JPS6314031B2 - - Google Patents

Info

Publication number
JPS6314031B2
JPS6314031B2 JP2519084A JP2519084A JPS6314031B2 JP S6314031 B2 JPS6314031 B2 JP S6314031B2 JP 2519084 A JP2519084 A JP 2519084A JP 2519084 A JP2519084 A JP 2519084A JP S6314031 B2 JPS6314031 B2 JP S6314031B2
Authority
JP
Japan
Prior art keywords
coal
charging
carbonization chamber
hopper
consolidated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2519084A
Other languages
Japanese (ja)
Other versions
JPS60170692A (en
Inventor
Teruo Tsutsumi
Toshuki Nasu
Hiroyasu Murakami
Toshiaki Hodate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Nippon Steel Corp
Original Assignee
IHI Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Nippon Steel Corp filed Critical IHI Corp
Priority to JP2519084A priority Critical patent/JPS60170692A/en
Publication of JPS60170692A publication Critical patent/JPS60170692A/en
Publication of JPS6314031B2 publication Critical patent/JPS6314031B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は炭化室内に重力落下で装入炭を装入す
るコークス炉における装入炭の装入方法及び装置
に係り、特に装入炭を予め成型することなく装入
の直前で加圧して装入するようにしたものに関す
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method and apparatus for charging coal in a coke oven, in which the coal is charged by gravity falling into a coking chamber, and in particular, the present invention relates to a method and apparatus for charging coal in a coke oven, in which the coal is charged in advance by gravity. It relates to something that is pressurized and charged immediately before charging without being molded.

[発明の技術的背景] 一般に、室炉式コークス炉における装入炭の炭
化室への装入は、装炭車が使用され、この装炭車
上のホツパ内に貯留された装入炭がホツパ下部の
テーブルフイーダを介して、炭化室天井の装入口
より重力落下の状態で装入されている。炭化室の
高さは大型化に伴つて高くなり、近年は6〜7m
となつているが、装入炭は粉炭であり、その粒度
が小さく軽いため(粒度は3mm以下が87%、自然
状態の嵩密度は0.5t/m3)、上記粉炭のみの重力
落下では炭化室内における充填密度が小さく、且
つ、炭化室の高さ方向で落下距離の小さい上部は
下部に比べて更に充填密度が小さくなつている。
[Technical Background of the Invention] Generally, a coal loading car is used to charge the charged coal into the carbonization chamber in a room furnace type coke oven, and the charged coal stored in a hopper on the coal loading car is transferred to the lower part of the hopper. The carbonization chamber is loaded through a table feeder through a charging port on the ceiling of the carbonization chamber under gravity. The height of the carbonization chamber increases as the size increases, and in recent years it has increased to 6 to 7 m.
However, the charged coal is pulverized coal, and its particle size is small and light (87% of the particles are 3 mm or less, and the bulk density in the natural state is 0.5 t/m 3 ), so if the pulverized coal alone falls under gravity, it will not be carbonized. The packing density in the chamber is small, and the packing density in the upper part, where the falling distance is small in the height direction of the carbonization chamber, is even smaller than that in the lower part.

また、装炭車からの装入は垂直方向に限定され
ているため、装入口直下部に比べて装入口中間部
は低い充填密度となり、炭化室の長手方向の充填
密度のアンバランスが生じる。
Furthermore, since charging from the coal loading car is limited to the vertical direction, the filling density in the middle of the charging port is lower than that directly below the charging port, resulting in an imbalance in the packing density in the longitudinal direction of the coking chamber.

ところで、コークス強度は充填密度に比例する
たわ(石炭が加熱により軟化溶融しコークス化す
る過程で充填密度が大きいと粒子間距離が小さい
ため、粒子間の反応が円滑に行われ強度の大きな
コークスとなる)、充填密度が小さいことは乾留
してコークスを作るときコークス強度が弱いとい
うことである。したがつて、単なる粉炭のみの重
力落下ではコークス強度が弱く、しかも炭化室の
高さ方向でコークス強度にバラツキが生じ、上部
にいくにしたがつて更に強度の弱いコークスとな
る。コークス強度が弱いということは粉コークス
の発生量を増加させ、有用な塊コークスの歩留低
下を生じさせるので、充填密度の向上が必要とな
る。
By the way, coke strength is proportional to packing density (in the process of coal softening and melting by heating and turning into coke, when the packing density is high, the distance between particles is small, so the reaction between particles is smooth and the coke has a high strength. ), a low packing density means that the coke strength is weak when carbonized to make coke. Therefore, if only pulverized coal falls by gravity, the coke strength is weak, and furthermore, the coke strength varies in the height direction of the carbonization chamber, and the coke becomes weaker as it goes to the top. Weak coke strength increases the amount of coke breeze generated and reduces the yield of useful lump coke, so it is necessary to improve the packing density.

そこで、充填密度向上の1つの方法として、通
常の粉炭に豆炭状の成型炭(サイズ51×41×31
mm、炭密度1.18t/m3)を30〜40%配合して装入
する成型炭配合法が、従来考えられ実用化するに
至つている。これによれば、単なる粉炭の重力落
下による装入方法に比してコークス強度をかなり
向上させることができる。
Therefore, one method to improve packing density is to add pulverized charcoal (size 51 x 41 x 31
A method of blending briquette coal in which 30 to 40% of molten coal (mm, coal density 1.18 t/m 3 ) is blended and charged has been considered and has been put into practical use. According to this method, the coke strength can be considerably improved compared to a charging method that simply uses gravitational fall of pulverized coal.

[背景技術の問題点] しかしながら、成型炭配合法には次のような
種々の問題がある。
[Problems with Background Art] However, the briquette blending method has various problems as follows.

成型炭製造設備及び粉炭との均一混合設備を
必要とするが、これらの設備が大型となる。
Molded coal manufacturing equipment and equipment for uniformly mixing powdered coal are required, but these equipments are large-sized.

設備は大型であり装炭車上に搭載できないた
め地上に設置され、粉炭に成型炭を混合したも
のが、ベルトコンベヤでコークス炉上方の石炭
塔内の貯槽に搬入され、装入車のホツパに切り
出される。
The equipment is too large to be mounted on a coal charging car, so it is installed on the ground.The mixture of pulverized coal and briquette coal is carried by a belt conveyor to a storage tank in a coal tower above the coke oven, and then cut into the hopper of a charging car. It can be done.

したがつて、成型炭は炭化室内に装入される
までにその搬送途中で大きな衝撃を何度も受け
るため、その破損防止のために結合剤(ピツチ
等)を使用して大きな圧力で成型されている。
Molded coal is therefore subjected to many large impacts during transport before it is charged into the carbonization chamber, so to prevent damage, a binder (such as Pitch) is used to mold the coal under high pressure. ing.

しかし、添加する結合剤の値段が高いためラ
ンニングコストが高くなり、経済的に難点があ
る。
However, since the price of the binder added is high, the running cost is high, which is an economic disadvantage.

地上で均一に混合しても装炭車までの搬送過
程において成型炭と粉炭の分離が起り、炭化室
内に充填された状態で成型炭の偏析が生じる。
成型炭が偏析すると成型炭同士の間に空隙が生
じ偏析部は均一な混合部よりも嵩密度が低下し
充填密度のアンバランスが生じる。
Even if the coal is mixed uniformly on the ground, separation of briquette coal and powdered coal occurs during the transportation process to the coal loading car, and segregation of briquette coal occurs when it is filled in the carbonization chamber.
When the coal briquettes segregate, voids are created between the coal briquettes, and the bulk density of the segregated portion is lower than that of the uniformly mixed portion, resulting in an imbalance in packing density.

成型炭の嵩密度及び粉炭との配合割合は一定
で調整できないため、これを混合した装入炭の
嵩密度も一定となり、炭化室内に充填された状
態では高さ方向に充填密度のアンバランスが生
じ、特に落差の小さい上部においては重力によ
る突き固めがないので充填密度が小さく所謂泡
コークスとなる。
Since the bulk density of briquette coal and the blending ratio with powdered coal are constant and cannot be adjusted, the bulk density of the charged coal mixed with this will also be constant, and when it is filled in the carbonization chamber, there will be an imbalance in the packing density in the height direction. Especially in the upper part where the head is small, there is no tamping due to gravity, so the packing density is low and it becomes so-called foam coke.

装入が垂直方向に限定されているため、炭化
室の長手方向の充填密度にアンバランスが生じ
る。
Since the charging is limited to the vertical direction, there is an unbalance in the packing density in the longitudinal direction of the carbonization chamber.

[発明の目的] 本発明は上述した従来の問題点を解決すべくな
されたもので、その目的は重力落下による装入炭
装入方法を採用しながら、高価な設備や結合剤を
使用することなく粉炭を圧密して装入することに
より炭化室内の充填密度をアツプしてコークスの
強度向上をはかると共に、高さ方向及び長手方向
の均質化をはかつてコークス品質及び粉率の低下
による塊コークス歩留を格段と向上させることが
できるコークス炉における装入炭の装入方法及び
その装置を得ることである。
[Object of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to adopt a method of charging coal by gravity drop, but without using expensive equipment or binders. By compacting and charging pulverized coal, the packing density in the coking chamber is increased and the strength of the coke is improved.In addition, homogenization in the height and longitudinal directions has been achieved by reducing lump coke due to a decrease in coke quality and powder ratio. An object of the present invention is to provide a method for charging coal in a coke oven and an apparatus therefor, which can significantly improve the yield.

本発明は、炭化室内の充填密度向上のための装
入炭嵩密度は、予め成型して高めるのではなく、
装入直前で高めるようにした方が外部からの衝撃
を受けないで済むということの知見のもとに、な
されたものである。
In the present invention, the bulk density of charged coal to improve the packing density in the carbonization chamber is not increased by pre-forming.
This was done based on the knowledge that it would be better to raise the temperature immediately before charging to avoid receiving external shocks.

即ち、第1の発明のコークス炉における装入炭
の装入方法は、炭化室の上方に配置させた圧密手
段により粉炭を加圧して、含有水分のみを結合剤
とした圧密炭を装入直前に形成し、この圧密炭と
必要に応じて加える粉炭とを炭化室内に落下装入
すると共に、炭化室内の充填密度が一定となるよ
うに、炭化室内での堆積により変化する落差に応
じて、上記圧密炭の嵩密度ないし圧密炭と粉炭と
の装入量比を調節するようにしたものである。
That is, in the method of charging coal in a coke oven according to the first invention, powdered coal is pressurized by a compaction means placed above the coking chamber, and compacted coal with only contained moisture as a binder is produced immediately before charging. This compacted coal and powdered coal added as needed are dropped into the carbonization chamber, and in order to keep the packing density in the carbonization chamber constant, the coal is mixed according to the head that changes due to the accumulation in the carbonization chamber. The bulk density of the consolidated coal or the charging ratio of the consolidated coal to the powdered coal is adjusted.

また、第2の発明のコークス炉における装入炭
の装入装置は、炭化室の装入口の真上に切出弁に
より開閉される出口を有するホツパを設け、該ホ
ツパの出口に、ホツパ内に貯留されている粉体の
一部を内部に取り込む圧密枠体と、該圧密枠体内
に取り込まれた粉炭を上記切出弁との間で加圧し
て圧密炭を形成する加圧手段とからなる圧密手段
を取り付け、上記切出弁を開放することにより圧
密枠体内の圧密炭を装入口より炭化室内に重力落
下させるように構成したものである。
Further, in the charging device for charging coal in a coke oven according to the second invention, a hopper having an outlet opened and closed by a cut-off valve is provided directly above the charging port of the coking chamber, and a hopper is provided at the outlet of the hopper. a consolidation frame that takes in a part of the powder stored in the consolidation frame, and a pressurizing means that pressurizes the powdered coal taken into the consolidation frame between the above-mentioned cut-out valve and forms consolidated coal. The compacted coal in the compaction frame is allowed to fall by gravity into the carbonization chamber from the charging port by opening the cut-out valve.

これにより地上に大型設備を要することなく装
入炭の嵩密度を高めることができ、設備が複雑に
なつたり、設備費が高価にならないようにしたも
のである。
This makes it possible to increase the bulk density of the charged coal without requiring large-scale above-ground equipment, and prevents the equipment from becoming complicated and equipment costs from increasing.

[発明の実施例] 以下、本発明の好適一実施例を添付図面に従つ
て説明する。
[Embodiments of the Invention] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明方法を実施するためのコーク
ス炉における装入炭装入装置の一例を示す部分断
面図である。
FIG. 1 is a partial sectional view showing an example of a coal charging device in a coke oven for carrying out the method of the present invention.

同図に示す如く、装入炭装入装置1は炭化室2
の上方に設けられ、炭化室2の天井3の上を炭化
室2の幅方向(紙面に直角方向)に走行する台車
4と、この台車4上を炭化室2の長手方向(矢印
で示す紙面の左右方向)に移動自在な移動フレー
ム5と、この移動フレーム5上に固定したホツパ
6と、このホツパ6に固定した圧密装置7と、ホ
ツパ6の出口6Aに連通し炭化室2の天井3に設
けた装入口8に臨むシユート9とから構成されて
いる。
As shown in the figure, the charging coal charging device 1 has a carbonization chamber 2.
A cart 4 is provided above and runs on the ceiling 3 of the carbonization chamber 2 in the width direction of the carbonization chamber 2 (direction perpendicular to the plane of the paper). A movable frame 5 that is movable in the left-right direction), a hopper 6 fixed on the movable frame 5, a compaction device 7 fixed to the hopper 6, and a ceiling 3 of the carbonization chamber 2 communicating with the outlet 6A of the hopper 6. and a chute 9 facing a charging port 8 provided at the top.

上記圧密装置7は、ホツパ6の出口下部を油圧
シリンダ10により開閉する切出弁11を有する
一方、ホツパ6の出口上部から昇降移動してホツ
パ6の出口内に挿抜される圧密枠体としての圧密
筒体12及び加圧手段としての圧密プランジヤ1
3を備えている。圧密筒体12は、ホツパ6にサ
ポート14を介して懸架された副油圧シリンダ1
5により昇降移動自在に支持されて、降下したと
きにホツパ6の出口内に詰つている粉炭16を開
放されているその底部より圧密筒体12内に取り
込むようになつている。この圧密筒体12内に上
記圧密プランジヤ13が嵌め込まれており、この
圧密プランジヤ13は副油圧シリンダ15と同様
に懸架された主油圧シリンダ19により昇降移動
自在に支持されて、降下したとき圧密筒体12内
に取り込まれている粉炭を加圧して圧密炭17を
形成する。この主油圧シリンダ19により圧密プ
ランジヤ13の加圧力は調整自在となつている。
The consolidation device 7 has a cut-off valve 11 that opens and closes the lower part of the outlet of the hopper 6 using a hydraulic cylinder 10, and also has a consolidation frame that moves up and down from the upper part of the outlet of the hopper 6 and is inserted into and removed from the outlet of the hopper 6. Consolidation cylinder 12 and consolidation plunger 1 as pressurizing means
It has 3. The consolidation cylinder 12 is connected to an auxiliary hydraulic cylinder 1 suspended from the hopper 6 via a support 14.
When the hopper 5 is lowered, the pulverized coal 16 stuck in the outlet of the hopper 6 is taken into the compacted cylinder 12 from its open bottom. The consolidation plunger 13 is fitted into this consolidation cylinder 12, and this consolidation plunger 13 is supported by a main hydraulic cylinder 19 suspended in the same way as the auxiliary hydraulic cylinder 15 so as to be movable up and down, and when lowered, the consolidation plunger 13 The powdered coal taken into the body 12 is pressurized to form consolidated coal 17. The main hydraulic cylinder 19 allows the pressing force of the consolidation plunger 13 to be adjusted.

上記シユート9は、上記切出弁11を介してホ
ツパ6の出口6Aに連接した固定シユート9A
と、この固定シユート9Aに連通し炭化室2の長
手方向に揺動自在θな可動シユート9Bとから成
り、共に移動フレーム5に設けられて、ホツパ6
出口から重力落下(自然落下ないし必要に応じて
加速して)排出されてくる装入炭を装入口8から
炭化室2内に装入するように構成されている。上
記移動フレーム5には台車4に設けたピニオン2
0に噛合するラツク21が設けられて、このピニ
オン20の回動により移動フレーム5は台車4上
を矢印方向に移動するようになつており、その移
動を円滑にするために移動フレーム5はその下部
に車輪22を備えている。この移動フレーム5の
移動は上記可動シユート9Bの揺動と連動するよ
うになつており、可動シユート9Bが右側に揺動
すると移動フレーム5はこれとは反対側の左側に
移動し、逆に可動シユート9Bが左側に揺動する
と移動フレーム5は右側に移動して、口径の制限
されている装入口8から可動シユート9Bの先端
が外れないようにしてある。
The chute 9 is a fixed chute 9A connected to the outlet 6A of the hopper 6 via the cutoff valve 11.
and a movable chute 9B that communicates with the fixed chute 9A and is movable θ in the longitudinal direction of the carbonization chamber 2.
The charging coal is discharged from the outlet by falling by gravity (by gravity or accelerated if necessary) and is charged into the carbonization chamber 2 through the charging port 8. The movable frame 5 has a pinion 2 provided on the trolley 4.
A rack 21 that meshes with the pinion 20 is provided, and the rotation of this pinion 20 causes the movable frame 5 to move on the carriage 4 in the direction of the arrow. Wheels 22 are provided at the bottom. The movement of the movable frame 5 is linked with the swinging of the movable chute 9B, so that when the movable chute 9B swings to the right, the movable frame 5 moves to the left side opposite to this, and vice versa. When the chute 9B swings to the left, the movable frame 5 moves to the right to prevent the tip of the movable chute 9B from coming off the loading port 8 whose diameter is limited.

また、台車4は炭化室2の天井3に上に配設し
たレール23上を走行し、紙面に直角方向に幾重
にも並んだ炭化室2に装入装置1を案内するよう
になつている。
Further, the cart 4 runs on rails 23 arranged above the ceiling 3 of the carbonization chamber 2, and guides the charging device 1 to the carbonization chambers 2 arranged in multiple layers in a direction perpendicular to the plane of the paper. .

なお、第1図中24は炭化室2の床、25はホ
ツパ6を移動フレーム5に固定するためのサポー
ト、26は切出弁11を下方より支承する圧力受
座、27は台車4に設けた車輪である。
In FIG. 1, 24 is the floor of the carbonization chamber 2, 25 is a support for fixing the hopper 6 to the movable frame 5, 26 is a pressure receiving seat that supports the cut-out valve 11 from below, and 27 is provided on the trolley 4. It is a wheel.

そして、上述したホツパ6、圧密装置7、シユ
ート9で1組となり、この組が1つの炭化室2の
装入口8の数だけ移動フレーム5に用意されてい
る。
The above-mentioned hopper 6, compaction device 7, and chute 9 form one set, and this set is prepared in the movable frame 5 in the same number as the charging ports 8 of one carbonization chamber 2.

次に、以上の構成よりなる装入炭装入装置の作
用を説明する。
Next, the operation of the coal charging device having the above configuration will be explained.

第2A図において、切出弁11は閉じており、
ホツパ6の出口6Aには粉炭16が詰まつてい
る。圧密プランジヤ13及び圧密筒体12は上限
まで上昇しホツパ6の出口6Aから抜かれてい
る。この状態が装入待ちの状態である。次に、切
出弁11を開き、ホツパ6の出口6Aよりシユー
ト9を介して炭化室2内に重力落下で粉炭16を
装入する(第2B図)。装入中に可動シユート9
Bを揺動させ、炭化室2の長手方向で粉炭16が
同じ高さに充填されるようにする。この際、可動
シユート9Bの揺動と連動させて移動フレーム5
を移動させ、可動シユート9Bの先端が装入口8
から外れないようにする。装入当初、上述のよう
に粉炭16のみを装入するのは、炭化室2の高さ
が6〜7mもありその落差のため粉炭の自重によ
つても充分加速され床24上に衝突するので、粉
炭16のみによつても比較的大きな充填密度で床
24上に充填されるからである。また、落差が大
きいので、後に装入する圧密炭17の床24に対
する衝撃力を緩和して床24を保護するためでも
ある。
In FIG. 2A, the cutoff valve 11 is closed;
The outlet 6A of the hopper 6 is filled with powdered coal 16. The consolidation plunger 13 and the consolidation cylinder 12 rise to the upper limit and are removed from the outlet 6A of the hopper 6. This state is the state of waiting for charging. Next, the cut-off valve 11 is opened, and powdered coal 16 is charged into the carbonization chamber 2 by falling by gravity from the outlet 6A of the hopper 6 through the chute 9 (FIG. 2B). Movable chute 9 during charging
B is rocked so that the powdered coal 16 is filled to the same height in the longitudinal direction of the carbonization chamber 2. At this time, the movable frame 5 is moved in conjunction with the swinging of the movable chute 9B.
Move the tip of the movable chute 9B to the charging port 8.
Make sure it doesn't come off. At the beginning of charging, charging only the pulverized coal 16 as described above is because the height of the coking chamber 2 is 6 to 7 m, and because of the height, the pulverized coal is sufficiently accelerated by its own weight and collides with the floor 24. Therefore, the bed 24 can be filled with a relatively large packing density even with the pulverized coal 16 alone. Furthermore, since the head is large, the purpose is to protect the bed 24 by alleviating the impact force of the consolidated coal 17, which will be charged later, on the bed 24.

適量の粉炭16が炭化室2内に充填されると、
切出弁11を閉じ、圧密プランジヤ13は停止し
たままで圧密筒体12のみを下降させ、ホツパ6
の出口上部よりホツパ6の出口内に装入し、圧密
筒体12内に粉炭16を取り込む(第2C図)。
圧密筒体12の先端がホツパ6の出口下部と密着
すると、圧密筒体12の下降を停止させ、圧密プ
ランジヤ13を下降させ、粉炭16を圧密して含
有水分のみで圧密炭17を形成する(第2D図)。
この場合において、圧密炭17のサイズは、例え
ば装入口8の口径が450φmmであれば400φmm×500
mm程度が良く、その嵩密度は粉炭16乃至圧密炭
17の堆積により変化する落差が小さくなるに従
つて(床24から天井3にかけて)0.7t/m3から
1.1t/m3程度に増加させることが望ましい。この
ように嵩密度を落差に応じて変化させるのは、落
差が小さくなるに従つて落下エネルギーによる突
き固め作用が減少し充填密度が低くなるのを、嵩
密度を増加させることにより防止するためであ
る。また、圧密炭17の嵩密度の下限を0.7t/m3
としているのは、加圧して圧密しなくても粉炭1
6の重力落下のみで得られる値であり、一方、嵩
密度の上限を1.1t/m3としているのは、圧密圧力
の嵩密度との関係が、粉炭の通常水分含有率であ
る9%の際に、1.1t/m3でほぼ飽和に近く、これ
以上の嵩密度を得ようとしても圧密圧力の増加の
割には嵩密度の上昇が小さく不経済となるためで
ある。尤も、水分が過多とならない範囲で圧密す
る際に粉炭16に外部から水を補給するようにし
てもよい。
When an appropriate amount of powdered coal 16 is filled into the carbonization chamber 2,
The cut-out valve 11 is closed, the consolidation plunger 13 remains stopped, and only the consolidation cylinder 12 is lowered, and the hopper 6 is lowered.
The pulverized coal 16 is charged into the outlet of the hopper 6 from the upper part of the outlet, and taken into the consolidated cylinder 12 (FIG. 2C).
When the tip of the consolidation cylinder 12 comes into close contact with the lower part of the outlet of the hopper 6, the descent of the consolidation cylinder 12 is stopped, the consolidation plunger 13 is lowered, and the powdered coal 16 is consolidated to form consolidated coal 17 with only the water content ( Figure 2D).
In this case, the size of the consolidated coal 17 is, for example, 400φmm x 500mm if the diameter of the charging port 8 is 450φmm.
The bulk density changes from 0.7 t/m 3 (from the floor 24 to the ceiling 3) as the head decreases due to the accumulation of powdered coal 16 and consolidated coal 17.
It is desirable to increase it to around 1.1t/m3. The reason why the bulk density is changed according to the head difference in this way is to prevent the tamping effect due to falling energy from decreasing as the head difference decreases and the packing density to decrease, by increasing the bulk density. be. In addition, the lower limit of the bulk density of consolidated coal 17 is 0.7t/m 3
This means that powdered coal 1 can be produced even without being pressurized and consolidated.
On the other hand, the upper limit of bulk density is set at 1.1t/ m3 because the relationship between consolidation pressure and bulk density is 9%, which is the normal moisture content of powdered coal. This is because the bulk density is almost saturated at 1.1 t/m 3 , and even if it is attempted to obtain a bulk density higher than this, the increase in bulk density will be small compared to the increase in consolidation pressure, making it uneconomical. Of course, water may be supplied to the pulverized coal 16 from the outside during compaction within a range where water content does not become excessive.

圧密炭17成型後、切出弁11を再度開き、加
圧により側圧がかかつて圧密筒体12内に止つて
いる圧密炭17を圧密プランジヤ13の下降によ
り押し出し、ブロツク状のまま炭化室2内に重力
落下で装入する(第2E図)。この際、圧密炭1
7は粉炭16が通常含有している水分(約9%)
のみを結合剤として圧密成型されているため、ピ
ツチ等の結合剤を使用している成型炭よりも強度
が弱く、炭化室2内に装入されると衝突の衝撃で
小ブロツクに割れるが、後述するようにその上に
粉炭16が装入されてブロツク間を埋めるため空
隙が生じることはない。また、圧密炭17のサイ
ズが大きいため、その落下による衝突エネルギー
も大きく炭化室2内での付き固め作用が大きくな
り、充填密度が上昇する。従つて、圧密炭17の
嵩密度がさほど大きくなくても大きな質量をもつ
て塊状で一体となつて落下するので、全く圧力を
加えず空気を多量に含む粉炭を落下させた場合よ
りも充填密度が向上することになる。
After compacting the compacted coal 17, the cut-off valve 11 is opened again, and the compacted coal 17 that has been heated up by the pressurization and remains inside the compacted cylinder 12 is pushed out by the downward movement of the compaction plunger 13, and remains in the carbonization chamber 2 as a block. (Fig. 2E). At this time, consolidated coal 1
7 is the moisture normally contained in powdered coal 16 (approximately 9%)
Because it is compacted and molded using only a binder such as pitch, it is weaker than molded coal that uses a binder such as pitch, and when it is charged into the carbonization chamber 2, it breaks into small blocks due to the impact of a collision. As will be described later, powdered coal 16 is charged thereon to fill in the gaps between the blocks, so that no voids are created. Furthermore, since the consolidated coal 17 is large in size, the collision energy due to its falling is large, and the compaction effect within the carbonization chamber 2 is increased, resulting in an increase in packing density. Therefore, even if the bulk density of the consolidated coal 17 is not very high, it has a large mass and falls as a whole in the form of a lump, so the packing density is higher than when powdered coal containing a large amount of air is dropped without applying any pressure. will improve.

圧密プランジヤ13の押出しが終了すると、圧
密プランジヤ13と圧密筒体12とを同時に上昇
させる。このとき切出弁11は開いたままである
ので、圧密プランジヤ13と圧密筒体12との上
昇につれて粉炭16が流出して炭化室2内に落下
する(第2F図)。そして適量の粉炭16を装入
した後で切出弁11を閉じ、最初の第2A図の状
態に戻る。圧密炭17を装入後、粉炭16を装入
するのは、既述したように割れたブロツク間を埋
めて空隙をなくすためである。
When the extrusion of the consolidation plunger 13 is completed, the consolidation plunger 13 and the consolidation cylinder 12 are simultaneously raised. At this time, the cutoff valve 11 remains open, so as the consolidation plunger 13 and the consolidation cylinder 12 rise, the powdered coal 16 flows out and falls into the carbonization chamber 2 (FIG. 2F). After charging an appropriate amount of pulverized coal 16, the cutoff valve 11 is closed, and the state returns to the initial state shown in FIG. 2A. The reason why powdered coal 16 is charged after charging consolidated coal 17 is to fill in the gaps between cracked blocks and eliminate voids, as described above.

このようにして1サイクルが終了すると可動シ
ユート9Bの揺動角度を変えて同様な手順を繰り
返す。
When one cycle is completed in this manner, the swing angle of the movable chute 9B is changed and the same procedure is repeated.

したがつて、圧密炭17の嵩密度又は粉炭16
との装入量比を炭化室2内での充填状態に応じて
制御することにより、従来、炭化室2内の高さ方
向で生じていた充填密度のアンバランス(床部で
0.7t/m3天井部で0.5t/m3)を解消し、約0.9t/m3
の均一な充填密度を得ることができる。圧密炭1
7の嵩密度の制御は主油圧シリンダ19による油
圧力を制御することにより容易に行うことができ
る。
Therefore, the bulk density of the consolidated coal 17 or the powdered coal 16
By controlling the charging amount ratio between the carbonization chamber 2 and
0.7t/ m3 (0.5t/ m3 at the ceiling), approximately 0.9t/ m3
A uniform packing density can be obtained. Consolidated coal 1
The bulk density of 7 can be easily controlled by controlling the hydraulic pressure from the main hydraulic cylinder 19.

また、従来では装炭車からの装入は垂直方向に
限定されているため、装入口直下部に比べて装入
口間の中間部は低い充填密度となり、炭化室の長
手方向に充填密度のアンバランスが生じるが、可
動シユート9Bを揺動させて粉炭16ないし圧密
炭17の装入方向を調整できるため、炭化室2の
長手方向の充填密度のアンバランスも緩和するこ
とができる。しかも、可動シユート9Bは揺動に
つれて移動フレーム5が移動するので、可動シユ
ート9Bの先端が装入口8から外れることがなく
揺動角度を大きくとれることになり、充填密度の
均一化を一層向上することができる。
Additionally, in the past, charging from the coal loading car was limited to the vertical direction, so the filling density was lower in the middle between the charging ports compared to the area directly below the charging ports, resulting in an unbalanced packing density in the longitudinal direction of the coking chamber. However, since the charging direction of the powdered coal 16 or the consolidated coal 17 can be adjusted by swinging the movable chute 9B, the imbalance in the packing density in the longitudinal direction of the carbonization chamber 2 can also be alleviated. Furthermore, since the movable frame 5 moves as the movable chute 9B swings, the tip of the movable chute 9B does not come off the charging port 8, and a large swing angle can be obtained, further improving the uniformity of the packing density. be able to.

また、圧密装置7が粉炭16を加圧して圧密炭
17を成型するだけで済み小型化できるため、装
入装置に圧密装置17を搭載することができ、従
来の大型の成型炭製造設備及び混合設備が不要と
なり、設備比の大幅な低減ができる。
In addition, since the compaction device 7 only needs to pressurize the powdered coal 16 and mold the compacted coal 17, it can be downsized, so the compaction device 17 can be installed in the charging device, and it can be used in combination with conventional large-sized compacted coal production equipment and mixing. No equipment is required, and the equipment ratio can be significantly reduced.

なお、上記実施例では落差の変化に応じて圧密
炭17の嵩密度を制御する方法について述べた
が、圧密炭17の嵩密度を一定として粉炭16と
の装入量比を制御したり、この装入量比制御と上
記実施例とを組合せて制御するようにしてもよ
い。
In addition, in the above embodiment, a method was described in which the bulk density of the consolidated coal 17 was controlled according to a change in the head. The charge ratio control and the above embodiments may be controlled in combination.

また、ホツパ6に出口が1つの場合について述
べたが、分岐させることによりホツパ6にもう1
つの出口を設け、この出口に流量調整弁31を設
けて直接固定シユート9Aに接続し、このもう1
つの出口より粉炭16を連続的に装入しながら他
方の出口より圧密炭17を間欠的に装入したり、
或いは粉炭16と圧密炭17とを同時に間欠的に
装入したりするようにしてもよい。
In addition, although we have described the case where the hopper 6 has one outlet, by branching the hopper 6 there is one outlet.
One outlet is provided, a flow rate adjustment valve 31 is provided at this outlet and directly connected to the fixed chute 9A, and this other
While powdered coal 16 is continuously charged from one outlet, consolidated coal 17 is intermittently charged from the other outlet,
Alternatively, powdered coal 16 and consolidated coal 17 may be charged simultaneously and intermittently.

そして、上記実施例では圧密プランジヤ13を
使用した往復式の圧密装置7を使用したが、加圧
して圧密する手段としてはスクリユーフイーダや
加圧ローラでもよい。これらスクリユーフイーダ
式やローラ式のものは圧密力の小さい連続圧密に
適しており、これらにより得られる0.7t/m3
0.8t/m3程度の低い嵩密度の圧密炭17は炭化室
2内での落下衝突により容易にこわれ、空隙も少
ないため、粉炭16の装入が不要となり、装入炭
の全量を圧密炭17とすることができる。そし
て、落下衝突のエネルギーによる突き固め効果は
粉炭16のみの場合よりも大きく、したがつて充
填密度は粉炭16のみの場合よりも大きくなると
いう利点がある。
In the above embodiment, a reciprocating compaction device 7 using a compaction plunger 13 was used, but a screw feeder or a pressure roller may be used as means for pressurizing and compacting. These screw feeder type and roller type are suitable for continuous consolidation with low consolidation force, and they can achieve 0.7t/m 3 ~
Consolidated coal 17 with a low bulk density of about 0.8t/ m3 is easily broken by falling collisions in the carbonization chamber 2, and there are few voids, so there is no need to charge powdered coal 16, and the entire amount of charged coal is converted into consolidated coal. 17. There is an advantage that the tamping effect due to the energy of the falling collision is greater than in the case of only pulverized coal 16, and therefore the packing density is greater than in the case of only pulverized coal 16.

更に、第3図に示す如く、ホツパを圧密炭用の
ホツパ6と粉炭専用のホツパ30とに分離独立さ
せて2個設けるようにしてもよい。この場合に
は、別々の原料が使用可能となるので、圧密炭用
には、粉炭のまま装入する粘結炭に比べて粘結性
の劣る安価な微粘結炭や粘結性のない一般炭を使
用することもでき、その結果ランニングコストを
下げることができる。なお、図中31は流量調整
バルブである。
Furthermore, as shown in FIG. 3, two hoppers may be provided, one being a hopper 6 for compacted coal and the other being a hopper 30 exclusively for pulverized coal. In this case, different raw materials can be used, so for compacted coal, cheap slightly caking coal, which has inferior caking properties compared to caking coal that is charged as powdered coal, or non-caking coal, Steam coal can also be used, resulting in lower running costs. In addition, 31 in the figure is a flow rate adjustment valve.

[発明の効果] 以上要するに本発明によれば次のような優れた
効果を発揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

この方法によれば、予め成型炭を使つてて装
入するのではなく、装入時に装入炭を加圧して
装入するようにしたので、装入装置までの搬送
中の衝撃から圧密炭を解放できることになり、
衝撃に対抗するために従来の成型炭配合法で必
要とされていた高価なピツチ等の結合剤が不要
となつて、含有水分のみの結合で足りることか
ら、ランニングコストが大幅に低減する。ま
た、炭化室内の充填密度が一定となるように、
落差に応じて圧密炭の嵩密度ないし圧密炭と粉
炭との装入量比を調整するようにしたので、炭
化室の高さ方向及び長手方向で発生していた充
填密度のアンバランスも解消できる。その結
果、強度の大きな均質なコークスが得られ、ま
た粉コークスの発生が減少し塊コークスの歩留
も大幅に向上する。
According to this method, the charged coal is pressurized and charged at the time of charging, rather than charging using compacted coal in advance, so that the compacted coal is protected from impact during transportation to the charging equipment. It will be possible to release
Since there is no need for an expensive binder such as pitch, which was required in the conventional briquette coal blending method to resist impact, and only the water contained in the coal is bound, running costs are significantly reduced. In addition, so that the packing density in the carbonization chamber is constant,
Since the bulk density of consolidated coal or the charging ratio of consolidated coal and powdered coal is adjusted according to the head, it is possible to eliminate the unbalance in packing density that occurred in the height and longitudinal directions of the coking chamber. . As a result, homogeneous coke with high strength is obtained, the generation of fine coke is reduced, and the yield of lump coke is greatly improved.

この装置によれば、炭化室の装入口の真上に
出口を有するホツパを設け、このホツパの出口
に圧密手段を設けて、圧密した後切出弁を開放
すれば、そのまま炭化室内に重力落下するよう
にしたという簡単な構造で、炭化室内に充填さ
れる装入炭の充填密度を高めることができるの
で、従来の大型の成型炭製造設備及び混合設備
が不要となり設備費が大幅に低減できる。
According to this device, a hopper having an outlet is provided directly above the charging port of the carbonization chamber, a compaction means is provided at the outlet of the hopper, and after compaction, if the cut-off valve is opened, the hopper will fall directly into the carbonization chamber by gravity. With this simple structure, it is possible to increase the packing density of the charged coal in the carbonization chamber, which eliminates the need for conventional large briquette coal production equipment and mixing equipment, significantly reducing equipment costs. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するためのコークス
炉における装入炭装入装置の好適一実施例を示す
部分正断面図、第2A図乃至第2F図は第1図に
係る装置の作動説明図、第3図は本発明方法を実
施するための装入炭装入装置の他の実施例を示す
要部正面図である。 なお、図中1は装入炭装入装置、2は炭化室、
6はホツパ、6aはホツパの出口、7は圧密手段
たる圧密装置、16は粉炭、17は圧密炭であ
る。
FIG. 1 is a partial front cross-sectional view showing a preferred embodiment of a coal charging device in a coke oven for carrying out the method of the present invention, and FIGS. 2A to 2F illustrate the operation of the device according to FIG. 1. Figures 3 and 3 are front views of main parts showing other embodiments of a coal charging device for carrying out the method of the present invention. In the figure, 1 is the charging coal charging device, 2 is the carbonization chamber,
6 is a hopper, 6a is an outlet of the hopper, 7 is a compaction device as compaction means, 16 is powdered coal, and 17 is compacted coal.

Claims (1)

【特許請求の範囲】 1 炭化室の上方に配置させた圧密手段により粉
炭を加圧して、含有水分のみを結合剤とした圧密
炭を装入直前に形成し、この圧密炭と必要に応じ
て加える粉炭とを炭化室内に落下装入すると共
に、炭化室内の充填密度が一定となるように、炭
化室内での堆積により変化する落差に応じて、上
記圧密炭の嵩密度ないし圧密炭と粉炭との装入量
比を調整するようにしたことを特徴とするコーク
ス炉における装入炭の装入方法。 2 上記圧密炭の嵩密度を調整する範囲が、
0.7t/m3から1.1t/m3であることを特徴とする特
許請求の範囲第1項記載の装入方法。 3 炭化室の装入口の真上に切出弁により開閉さ
れる出口を有するホツパを設け、該ホツパの出口
に、ホツパ内に貯留されている粉体の一部を内部
に取り込む圧密枠体と、圧密枠体内に取り込まれ
た粉炭を上記切出弁との間で加圧して圧密炭を形
成する加圧手段とからなる圧密手段を取り付け、
上記切出し弁を開放することにより圧密枠体内の
圧密炭を装入口より炭化室内に重力落下させるよ
うに構成したことを特徴とするコークス炉におけ
る装入炭の装入装置。
[Claims] 1. Powdered coal is pressurized by a compaction means disposed above the carbonization chamber to form compacted coal with only the water content as a binder immediately before charging, and this compacted coal and, if necessary, The powdered coal to be added is dropped and charged into the carbonization chamber, and the bulk density of the consolidated coal or the density of the consolidated coal and powdered coal is adjusted according to the head that changes due to the accumulation in the carbonization chamber so that the packing density in the carbonization chamber is constant. 1. A method for charging coal in a coke oven, characterized in that the ratio of the charging amount is adjusted. 2 The range for adjusting the bulk density of the consolidated coal is
The charging method according to claim 1, characterized in that the charging amount is from 0.7 t/m 3 to 1.1 t/m 3 . 3. A hopper having an outlet opened and closed by a cut-off valve is provided directly above the charging port of the carbonization chamber, and a consolidation frame body is provided at the outlet of the hopper to take inside a part of the powder stored in the hopper. , Attaching a consolidation means consisting of a pressurizing means for pressurizing the powdered coal taken into the consolidation frame between the cutting valve and forming consolidated coal,
A charging device for charging coal in a coke oven, characterized in that the compacted coal in the compaction frame is caused to fall by gravity into the carbonization chamber from the charging port by opening the cut-off valve.
JP2519084A 1984-02-15 1984-02-15 Method of charging of coal in coke oven and its device Granted JPS60170692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2519084A JPS60170692A (en) 1984-02-15 1984-02-15 Method of charging of coal in coke oven and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2519084A JPS60170692A (en) 1984-02-15 1984-02-15 Method of charging of coal in coke oven and its device

Publications (2)

Publication Number Publication Date
JPS60170692A JPS60170692A (en) 1985-09-04
JPS6314031B2 true JPS6314031B2 (en) 1988-03-29

Family

ID=12159045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2519084A Granted JPS60170692A (en) 1984-02-15 1984-02-15 Method of charging of coal in coke oven and its device

Country Status (1)

Country Link
JP (1) JPS60170692A (en)

Also Published As

Publication number Publication date
JPS60170692A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
CN103370395B (en) The method and apparatus that the coal being used for coal coking technique is compacted
CN101541922B (en) Method and apparatus for compacting coal for a coal coking process
JPS62285980A (en) Method and apparatus for charging coke oven with coal
GB2062828A (en) Method and apparatus for filling a carbonizing chamber of a coke oven with powdered coal
Kamijo et al. Sintering behavior of raw material bed placing large particles
JPS6314031B2 (en)
JP2013510911A (en) Method and apparatus for continuously producing a lump of coal suitable for a coke oven room
CN207344817U (en) A kind of forcing press Quantitative dosing auto pendulous device
CN101475841A (en) Molded coal continuous gasification fixed bed coke charging powder exhaust metering control system
KR100930726B1 (en) Blast Furnace Nut Coke Weighing Equipment
US2872180A (en) Apparatus for adding solid material to molten metal
JP3098964B2 (en) Powder compaction shaping device
CA1282950C (en) Vibratory processing arrangements
CN205345380U (en) Living beings pellet fuel packing plant
CN201330245Y (en) Control system for metering coke addition and powder discharge of molded coal continuous gasification fixed bed
US4648900A (en) Suction sintering method and apparatus therefor
CN2427502Y (en) Tilting type material distributing apparatus
CN208218891U (en) A kind of blast furnace hopper is to vibrating screen charging gear
US2730283A (en) Charging reduction containers for the production of sponge metals
JP2019127523A (en) Charging method of molded coke and manufacturing method of coke
CN214768715U (en) Multifunctional automatic sand filling jolt ramming device for casting of castings
SU1148868A1 (en) Device for preparing charge for blast furnace melting
CN206750187U (en) Material equal control metering device
SU1379328A1 (en) Method of producing sinter
JPS58142972A (en) Accelerating charging of raw material coal in coke oven