への密閉した突出部と本体容器内
側への開孔部を有する突出部とから成り、前記蓄熱材の
固体を充填した中空容器を、シール用ブッシュと一体に
設けるか若しくはシール用ブッシュに連設した弾性弁構
造体を介して摺動自在に設けたことを特徴とする過冷却
液体の固化装置。 2、前記中空容器の本体容器内側への突出部先端が、球
状又は円錐状をなしている特許請求の範囲第1項記載の
過冷却液体の固化装置。 3、前記開孔部が、前記中空容器の本体容器内側への突
出部先端近傍の周面に設けられている特許請求の範囲第
1項又は第2項記載の過冷却液体の固化装置。
[Scope of Claims] 1. A main body container of a heat storage device filled with a supercooled liquid of a latent heat storage material has a protrusion portion having a sealed protrusion to the outside of the main container and an opening to the inside of the main body container. A supercooling system characterized in that the hollow container filled with the solid heat storage material is provided integrally with the sealing bush or slidably provided via an elastic valve structure connected to the sealing bush. Liquid solidification equipment. 2. The supercooled liquid solidification device according to claim 1, wherein the tip of the protruding portion of the hollow container toward the inside of the main container has a spherical or conical shape. 3. The supercooled liquid solidification device according to claim 1 or 2, wherein the opening is provided on the circumferential surface of the hollow container near the tip of the protrusion toward the inside of the main container.
JP61154892A 1986-07-01 1986-07-01 Device for solidifying super-cooling liquid Pending JPS6314089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154892A JPS6314089A (en) 1986-07-01 1986-07-01 Device for solidifying super-cooling liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154892A JPS6314089A (en) 1986-07-01 1986-07-01 Device for solidifying super-cooling liquid

Publications (1)

Publication Number Publication Date
JPS6314089A true JPS6314089A (en) 1988-01-21

Family

ID=15594233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154892A Pending JPS6314089A (en) 1986-07-01 1986-07-01 Device for solidifying super-cooling liquid

Country Status (1)

Country Link
JP (1) JPS6314089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193246A (en) * 2019-05-27 2020-12-03 国立大学法人岐阜大学 Stimulation responsive composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193246A (en) * 2019-05-27 2020-12-03 国立大学法人岐阜大学 Stimulation responsive composite material

Similar Documents

Publication Publication Date Title
JP6618054B2 (en) Equipment for heating or cooling the material contained inside
US3075529A (en) Therapeutic heat-transfer device
US3093308A (en) Method and means for controllably releasing heat from super-cooled liquids
AU561071B2 (en) Thermochemical energy storage
JPS6314089A (en) Device for solidifying super-cooling liquid
US1384747A (en) Chemical heater
JPS6314090A (en) Device for selectively solidifying super-cooling liquid
KR950703723A (en) Heat Accumulator, IN PARTICULAR FOR LATENT HEAT
WO1985005440A1 (en) Heat retaining devices
JPS636389A (en) Solidfying device for supercooled liquid
US1972426A (en) Method of filling an absorber generator
US4296801A (en) Reusable heat devices containing xylitol as the heat-storage material
JPH0747034B2 (en) Heat storage
JPH0113095Y2 (en)
JPS63108156A (en) Thermal accumulator
JPS6164249A (en) Heat accumulation unit
JPS63225814A (en) Temperature keeping device
JPS62298354A (en) Heat accumulator
JPS5740583A (en) Regenerating material
JPH01218648A (en) Crushing method and heating stop cock agent capsule for crushing
JPH01197301A (en) Hydrogen storage vessel
JPH0362882A (en) Method for releasing supercooling of thermal energy storing agent having supercooling property
JPH03267475A (en) Static crushing agent
JPS62200093A (en) Refractory heat-insulating material structure
JPS52112851A (en) Heat insulating box