JPS63140041A - Recarburized iron and its preparation - Google Patents

Recarburized iron and its preparation

Info

Publication number
JPS63140041A
JPS63140041A JP61288337A JP28833786A JPS63140041A JP S63140041 A JPS63140041 A JP S63140041A JP 61288337 A JP61288337 A JP 61288337A JP 28833786 A JP28833786 A JP 28833786A JP S63140041 A JPS63140041 A JP S63140041A
Authority
JP
Japan
Prior art keywords
iron
resin
carbon
porous
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61288337A
Other languages
Japanese (ja)
Other versions
JPH0819482B2 (en
Inventor
Koji Kishimoto
宏司 岸本
Nobuhiko Tachiiri
立入 信彦
Kaoru Kaneko
金子 馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neos Co Ltd
Original Assignee
Neos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neos Co Ltd filed Critical Neos Co Ltd
Priority to JP61288337A priority Critical patent/JPH0819482B2/en
Publication of JPS63140041A publication Critical patent/JPS63140041A/en
Publication of JPH0819482B2 publication Critical patent/JPH0819482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To prevent pulverization, moisture absorption and oxidation of porous iron and to produce recarburized iron for adjusting the carbon content of reduced iron, etc., by spraying a thermoplastic resin contg. a carbon source to the surface of the porous iron held at an adequate temp. and thereby coating said iron. CONSTITUTION:A rotary drum 1 having vanes 4 for agitation and a heater 9 is supported and rotated by a rotary supporting base 3 having a motor 2. The porous iron such as reduced iron pellets or lump iron ore is supplied by a feeder 7 to the drum 1. A molten thermoplastic resin contg. a carbon source is sprayed onto the surface of the above-mentioned porous iron by a heating sprayer 8. The porous iron is held at the temp. higher by about 10 deg.C than the softening temp. of said thermoplastic resin at this time. The iron may be heated to the softening temp. of the resin or above if desired after the above-mentioned spraying. Carbon powder, carbon black and coke powder having <=100mum grain size are used for said carbon source and the content of <=30wt% is more adequate. As the above-mentioned resin, a polyolefin resin such as PE and PP is appropriate.

Description

【発明の詳細な説明】 配栗上包机瓜公私 本発明は加炭鉄およびその製法に関する。[Detailed description of the invention] Distributing chestnuts, packaging, melons, public and private The present invention relates to carburized iron and its manufacturing method.

従米W術および問題点 還元鉄を用いて柱々の鉄鋼製品を得る場合、還元鉄を電
気炉で溶融゛4゛るに際し、共存する酸化鉄を還元する
ための還元剤として炭素源を加えている。炭素源として
はヒル法、ミドレックス法、ライオール法等では天然ガ
スを、ルルギ法、クルツブ法、I) n C法、キング
ロール−メツター法では、石炭を用いている。前者の場
合、還元鉄中の炭素含量は約1.0〜2.5重量%であ
り、後者では0.1〜0.5重量%である。一般には還
元剤の量は還元鉄に対して2.0重信%程度必要とする
ため、実際には溶融鉄に更に炭素を添加して炭素量を調
節する必要がある。
When using reduced iron to produce steel products, a carbon source is added as a reducing agent to reduce the coexisting iron oxide when melting the reduced iron in an electric furnace. There is. As a carbon source, natural gas is used in the Hill method, Midrex method, Lyall method, etc., and coal is used in the Lurgi method, Kurzub method, I)nC method, and Kingroll-Metzter method. In the former case, the carbon content in the reduced iron is approximately 1.0-2.5% by weight, and in the latter 0.1-0.5% by weight. Generally, the amount of reducing agent is required to be about 2.0% based on the reduced iron, so it is actually necessary to further add carbon to the molten iron to adjust the carbon amount.

しかしながら、炭素を直接溶融鉄に加える方法では、炭
素と鉄の比重差が著しいため炭素が表面に浮き表面酸化
されて炭酸ガスとなり消費され、十分な還元効果が発現
されず、加えて、深部まで均一に分散され難いと言う問
題があった。
However, in the method of adding carbon directly to molten iron, the difference in specific gravity between carbon and iron is significant, so carbon floats to the surface and is oxidized on the surface and is consumed as carbon dioxide gas, which does not produce a sufficient reducing effect. There was a problem in that it was difficult to disperse uniformly.

一方、還元鉄ペレットやランプ鉄鉱石などの多孔質鉄は
、多孔質であり、もろく、鉄塊どうしの摩擦により微粉
化しやすく、吸湿し、あるいは、水や空気と接触して、
酸化し易いと言う問題がある。
On the other hand, porous iron such as reduced iron pellets and lamp iron ore is porous and brittle, easily pulverized by friction between iron lumps, absorbs moisture, or comes into contact with water or air.
The problem is that it is easily oxidized.

問題点を解決するための手段 本発明は多孔性鉄表面に炭素粉末を含む熱可塑性樹脂を
被覆して多孔性鉄の微粉化、吸湿および酸化を防止する
と共に、これを還元鉄等に加えて、炭素含量を調節する
方法を提供する乙のである。
Means for Solving the Problems The present invention coats the surface of porous iron with a thermoplastic resin containing carbon powder to prevent the porous iron from becoming pulverized, absorbing moisture, and oxidizing. , which provides a way to adjust the carbon content.

即ち、本発明は炭素源を含aする熱可塑性樹脂を多孔性
の鉄表面に被覆した加炭鉄およびその製法に関する。
That is, the present invention relates to carburized iron in which a porous iron surface is coated with a thermoplastic resin containing a carbon source, and a method for producing the same.

本発明に用いる炭素源は粉末状の炭素が好ましく、例え
ば石炭粉末、カーボンブラック、コークス粉、木炭、石
油ピッチ、石油コークス、無煙炭、電極黒鉛屑、黒鉛ス
ラップ、排棄カーボンブラック、電極黒鉛屑等が例示さ
れるが、安価な原料として、例えばコールドブリーズ法
等で得られコークスの副産物である微粉コークスがある
The carbon source used in the present invention is preferably carbon powder, such as coal powder, carbon black, coke powder, charcoal, petroleum pitch, petroleum coke, anthracite, electrode graphite scrap, graphite slap, waste carbon black, electrode graphite scrap, etc. For example, as an inexpensive raw material, there is fine coke, which is a by-product of coke obtained by a cold breeze method.

炭素粉末の粒径はスプレー法等で塗布するときは100
μ!以下、浸漬法の場合は1mm以下が適当である。
The particle size of carbon powder is 100 when applied by spray method etc.
μ! Hereinafter, in the case of the dipping method, a thickness of 1 mm or less is appropriate.

炭素源は熱可塑性樹脂と炭素源の合計量の30重量%以
下とするのが好ましく、30重量%以上では、塗膜強度
が低下する。
It is preferable that the carbon source accounts for 30% by weight or less of the total amount of the thermoplastic resin and carbon source, and if it exceeds 30% by weight, the coating film strength will decrease.

本発明に用いる熱可塑性樹脂としては、例えば、ポリエ
チレン、ボリン【1ピレン、ポリブチレン、メチルペン
テン等のポリオレフィン樹脂、エチレン−酢酸ビニル共
重合体、エヂレンーアクリル酸エチル(メチル)共重合
体等のオレフィン系共重合体;ポリ−p−キシリレン、
ポリ酢酸ビニル、ポリアクリレート、ポリメタクリレー
ト、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニル
エーテル、ポリアクリロニトリル、熱可塑性ポリエステ
ル、ポリカーボネート、ポリブタジェン、ポリイはポリ
オレフィン類、ポリオレフィン系共重合樹脂、酢酸ビニ
ル等であり、ポリオレフィン、特にポリエチレンが好ま
しい。
Examples of the thermoplastic resin used in the present invention include polyolefin resins such as polyethylene, borine [1-pyrene, polybutylene, and methylpentene, ethylene-vinyl acetate copolymer, and ethylene-ethyl (methyl) acrylate copolymer]. Olefin copolymer; poly-p-xylylene,
Polyvinyl acetate, polyacrylate, polymethacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl ether, polyacrylonitrile, thermoplastic polyester, polycarbonate, polybutadiene, polyi is polyolefin, polyolefin copolymer resin, vinyl acetate, etc., and polyolefin , particularly polyethylene.

これらの樹脂は、200℃におけろ粘度が1〜1000
0cps、特に10〜7000cps、軟化温度が60
〜200℃、特に80〜120℃程度が適当である。
These resins have a viscosity of 1 to 1000 at 200°C.
0cps, especially 10-7000cps, softening temperature 60
~200°C, particularly about 80~120°C is suitable.

熱可塑性樹脂の粘度が10000cpsより大きいと、
炭素源との混合が不均一となる他、多孔性鉄の表面が均
一に被覆されなくなり、樹脂被覆による吸湿防止効果が
低紘する。樹脂粘度がl cpsより小さいと樹脂が鉄
表面の孔に吸収されるため、多くの樹脂を必要とする。
If the viscosity of the thermoplastic resin is greater than 10,000 cps,
In addition to non-uniform mixing with the carbon source, the surface of the porous iron is not evenly coated, and the moisture absorption prevention effect of the resin coating is reduced. If the resin viscosity is less than l cps, the resin will be absorbed into the pores of the iron surface, so a large amount of resin will be required.

本発明においては、農業用ポリエチレンの回収フィルム
、ポリエチレン製造工程での副産物である低分子Inポ
リエチレン、アククチツクポリプロピレン等を用いるこ
とができ、これらを適当な比率に混合して用いてしよい
。アククチツクポリプロピレンを用いると炭素含量を増
加させることがでζ7.− 多孔性の鉄としては、還元鉄ペレット(空隙率約50%
程度)、それを熱間圧縮して得られる還元鉄ブリケット
、(空隙率20〜30%)、ランプ鉄鉱石(空隙率約5
0%)等が例示され、これらは通常約3〜40mm程度
の塊状で用いられている。
In the present invention, a recovered film of agricultural polyethylene, low-molecular In polyethylene which is a by-product of the polyethylene manufacturing process, active polypropylene, etc. can be used, and these may be used by mixing them in an appropriate ratio. When using active polypropylene, the carbon content can be increased to ζ7. - As porous iron, reduced iron pellets (porosity approximately 50%
), reduced iron briquettes obtained by hot compression (porosity: 20-30%), lamp iron ore (porosity: approximately 5
0%), etc., and these are usually used in the form of blocks of about 3 to 40 mm.

炭素源含有熱可塑性樹脂を多孔性鉄表面に被覆する方法
としては、スプレー法と浸漬法とがあり、前行は樹脂被
膜を薄くする上で好適であり、後者は多くの炭素を多孔
性鉄表面に付若させる1−で好ましい。
There are two methods of coating a porous iron surface with a carbon source-containing thermoplastic resin: a spray method and a dipping method. 1-, which causes surface rejuvenation, is preferred.

スプレー法では、炭素源を分散させた熱可塑性樹脂を噴
霧状にし、そのミストを樹脂の軟化温度より低い温度に
保持した多孔性炊上に噴霧゛4゛る。
In the spray method, a thermoplastic resin in which a carbon source is dispersed is atomized, and the mist is sprayed onto a porous cooking surface maintained at a temperature lower than the softening temperature of the resin.

ミストは樹脂の溶融ミストまたは粉末状ミストいずれで
あってもよいが、粒径は好ましくは100μm以下であ
る。噴霧されたミストはそれが溶融ミストの場合も鉄表
面で固化する。その結果、樹脂が多孔外鉄の空隙に含浸
されず、少r+1で表面を被覆するのに有効である。従
って多孔外鉄等の表面温度は樹脂の軟化温度より低いの
が好ましく、常温から80℃程度が一般的である。還元
鉄ペレットは通常50〜60℃で得られるので、これを
そのま\使用ずればよい。
The mist may be either a molten resin mist or a powdered mist, but the particle size is preferably 100 μm or less. The sprayed mist, even if it is a molten mist, solidifies on the iron surface. As a result, the resin is not impregnated into the voids of the porous outer iron, and is effective in coating the surface with a small r+1. Therefore, the surface temperature of the porous outer iron and the like is preferably lower than the softening temperature of the resin, and is generally between room temperature and about 80°C. Since reduced iron pellets are usually obtained at 50 to 60°C, they can be used as they are.

多孔外鉄に対する炭素含有熱可塑性樹脂の付若量は鉄1
00重量部当たり、炭素含(T!A可塑性樹脂0.1〜
4重量部、特に0.5〜3重量部が適当である。0.1
重量部より少ないと被覆厚さが不十分となり、逆に4重
量部より多(用いても不経済になるだけである。本発明
方法を採用すると上記のごとき少量の樹脂で多孔外鉄を
均一に被覆することができる。
The amount of carbon-containing thermoplastic resin attached to the porous outer iron is 1
Carbon-containing (T!A plastic resin 0.1~
4 parts by weight are suitable, especially 0.5 to 3 parts by weight. 0.1
If it is less than 4 parts by weight, the coating thickness will be insufficient, and if it is more than 4 parts by weight, it will only become uneconomical.If the method of the present invention is adopted, the porous outer iron can be uniformly coated with a small amount of resin as described above. can be coated with

以上のごとき方法で得られた多孔外鉄は、その表面に炭
素含有熱可塑性樹脂のミストが付着した状態であり、そ
の表面には未被覆部分が多く残る。
The porous outer iron obtained by the above method has a carbon-containing thermoplastic resin mist attached to its surface, and many uncoated parts remain on its surface.

従って、樹脂付若多孔性鉄どうしを適当な回転体中で回
転接触させ、樹脂をその表面に均一に付お・させる。そ
の際、処理雰囲気温度は、低温、特に、樹脂の軟化温度
より低い温度に保持するのが好ましい。この様にするこ
とにより、樹脂で未被覆の鉄表面が高温に曝されて酸化
されるおそれがなく、加えて、樹脂が必要以上に多孔外
鉄の空隙に含浸されて消費されることがない。その結果
、処理を不活性ガス雰囲気で行なう必要がなく連続処理
が容易となり、かつ処理装置の構造が簡単になる。
Therefore, the resin-coated young porous irons are brought into rotational contact with each other in a suitable rotating body to uniformly apply the resin to their surfaces. At this time, the temperature of the processing atmosphere is preferably maintained at a low temperature, particularly at a temperature lower than the softening temperature of the resin. By doing this, there is no risk that the iron surface not coated with resin will be exposed to high temperatures and oxidized, and in addition, the resin will not be impregnated into the voids of the porous outer iron more than necessary and consumed. . As a result, there is no need to carry out the processing in an inert gas atmosphere, making continuous processing easier and the structure of the processing apparatus simpler.

上記方法によって得られた炭素含育樹脂被覆多孔性鉄は
そのま\で十分耐酸化性があり、吸水量ら少なく、粉塵
化し難いものであるが、必要ならばさらに被覆多孔外鉄
を樹脂の軟化温度以上に加熱してもよい。この場合、多
孔外鉄は樹脂で被覆されているため、加熱による酸化は
防止できる。
The carbon-containing resin-coated porous iron obtained by the above method has sufficient oxidation resistance as it is, has low water absorption, and is difficult to turn into dust. However, if necessary, the coated porous iron can be further coated with resin. It may be heated above the softening temperature. In this case, since the porous outer iron is coated with resin, oxidation due to heating can be prevented.

後加熱は樹脂の密若性と均一化を達成する上で好ましい
Post-heating is preferred in order to achieve the density and uniformity of the resin.

この方法を採用するときの炭素源は100μ次以下の粉
炭を用いるのが好ましい。!00μ肩を越えるとスプレ
ーノズルの目詰を生ずる可能性がある。
When this method is employed, it is preferable to use powdered coal of 100 μm or less as the carbon source. ! If it exceeds 00μ, clogging of the spray nozzle may occur.

以下に上記スプレー法で炭素含有熱可塑性樹脂を被覆し
た多孔外鉄の製造法の一例を第1図〜第11図を用いて
説明する。
An example of a method for manufacturing porous outer iron coated with a carbon-containing thermoplastic resin by the above-mentioned spray method will be described below with reference to FIGS. 1 to 11.

図であり、第2図は第1図の装置の左側面図、第3図は
!−1断面図および第4図は右側面図を示す。円筒型水
平回転ドラム(1)はモーター(2)によって回転する
回転支持台(3)によって回転可能に設置されており、
ドラム左側面には多孔外鉄を供給するための供給口(5
)と加熱スプレー装置が設けられ、ドラム右側面には多
孔外鉄を排出するための排出口(6)が設けられている
。連続製法(オーバーフロ一方式)とするためには、供
給口より排出口を大きくし、出口側ドラム壁の排出口(
6)までの高さくe)を供給口までの高さくQo)より
小さくすればよい。ドラム内部には羽根(4)が設けら
れている。
Fig. 2 is a left side view of the device in Fig. 1, and Fig. 3 is a left side view of the device shown in Fig. 1. -1 sectional view and FIG. 4 show a right side view. A cylindrical horizontal rotating drum (1) is rotatably installed on a rotating support (3) rotated by a motor (2),
There is a supply port (5) on the left side of the drum for supplying porous outer iron.
) and a heating spray device are provided, and a discharge port (6) for discharging the porous outer iron is provided on the right side of the drum. In order to use a continuous manufacturing method (one-way overflow method), the discharge port should be larger than the supply port, and the discharge port (
The height e) up to 6) may be made smaller than the height Qo) up to the supply port. A vane (4) is provided inside the drum.

多孔外鉄とこれを被覆するための炭素含(r熱可塑性樹
脂を供給口から加熱スプレーにより一定量仕込み、ドラ
11を回転させる。多孔外鉄は羽根によって回転が邪魔
されるため、お互いによく接触し、共擦り効果によって
圧着され、樹脂が均一に付着する。その際、多孔性鉄表
面をヒーター(9)に上って樹llhの軟(ヒ温IWじ
11・に加軌1.てt、上い−多孔性鉄の樹脂被覆は2
工程で行ってもよい。
A certain amount of porous outer iron and a carbon-containing thermoplastic resin to cover it are charged from the supply port by heating spray, and the drum 11 is rotated.Since the rotation of the porous outer iron is hindered by the blades, it does not fit well with each other. The resin contacts and is pressed by the co-rubbing effect, and the resin adheres uniformly.At that time, the porous iron surface is heated to the temperature of the wood (11) by climbing onto the heater (9). t, upper - resin coating of porous iron is 2
It may be done in a process.

即ち、上記と同様にして炭素含有熱可塑性樹脂を被覆し
た多孔性鉄表面を、必要ならば、その後加熱する。この
場合は第1工程で樹脂被膜が形成されているため、加熱
による再酸化は抑えられる。
That is, a porous iron surface coated with a carbon-containing thermoplastic resin in the same manner as described above is then heated, if necessary. In this case, since the resin film is formed in the first step, reoxidation due to heating can be suppressed.

上記と同様にして炭素含有熱可塑性樹脂を被覆した多孔
性鉄表面にさらに第2工程と同様の操作を繰り返して炭
素含有熱可塑性樹脂を被覆してもよい。その際、第1工
程で使用する樹脂と第2工程で使用する樹脂を変えても
よい。例えば第1工程では多孔性鉄表面に含浸し難い樹
脂、例えば分子m5000程度の熱可塑性樹脂を用い、
第2工程で分子量1500程度の樹脂を用いてよい。ま
た、第2工程で耐摩耗性の高い樹脂を使用してもよい。
The porous iron surface coated with the carbon-containing thermoplastic resin in the same manner as above may be further coated with the carbon-containing thermoplastic resin by repeating the same operation as the second step. At that time, the resin used in the first step and the resin used in the second step may be different. For example, in the first step, a resin that is difficult to impregnate into the porous iron surface, such as a thermoplastic resin with a molecular weight of about 5000, is used.
A resin having a molecular weight of about 1500 may be used in the second step. Further, a resin with high wear resistance may be used in the second step.

この第2工程は必ずしら上記の方法を採用しなくともよ
く、浸漬法を採用してもよい。この場合は第1工程で樹
脂被膜が形成されているため、浸漬による樹脂の多孔性
鉄への浸入は抑えられる。
This second step does not necessarily need to employ the above method, and may also employ a dipping method. In this case, since the resin coating is formed in the first step, penetration of the resin into the porous iron due to immersion can be suppressed.

しかしながらこの様な場合乙、第1工程で形成された樹
脂被膜が再溶解しないような条件を採用すべきである。
However, in such a case, conditions should be adopted so that the resin coating formed in the first step does not dissolve again.

以上の如く、スプレー法では多孔性鉄表面に炭素含ff
樹脂の吸収を極力おさえつつ均一に塗布することが可能
となり、又、酸化、粉化、破れ等を生じない加炭鉄の供
給が可能となるものである。
As mentioned above, in the spray method, carbon-containing material is added to the porous iron surface.
This makes it possible to apply uniformly while suppressing resin absorption as much as possible, and also to supply carburized iron without causing oxidation, powdering, tearing, etc.

本発明の第2の方法は浸漬法である。前記スプレー法で
は積極的に多孔性鉄への樹脂の吸収をおさえなから加炭
6°ることが可能であるが、加炭mを多く必要とする銑
鉄、鋼、軟鉄等に加炭するための加炭鉄はそれ自体多く
の炭素源を含むのが望ましい。その目的では浸漬法を用
いることらできる。
The second method of the present invention is a dipping method. With the above spray method, it is possible to carburize 6 degrees without actively suppressing the absorption of resin into porous iron, but it is necessary to carburize pig iron, steel, soft iron, etc., which require a large amount of carburization. Preferably, the carburized iron itself contains a large carbon source. A dipping method can be used for that purpose.

浸入11法では低粘度樹脂を溶融して、これに炭素源を
分散させる。炭素源としては、約1mm以下の炭素粉末
を用いるのが好ましい。炭素粉末の粒径が1IllI1
1より大きいと、取扱時および搬送時に多孔性鉄の摩擦
、衝突等により炭素粉自体が粉塵原因となる。
In the immersion 11 method, a low viscosity resin is melted and a carbon source is dispersed therein. As the carbon source, it is preferable to use carbon powder of about 1 mm or less. The particle size of carbon powder is 1IllI1
If it is larger than 1, the carbon powder itself becomes a source of dust due to friction and collision of porous iron during handling and transportation.

この炭素含a樹脂液中に多孔性鉄を浸漬し、引き揚げ所
望により冷却する。
Porous iron is immersed in this carbon-containing aqueous resin liquid, then pulled out and cooled if desired.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

火胤鯉1 あらかじめ、75℃に加温しておいた還元鉄ペレット(
空隙率55%、吸水率15%)を第1図に示すごとく、
供給装置(7)から一定量づつ連続して回転ドラム(+
)に投入し、これにカーボンブラック(粒径50μm)
20重量%含r「混合樹脂(分子量1400、軟化点8
3℃のポリエチレン樹脂34重n%、軟化点110℃の
アククチツクポリプロピレン樹脂34重量%および分子
量33万、軟化点86°Cの高分子量ポリエチレン樹脂
12工程1%)を加熱スプレー装置(8)により液状ミ
ストとし、ペレットに対し2重量%の割合で連続的に供
給しつつ、ドラム内壁をドラム用ヒーター(9)により
180℃に加熱し、回転オーバーフロ一方式によって加
炭鉄を得た。得られた加炭鉄を屋外に1ケ月放11vl
L、金属化率の変化、降雨時の吸水率1回転強度を観塞
した。結果を表−1に示す。
Hitane carp 1 Reduced iron pellets preheated to 75℃ (
As shown in Figure 1, the porosity is 55% and the water absorption rate is 15%.
A fixed amount is continuously supplied from the supply device (7) to the rotating drum (+
) and carbon black (particle size 50 μm)
20% by weight mixed resin (molecular weight 1400, softening point 8
34% by weight of polyethylene resin at 3°C, 34% by weight of active polypropylene resin with a softening point of 110°C, and 12% by weight of high molecular weight polyethylene resin with a molecular weight of 330,000 and a softening point of 86°C) were heated in a heating spray device (8). While continuously supplying the mixture to a liquid mist at a rate of 2% by weight relative to the pellets, the inner wall of the drum was heated to 180° C. by a drum heater (9), and carburized iron was obtained using a rotary overflow method. The obtained carburized iron was released outdoors for 1 month at 11 vol.
L, changes in metallization rate, water absorption rate during rainfall and one rotation strength were observed. The results are shown in Table-1.

分析により測定。Measured by analysis.

吸水率:平均降雨m2IllllI/■「の降雨時に試
料1009を5時間暴露し、表面付着水 分を濾紙に吸収後、直ちに秤量して算 出。
Water absorption rate: Calculated by exposing sample 1009 for 5 hours during rainfall of average rainfall m2IllllI/■, and immediately weighing after absorbing the water adhering to the surface to the filter paper.

回転強度: J l5−M−8712に基づき、回転強
度指数および摩耗強度指数を算 出。
Rotational strength: Calculated rotational strength index and abrasion strength index based on J 15-M-8712.

実施例2 あらかじめ、75℃に加温しておいた還元鉄ペレット(
空隙率55%、吸水率15%)を実施例1と同様にして
回転ドラム中に一定量づつ連続で投入し、これにカーボ
ンブラック(粒径50μm)20重量%含a混合樹脂(
分子m1400.軟化点83℃のポリエチレン樹脂34
重量%と軟化点!10℃のアククチツクポリプロピレン
樹脂34市量%と分子量33万、軟化点86℃の高分子
量ポリエチレン樹脂12重量%)を加熱スプレーにより
液状ミストとし、ペレットに対し4重量%の割入−nn
llk1シ^a+−41トb〜1−x−1V−J)、+
大+I!L?−I011’/”に加熱し、回転させ、オ
ーバーフロ一方式によって加炭鉄を得た。得られた加炭
鉄を屋外に1ケ月放置し、金属化率の変化、降雨時の吸
水率、回転強度を観察した。結果を表−1に示す。
Example 2 Reduced iron pellets heated to 75°C in advance (
A fixed amount of carbon black (particle size: 50 μm) and a mixed resin containing 20 wt.
Molecule m1400. Polyethylene resin 34 with a softening point of 83°C
Weight% and softening point! Aqueous polypropylene resin (34% market weight at 10°C and high molecular weight polyethylene resin (12% by weight, molecular weight 330,000, softening point 86°C)) was heated and sprayed into a liquid mist, and 4% by weight was added to the pellets.
llk1shi^a+-41tob~1-x-1V-J), +
Big+I! L? -I011'/'', rotated, and obtained carburized iron by one overflow method.The obtained carburized iron was left outdoors for one month, and changes in metallization rate, water absorption rate during rain, The rotational strength was observed.The results are shown in Table-1.

寒資鯉l あらかじめ、75℃に加温しておいた還元鉄ペレット(
空隙率55%、吸水率15%)を実施例1と同様にして
回転ドラム中に一定量づつ連続で投入し、これにカーボ
ンブラック(粒径50μm)30重量%含有混合樹脂(
分子fill 400.軟化点83°Cのポリエチレン
樹脂30重量%と軟化点llO℃のアククチツクポリプ
ロピレン樹脂30重量%と分子量33万、軟化点86℃
の高分子量ポリエチレン樹脂10重量%)を加熱スプレ
ーにより液状ミストとし、ペレットに対し2重量%の割
合で連続的に供給しつつ、ドラム内壁を180℃に加熱
し、ドラムを回転させ、オーバーフ〔1一方式によって
加炭鉄を得た。得られた加炭鉄を屋外に1ケ月放置し、
金属化率の変化、降雨時の吸水率、回転強度を観察した
。結果を表−1に示す。
Kanshi carp Reduced iron pellets preheated to 75℃ (
A fixed amount of the mixed resin (porosity 55%, water absorption rate 15%) containing 30% by weight of carbon black (particle size 50 μm) was continuously charged into a rotating drum in the same manner as in Example 1.
Molecule fill 400. 30% by weight polyethylene resin with a softening point of 83°C, 30% by weight of an active polypropylene resin with a softening point of 110°C, a molecular weight of 330,000, and a softening point of 86°C.
A high molecular weight polyethylene resin (10% by weight) was made into a liquid mist by heating spray, and while continuously feeding the pellets at a rate of 2% by weight, the inner wall of the drum was heated to 180°C, the drum was rotated, and the overflow [1 Carburized iron was obtained by one method. The obtained carburized iron was left outdoors for one month,
Changes in metallization rate, water absorption during rainfall, and rotational strength were observed. The results are shown in Table-1.

比較例1 あらかじめ、75℃に加温しておいた還元鉄ペレット(
空隙率55%、吸水率15%)を実施例1と同様にして
回転ドラムに一定量づつ連続で投入し、これに混合樹脂
(分子m 1400 、軟化点83℃のポリエチレン樹
脂42.5重量%と軟化点110℃のアククチツクポリ
プロピレン樹脂42゜5重量%と分子rik33万、軟
化点86℃の高分子…ボリエヂレン樹脂15tfffn
%)を加熱スプレーにより液状ミストとし、ペレットに
対し2重量%の割合で連続的に供給しつつ、ドラl、内
壁を180℃に加熱し、回転させた。オーバーフロ一方
式によって加炭鉄を得、得られた加炭鉄を屋外にtケ月
放置し、金属化率の変化、降雨時の吸水率、回転強度を
囮悠した。結果を表−1に示す。
Comparative Example 1 Reduced iron pellets heated to 75°C in advance (
A fixed amount of porosity 55%, water absorption 15%) was continuously charged into a rotating drum in the same manner as in Example 1, and mixed resin (42.5% by weight of polyethylene resin with molecules m 1400 and a softening point of 83°C) 42.5% by weight of an active polypropylene resin with a softening point of 110°C and a polymer with a molecular Rik of 330,000 and a softening point of 86°C...polyethylene resin 15tfffn
%) was made into a liquid mist by heating spray, and while continuously supplying the mixture at a ratio of 2% by weight to the pellets, the drum l and inner wall were heated to 180° C. and rotated. Carburized iron was obtained using the overflow method, and the obtained carburized iron was left outdoors for t months to observe changes in metallization rate, water absorption during rain, and rotational strength. The results are shown in Table-1.

比較例2 あらかじめ、75℃に加温しておいた還元鉄ペレット(
空隙率55%、吸水率15%)を実施例1と同様にして
回転ドラムに一定量づつ連続で投入し、これにカーボン
ブラック(粒径50μ)40重量%含有混合樹脂(分子
量1400.軟化点83℃のポリエチレン樹脂25.5
重量%と軟化点!10℃のアククチツクポリプロピレン
樹脂25゜5重量%と分子fi’i33万、軟化点86
℃の高分子!nポリエチレン樹脂9重量%)を加熱スプ
レーにより液状ミストとし、ペレットに対し2重量%の
割合で連続的に供給しつつ、ドラム内壁を180℃に加
熱し、回転させた。オーバーフロ一方式によって加炭鉄
を得、得られた加炭鉄を屋外に1ケ月放置し、金属化率
の変化、降雨時の吸水率、回転強度を観察した。結果を
表−1に示す。
Comparative Example 2 Reduced iron pellets heated to 75°C in advance (
Porosity: 55%, water absorption: 15%) was continuously charged into a rotating drum in a fixed amount in the same manner as in Example 1, and mixed resin containing 40% by weight of carbon black (particle size: 50μ) (molecular weight: 1400, softening point) 83℃ polyethylene resin 25.5
Weight% and softening point! Acrylic polypropylene resin 25° 5% by weight at 10°C, molecular fi'i 330,000, softening point 86
Polymer at °C! The inner wall of the drum was heated to 180° C. and rotated while continuously supplying a liquid mist (9% by weight of n-polyethylene resin) to the pellets at a ratio of 2% by weight to the pellets. Carburized iron was obtained by one overflow method, and the obtained carburized iron was left outdoors for one month to observe changes in metallization rate, water absorption rate during rain, and rotational strength. The results are shown in Table-1.

比較例3 未塗布還元鉄ペレットを1ケ月屋外に放置し、金属化率
変化をy、[Iべるとともに、降雨時の吸水率、回転強
度を観察した。結果を表−Iに示す。
Comparative Example 3 Uncoated reduced iron pellets were left outdoors for one month, and changes in metallization rate were observed, as well as water absorption during rain and rotational strength. The results are shown in Table-I.

及檄鰺↓ あらかじめ、75℃に加温しておいたランプ鉄鉱石(空
隙率50%、吸水率9.6%)を実施例1と同様にして
回転ドラムに一定量づつ連続で投入し、これにカーボン
ブラック(粒径50μm)20重量%含(f混合樹脂(
分子m l 400 、軟化点83℃のポリエチレン樹
脂34重量%と軟化点IIO℃のアククチツクポリプロ
ピレン樹脂34重量%と分子量33万、軟化点86℃の
高分子量ポリエチレン樹脂12重量%)を加熱スプレー
により液状ミストとし、ランプに対し2重11%の割合
で連続的に供給しつつ、ドラム内壁を180℃に加熱し
、回転させた。オーバーフロ一方式によって加炭鉄を得
、得られた加炭鉄の落下強度を評価した。結果を表−2
に示す。
Oijimaji ↓ Lamp iron ore (porosity 50%, water absorption rate 9.6%) that had been heated to 75°C in advance was continuously charged into a rotating drum in a fixed amount in the same manner as in Example 1. This contains 20% by weight of carbon black (particle size 50 μm) (f mixed resin (
34% by weight of a polyethylene resin with a molecular weight of 400 and a softening point of 83°C, 34% by weight of an active polypropylene resin with a softening point of IIO°C, and 12% by weight of a high molecular weight polyethylene resin with a molecular weight of 330,000 and a softening point of 86°C) were heated and sprayed. A liquid mist was produced by heating the inner wall of the drum to 180° C. and rotating while continuously supplying the mixture to the lamp at a ratio of 11% double weight. Carburized iron was obtained by one overflow method, and the drop strength of the obtained carburized iron was evaluated. Table 2 of the results
Shown below.

落下強度: J l5−M−871Nこj、%づき落下
強度(%)を算出 実施例5 あらかじめ、75℃に加温しておいたランプ鉄鉱石(空
隙率50%、吸水率9.6%)を実施例1と同様にして
回転ドラムに一定量づつ連続で投入し、これにカーボン
ブラック(粒径50μm)20重量%含(T混合樹脂(
分子m+4oo、軟化点83℃のポリエチレン樹脂34
重量%と軟化点110℃のアククチックボリプ【lピレ
ン樹脂34重11′C%と分子m33万、軟化点86℃
の高分子litポリエヂレン樹脂!2重!n%)を加熱
スプレーにより液状ミストとし、ランプに対し4重量%
の割合で連続的に供給しつつ、ドラム内壁を180℃に
加熱し、回転させた。オーバーフロ一方式に、12って
加炭鉄を得、得られた加炭鉄の落下強度を評価した。結
果を表−2に示す。
Falling strength: Calculate the falling strength (%) by % Example 5 Lamp iron ore preheated to 75°C (porosity 50%, water absorption 9.6%) ) was continuously added to a rotating drum in a fixed amount in the same manner as in Example 1, and a mixture of carbon black (particle size 50 μm) containing 20% by weight (T mixed resin (
Polyethylene resin 34 with molecule m+4oo and softening point 83°C
Actic volip with weight% and softening point of 110°C
High polymer lit polyethylene resin! Double! n%) was made into a liquid mist by heating spray, and the amount was 4% by weight based on the lamp.
The inner wall of the drum was heated to 180° C. and rotated while being continuously supplied at a rate of . Carburized iron No. 12 was obtained using the overflow method, and the drop strength of the obtained carburized iron was evaluated. The results are shown in Table-2.

実施例6 あらかじめ、75℃に加温しておいたランプ鉄鉱石(空
隙率50%、吸水率9.0%)を実施例1と同様にして
回転ドラムに一定量づつ連続で投入し、これにカーボン
ブラック(粒径50μm)30重h1%含a混合樹脂(
分子m1400.軟化点83℃のポリエチレン樹脂30
重量%と軟化点IIθ℃のアククチツクポリプロピレン
樹脂30重fit%と分子h133万、軟化点86℃の
高分子量ポリエチレン樹脂10重量%)を加熱スプレー
により液状ミストとし、ランプに対し2重量%の割合で
連続的に供給しつつ、ドラム内壁を180℃に加熱し、
回転させた。オーバーフロ一方式によって加炭鉄を得、
得られた加炭鉄の落下強度を評価した。結果を表−2に
示す。
Example 6 Lamp iron ore (porosity 50%, water absorption rate 9.0%) that had been heated to 75°C in advance was continuously charged into a rotating drum in a fixed amount in the same manner as in Example 1. Carbon black (particle size 50μm) 30wt h1% a mixed resin (
Molecule m1400. Polyethylene resin 30 with a softening point of 83℃
30% by weight of an active polypropylene resin with a softening point IIθ°C and 10% by weight of a high molecular weight polyethylene resin with a molecular h of 1,330,000 and a softening point of 86°C) was made into a liquid mist by heating spraying, and 2% by weight was applied to the lamp. The inner wall of the drum is heated to 180°C while being continuously supplied at a certain rate,
Rotated. Obtain recarburized iron by one overflow method,
The drop strength of the obtained carburized iron was evaluated. The results are shown in Table-2.

匿性鯉↓ あらかじめ、75℃に加温しておいたランプ鉄鉱石(空
隙率50%、吸水率9.6%)を実施例1と同様にして
回転ドラムに一定量づつ連続で投入し、これに混合樹脂
(分子fn1400.軟化点83℃のポリエチレン樹脂
42.5重量%と軟化点110℃のアククチツクポリプ
ロピレン樹脂42゜5重量%と分子h133万、軟化点
86℃の高分子量ポリエチレン樹脂15重量%)を加熱
スプレーにより液状ミストとし、ランプに対し2重!R
%の割合で連続的に供給しつつ、ドラム内壁を180℃
に加熱し、回転させた。オーバーフロ一方式に評価した
。結果を表−2に示す。
Anonymous carp ↓ Lamp iron ore (porosity 50%, water absorption rate 9.6%) that had been heated to 75°C in advance was continuously introduced into a rotating drum in a fixed amount in the same manner as in Example 1. This is mixed with resin (molecule fn 1400. 42.5% by weight of polyethylene resin with a softening point of 83°C, 42.5% by weight of an acidic polypropylene resin with a softening point of 110°C, and a high molecular weight polyethylene resin with a molecule h of 1,330,000 and a softening point of 86°C. 15% by weight) is made into a liquid mist by heating spray, and double layered on the lamp! R
While continuously supplying at a rate of %, the inner wall of the drum was heated to 180℃
heated and rotated. Overflow was evaluated in one way. The results are shown in Table-2.

比較例5 あらかじめ、75℃に加温しておいたランプ鉄鉱石(空
隙率50%、吸水率9.6%)を実施例1と同様にして
回転ドラムに一定量づつ連続で投入し、これにカーボン
ブラック(粒径50μm)40重量%含有混合樹脂(分
子fit1400.軟化点83℃のポリエチレン樹脂2
5.5重量%と軟化点110℃のアククチツクポリプロ
ピレン樹脂25゜5重量%と分子ff133万、軟化点
86℃の品分子爪ポリエチレン樹脂9重量%)を加熱ス
プレーにより液状ミストとし、ランプに対し2重111
%の割合で連続的に供給しつつ、ドラム内壁を180℃
に加熱し、回転させた。オーバーフロ一方式によって加
炭鉄を得、得られた加炭鉄の落下強度を評価した。結果
を表−2に示す。
Comparative Example 5 A constant amount of lamp iron ore (porosity 50%, water absorption 9.6%) heated to 75°C in advance was continuously charged into a rotating drum in the same manner as in Example 1. Mixed resin containing 40% by weight of carbon black (particle size 50 μm) (molecular fit 1400, polyethylene resin 2 with a softening point of 83°C)
25.5% by weight of an active polypropylene resin with a softening point of 110°C and 9% by weight of an active polypropylene resin with a molecular weight of 1.33 million ff and a softening point of 86°C) was made into a liquid mist by heating spray and applied to a lamp. Against double 111
While continuously supplying at a rate of %, the inner wall of the drum was heated to 180℃
heated and rotated. Carburized iron was obtained by one overflow method, and the drop strength of the obtained carburized iron was evaluated. The results are shown in Table-2.

比較例6 未塗布ランプ鉄鉱石の落下強度を観察した。結果を表−
2に示す。
Comparative Example 6 The falling strength of uncoated lamp iron ore was observed. Display the results -
Shown in 2.

表−2 発明の効果 本発明加炭鉄は、その表面が樹脂で被覆されているため
、多孔性鉄が搬送時機粉化され難く、加炭されているた
め、これをそのま\用いるか、炭素含量の低い他の鉄に
配合して用いることにより、適当な炭素含量に調節する
ことができる。また、加炭鉄自体が相当の比重を有する
ため、溶融鉄中に投入しても、均一に混合し易(、溶融
鉄表面上で消失せず、有効に利用される。またスプレー
法を採用すれば、多孔性鉄の内部に樹脂が吸収され難く
、少量の樹脂で多孔性鉄を被覆できる。
Table 2 Effects of the Invention The carburized iron of the present invention has its surface coated with resin, making it difficult for the porous iron to be pulverized during transportation. The carbon content can be adjusted to an appropriate level by blending it with other iron having a low carbon content. In addition, since carburized iron itself has a considerable specific gravity, it is easy to mix uniformly even when added to molten iron (it does not disappear on the surface of molten iron and is effectively used). This makes it difficult for the resin to be absorbed into the porous iron, and the porous iron can be coated with a small amount of resin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明還元鉄ペレット連続製造装置の模式的断
面図、第2図は第1図装置の左側面図(還元鉄ペレット
の供給口)、第3図はI−1断面図および第4図は右側
面図(還元鉄ペレットの排出口)を示す。 (+)回転ドラム、   (2)モーター、(3)回転
支持台、  (4)羽 根、(5)供給口、     
(6)排出口、(7)還元鉄ペレット連続供給装置、 (8)加熱スプレー装置、 (9)ドラム用ヒーター。
Fig. 1 is a schematic sectional view of the apparatus for continuously producing reduced iron pellets of the present invention, Fig. 2 is a left side view of the apparatus shown in Fig. 1 (reduced iron pellet supply port), and Fig. 3 is a sectional view along I-1 and Figure 4 shows the right side view (reduced iron pellet discharge port). (+) Rotating drum, (2) motor, (3) rotating support, (4) blade, (5) supply port,
(6) Discharge port, (7) Continuous reduced iron pellet supply device, (8) Heating spray device, (9) Drum heater.

Claims (1)

【特許請求の範囲】 1、炭素源を含有する熱可塑性樹脂を多孔性の鉄表面に
被覆した加炭鉄。 2、炭素源が石炭粉末、カーボンブラックまたはコーク
ス粉である第1項記載の加炭鉄。 3、熱可塑性樹脂がポリオレフィン樹脂である第1項記
載の加炭鉄。 4、被覆成分中の炭素含量が30重量%以下である第1
項記載の加炭鉄。 5、多孔性の鉄が還元鉄ペレットまたはランプ鉄鉱石で
ある第1項記載の加炭鉄。 6、炭素源を含有する熱可塑性樹脂を、該熱可塑性樹脂
の軟化温度より約10℃高い温度以下に保持した多孔性
鉄表面に溶融熱可塑性樹脂を噴霧し、所望ならばこれを
樹脂の軟化温度以上に加熱することを特徴とする加炭鉄
の製法。 7、炭素源が石炭粉末、カーボンブラックまたはコーク
ス粉末である第6項記載の加炭鉄の製法。 8、炭素源の粒径が100μm以下である第6項記載の
製法。 9、熱可塑性樹脂がポリオレフィン樹脂である第6項記
載の製法。 10、被覆成分中の炭素含量が30重量%以下である第
6項記載の製法。 11、多孔性の鉄が還元鉄ペレットまたはランプ鉄鉱石
である第6項記載の製法。 12、炭素源を含有する熱可塑性樹脂液中に多孔性の鉄
を含浸させ鉄表面に炭素含有被膜を形成させる加炭鉄の
製法。 13、炭素源が石炭粉末、カーボンブラックまたはコー
クス粉末である第12項記載の製法。 14、炭素源の粒径が1mm以下である第12項記載の
製法。 15、熱可塑性樹脂がポリオレフィン樹脂である第12
項記載の製法。 16、被覆成分中の炭素含量が30型層%以下である第
12項記載の製法。 17、多孔性の鉄が還元鉄ペレットまたはランプ鉄鉱石
である第12項記載の製法。
[Claims] 1. Carburized iron in which a porous iron surface is coated with a thermoplastic resin containing a carbon source. 2. Carburized iron according to item 1, wherein the carbon source is coal powder, carbon black, or coke powder. 3. Carburized iron according to item 1, wherein the thermoplastic resin is a polyolefin resin. 4. The first carbon content in the coating component is 30% by weight or less
Carburized iron as described in section. 5. Carburized iron according to item 1, wherein the porous iron is reduced iron pellets or lamp iron ore. 6. Spray the molten thermoplastic resin onto a porous iron surface held at a temperature below about 10°C above the softening temperature of the thermoplastic resin containing a carbon source, and if desired, use this to soften the resin. A process for producing carburized iron that involves heating it above temperature. 7. The method for producing carburized iron according to item 6, wherein the carbon source is coal powder, carbon black, or coke powder. 8. The manufacturing method according to item 6, wherein the carbon source has a particle size of 100 μm or less. 9. The method according to item 6, wherein the thermoplastic resin is a polyolefin resin. 10. The method according to item 6, wherein the carbon content in the coating component is 30% by weight or less. 11. The method according to item 6, wherein the porous iron is reduced iron pellets or lamp iron ore. 12. A method for producing carburized iron by impregnating porous iron in a thermoplastic resin liquid containing a carbon source to form a carbon-containing film on the iron surface. 13. The method according to item 12, wherein the carbon source is coal powder, carbon black, or coke powder. 14. The manufacturing method according to item 12, wherein the carbon source has a particle size of 1 mm or less. 15. 12th thermoplastic resin is polyolefin resin
Manufacturing method described in section. 16. The method according to item 12, wherein the carbon content in the coating component is 30% or less. 17. The method according to item 12, wherein the porous iron is reduced iron pellets or lamp iron ore.
JP61288337A 1986-12-03 1986-12-03 Carburized iron and its manufacturing method Expired - Lifetime JPH0819482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288337A JPH0819482B2 (en) 1986-12-03 1986-12-03 Carburized iron and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288337A JPH0819482B2 (en) 1986-12-03 1986-12-03 Carburized iron and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS63140041A true JPS63140041A (en) 1988-06-11
JPH0819482B2 JPH0819482B2 (en) 1996-02-28

Family

ID=17728886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288337A Expired - Lifetime JPH0819482B2 (en) 1986-12-03 1986-12-03 Carburized iron and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0819482B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111168A (en) * 2006-10-31 2008-05-15 Nippon Steel Corp Method for producing raw material to be charged into blast furnace and raw material to be charged into blast furnace
JP2008111170A (en) * 2006-10-31 2008-05-15 Nippon Steel Corp Method for producing raw material to be charged into blast furnace
JP2009019252A (en) * 2007-07-13 2009-01-29 Nippon Steel Corp Iron source raw material for blast furnace and its manufacturing method
JP2011246742A (en) * 2010-05-24 2011-12-08 Nippon Steel Corp Method and apparatus for producing raw material to be charged into blast furnace
JP2012062505A (en) * 2010-09-14 2012-03-29 Kobe Steel Ltd Method for manufacturing agglomerate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511727A (en) * 1978-07-03 1980-01-26 Seiwa Seiki Kk Periphery processing jig

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511727A (en) * 1978-07-03 1980-01-26 Seiwa Seiki Kk Periphery processing jig

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111168A (en) * 2006-10-31 2008-05-15 Nippon Steel Corp Method for producing raw material to be charged into blast furnace and raw material to be charged into blast furnace
JP2008111170A (en) * 2006-10-31 2008-05-15 Nippon Steel Corp Method for producing raw material to be charged into blast furnace
JP2009019252A (en) * 2007-07-13 2009-01-29 Nippon Steel Corp Iron source raw material for blast furnace and its manufacturing method
JP2011246742A (en) * 2010-05-24 2011-12-08 Nippon Steel Corp Method and apparatus for producing raw material to be charged into blast furnace
JP2012062505A (en) * 2010-09-14 2012-03-29 Kobe Steel Ltd Method for manufacturing agglomerate

Also Published As

Publication number Publication date
JPH0819482B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
AU2004299649B2 (en) Sulphur pellet comprising H2S-suppressant
JPS63140041A (en) Recarburized iron and its preparation
FR3008705A1 (en) COMPOSITE COATINGS OF COPPER OXIDE AND / OR PHOSPHORUS
US4012539A (en) Method of applying and bonding a bearing lining comprising a mixture of an arylene sulphide polymer and a metallic oxide to a backing material
JPS62116728A (en) Production of resin coated reduced iron
CN109912986A (en) A kind of wax class aggregation and preparation method thereof of carbons powder thickening
FR2638763A1 (en) PROCESS FOR TREATING A CAST IRON BATH USING PURE MAGNESIUM
JP2002363625A (en) Surface coated reduced iron, production method therefor and dissolution method therefor
FR2668776A1 (en) PRODUCT FOR DESULFURIZING CAST IRONS OR LIQUID STEELS BASED ON COATED MAGNESIUM.
JPS63142088A (en) Resin-coated brown coal briquette char and production thereof
US4153481A (en) Cyanide-free carburizing process and composition
CN111135520A (en) Superfine dry powder extinguishing agent and preparation method thereof
JPS6054349B2 (en) Surface treatment agent for storage of powder and granular materials piled up in the open
JPH0623412B2 (en) Manufacturing method of resin-coated reduced iron pellets
JP2000302585A5 (en)
JPS5966463A (en) Fluorine-containing coating composition
JP3571454B2 (en) Carburizing or nitriding prevention powder and carburizing or nitriding prevention method
JPS6020359B2 (en) 1&#39;-Ethoxycarbonyloxyethyl ester of valbroic acid and its production method
EP0703586B1 (en) Block for conditioning poudery waste and process for manufacturing such a block
SU767216A1 (en) Method of preparing carburizing reagent for steel production
US21817A (en) Mantjtactttbe of sheet-iron
JPS61279635A (en) Resin coated reduced iron pellet
JPS58176251A (en) Production of powdered polyethylene resin composition for powder coating
JPS6125763B2 (en)
JPH08260172A (en) Surface coated reduced iron and oxidation preventing method for the same