JPS63140007A - Method for charging raw material into bell type blast furnace - Google Patents

Method for charging raw material into bell type blast furnace

Info

Publication number
JPS63140007A
JPS63140007A JP28802786A JP28802786A JPS63140007A JP S63140007 A JPS63140007 A JP S63140007A JP 28802786 A JP28802786 A JP 28802786A JP 28802786 A JP28802786 A JP 28802786A JP S63140007 A JPS63140007 A JP S63140007A
Authority
JP
Japan
Prior art keywords
raw materials
furnace
different
charging
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28802786A
Other languages
Japanese (ja)
Inventor
Takanobu Inada
隆信 稲田
Yoshimasa Kajiwara
梶原 義雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28802786A priority Critical patent/JPS63140007A/en
Publication of JPS63140007A publication Critical patent/JPS63140007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To stabilize blast furnace operation without requiring new devices and intensification of control sequence by segmenting and depositing main raw materials and different raw materials to a laminar state on a large bell, then charging said raw materials into a blast furnace at the time of charging the main raw materials and different raw material into the furnace. CONSTITUTION:The main raw materials which are ore, sintered ore pellets and coke and the different raw materials which are different in component or characteristic from the main raw materials are charged into the blast furnace. The main raw materials and different raw materials are segmented and laminated to the stepped layer state on the large bell and after the above-mentioned different raw materials are laminated on the prescribed position, the large bell is opened to charge the raw materials into the furnace. The distribution in the in-furnace radial direction of the raw materials after charging into the furnace has the specific pattern according to the position of the step layer of the raw materials to be laminated on the large bell. The main raw materials and different raw material are, therefore, distributed and charged to the desired position in the furnace. Since an operation for intentionally forming ruggedness on the surface of the deposits in the furnace prior to charging different raw materials into the furnace is not carried out, the weight ratio distribution of the ore and the coke does not degrade. Also since there is no need for increasing the number of the batches for charging to the large bell in order to charge the different raw material, the need for providing the intricate charging sequence is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベル式高炉に異種原料を装入する方法に関す
るもので、詳しくは主原料と、この主原料と成分あるい
は性状の異なる異種原料とを炉内半径方向に的確に分布
制御することのできる高炉の原料装入方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for charging different types of raw materials into a bell type blast furnace. Specifically, the present invention relates to a method for charging different types of raw materials into a bell-type blast furnace. The present invention relates to a method for charging raw materials into a blast furnace that can accurately control the distribution of raw materials in the radial direction within the furnace.

〔従来の技術および問題点〕[Conventional technology and problems]

高炉操業は、炉mから鉱石、焼結鉱あるいはベレット等
の原料とコークスとを交互に炉内に装入するとともに、
羽口から熱風を吹き込み原料を還元・溶解して銑鉄を製
造するものである。
In blast furnace operation, raw materials such as ore, sintered ore, or pellets and coke are alternately charged into the furnace from furnace m, and
Pig iron is produced by blowing hot air through the tuyeres to reduce and melt raw materials.

前記原料等の装入について第5図を用いて説明する。ま
ず、ベルトコンベア(1)によって炉m部に搬送された
原料(2)は固定ホッパー(3)内に一旦貯蔵される。
The charging of the raw materials and the like will be explained using FIG. 5. First, the raw material (2) conveyed to the m section of the furnace by the belt conveyor (1) is temporarily stored in a fixed hopper (3).

そのあと原料はシール弁(4)および旋回シュート■を
介して小ベル(6)上に均等に装入される。
The raw material is then uniformly charged onto the small bell (6) via the seal valve (4) and the rotating chute (2).

次いで、原料■は小ベルロッド■の操作により小ベル(
6)が開かれ、太ベル(8)上に落下される。更に高炉
内で装入物のレベルが所定のストックベルに達すると、
大ベルロッド(9)の操作によって大ベル(8)が開に
され、大ベル(8)上の原料■が高炉炉内に装入される
。その際ムーバブルアーマ(1■を操作シて原料(2)
の炉内落下位置を制御して原料の炉内半径方向分布制御
を行っている。
Next, the raw material ■ is passed through a small bell (
6) is opened and dropped onto the thick bell (8). Furthermore, when the level of the charge reaches a predetermined stock level in the blast furnace,
The large bell (8) is opened by operating the large bell rod (9), and the raw material (2) on the large bell (8) is charged into the blast furnace. At that time, operate the movable armor (1) and move the raw material (2).
The distribution of raw materials in the radial direction in the furnace is controlled by controlling the falling position of the raw materials in the furnace.

さて、高炉における装入物分布制御の主な対象は、炉内
半径方向の鉱石とコークスのff1ffi比分布(以下
O/Cという)である。しかし、近年の高炉操業におい
ては、安価な原料の使用、良質銑鉄の安定製造あるいは
フレキシブルな出銑比等の要求が強い。これを満すため
、主原料(ここでは鉄源原料およびコークス)と共に、
前記主原料と成分、あるいは性状(ここでは成分を除(
粒径、強度、軟化融着性、反応性などをいう)の異なる
異種原料を合せて装入する方法が、種々提案されている
Now, the main object of charge distribution control in a blast furnace is the ff1ffi ratio distribution (hereinafter referred to as O/C) of ore and coke in the radial direction within the furnace. However, in recent blast furnace operations, there are strong demands for the use of inexpensive raw materials, stable production of high-quality pig iron, and flexible pig iron production ratios. In order to meet this requirement, along with the main raw materials (here iron source raw materials and coke),
The main raw materials and ingredients, or properties (excluding ingredients here)
Various methods have been proposed in which different types of raw materials with different particle sizes, strength, softening and fusion properties, reactivity, etc. are charged together.

例えば、特開昭59−150003号公報および特開昭
61−56212号公報の方法は、鉱石の塩基度を調整
するため、石灰石あるいは珪石等の副原料を使用するも
のであり、特開昭59−150003号公報および特開
昭61−15904号公報の方法は、塩基度の異なる焼
結鉱を、炉内半径方向の異なる位置に堆積するものであ
る。
For example, the methods disclosed in JP-A-59-150003 and JP-A-61-56212 use auxiliary raw materials such as limestone or silica stone to adjust the basicity of the ore. The methods disclosed in Japanese Patent Application Laid-open No. 150003 and Japanese Patent Application Laid-Open No. 61-15904 deposit sintered ores having different basicities at different positions in the radial direction of the furnace.

また、特開昭55−28308号公報および特開昭55
−62106号公報の方法は、粒度別装入法といわれる
もので、粒度の異なる焼結鉱あるいはコークスを炉内の
異なる位置に堆積する装入方法である。
Also, JP-A-55-28308 and JP-A-55
The method disclosed in Japanese Patent No. 62106 is called a grain-size charging method, and is a charging method in which sintered ore or coke of different grain sizes are deposited at different positions in the furnace.

ところで、上記した高炉の異種原料装入方法において、
重要なことは次の点である。すなわち、(イ)異ll昂
科を炉内の所望位こに的確に装入できる。
By the way, in the above-mentioned method for charging different materials into a blast furnace,
The important points are as follows. That is, (a) it is possible to accurately charge the material into the desired position in the furnace.

(ロ)異種原料の装入により、炉内半径方向のO/C分
布制御性が悪化しない。
(b) O/C distribution controllability in the radial direction within the furnace is not deteriorated by charging different types of raw materials.

ことである。前記(イ)および(ロ)を達成する方法と
して、従来、次の方法が採用されている。
That's true. Conventionally, the following methods have been employed to achieve the above (a) and (b).

(1)異aa料をバッチを変えて装入する方法。(1) A method of charging different AA materials in different batches.

例えば、特開昭55−283085号公報、特開昭55
−132106号公報、特開昭61−56212号公報
のように、異U原料の装入にあたり、ムーバブルアーマ
を操作し、この操作によって異種原料を炉内の所望の位
置に分布することができる。しかし、異種原料ODが第
6図のように堆積することによって、装入′面に新たに
凹凸ができ、炉内半径方向のO/C分布制御が悪化する
。また、一般に、異a原料の装入量は主原料に対し、高
々30%であり、異種原料のために新たなバッチを設け
、かつムーバブルアーマを操作するとすれば、原料装入
シーケンスが非常に複雑なものとなる。
For example, JP-A No. 55-283085;
As in JP-A-132106 and JP-A-61-56212, when charging different U raw materials, a movable armor is operated, and by this operation, the different kinds of raw materials can be distributed at desired positions in the furnace. However, due to the accumulation of different materials OD as shown in FIG. 6, new irregularities are formed on the charging surface, which deteriorates the O/C distribution control in the radial direction within the furnace. Additionally, in general, the charging amount of different a raw materials is at most 30% of the main raw material, and if a new batch is created for different raw materials and a movable armor is operated, the raw material charging sequence becomes extremely difficult. It becomes complicated.

■異種原料を主原料と同一バッチで装入する方法。■Method of charging different raw materials in the same batch as the main raw material.

この方法には、主原料と異lII!it料とを炉内に装
入する前に混合したあと装入する混合装入方法や特開昭
60−174808号公報のように、ベルから排出され
る原料の粒径の経時変化を予め把握しておき、これに基
づいて、原料装入中にムーバブルアーマを経時的に操作
し、粒径の異なる原料を炉内半径方向の異なる位置に堆
積させると共に、O/Cをも分布制御しようとするもの
である。
This method has different main ingredients! It is possible to grasp in advance the change in the particle size of the raw material discharged from the bell over time, as in the mixed charging method in which the raw material is mixed with the IT material before charging into the furnace and then charged, as in JP-A-60-174808. Based on this, we tried to operate the movable armor over time during raw material charging to deposit raw materials with different particle sizes at different positions in the radial direction inside the furnace, and also to control the O/C distribution. It is something to do.

これらの方法は、半径方向のO/C分布制御に悪影響を
与えることはない。しかし、前記混合装入方法は、原料
の混合作業が必要であり、との予混合作業は、通常、原
料貯槽から装入コンベアーへの原料切出時に行われるが
、装入ベルトコンベアーから大ベルに至る原料搬送過程
において、混合した原料の再分級が生じ、必ずしも均一
混合状態で炉内に装入できない。また、特開昭60−1
74808号公報の方法は、ムーバブルアーマの経時的
制御という複雑な装入シーケンスを必要とする。以上の
ように、従来の異種原料装入方法においては、前記(イ
)および(ロ)を十分に満足するものとはいえず、また
、浄作性の面で複雑な装入シーケンスを必要とするとい
う問題があった。
These methods do not adversely affect radial O/C distribution control. However, the mixed charging method requires a mixing operation of the raw materials, and the premixing operation is usually performed at the time of cutting the raw materials from the raw material storage tank to the charging conveyor. In the process of transporting the raw materials, the mixed raw materials are reclassified and cannot necessarily be charged into the furnace in a uniformly mixed state. Also, JP-A-60-1
The method of Japanese Patent No. 74808 requires a complicated charging sequence of controlling the movable armor over time. As mentioned above, the conventional method of charging different types of raw materials cannot be said to fully satisfy the above (a) and (b), and also requires a complicated charging sequence in terms of cleaning efficiency. There was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高炉に異種原料を装入するにあたって重要な
上記2つの点、すなわち、 (イ)異!l原料を炉内の所望の位置に装入できる。
The present invention addresses the above two important points when charging different types of raw materials into a blast furnace: (a) Different! 1 Raw material can be charged to a desired position in the furnace.

(ロ)異種原料の装入によって炉内半径方向の。70分
布制御性が悪化しない。
(b) The radial direction inside the furnace due to the charging of different materials. 70 Distribution controllability does not deteriorate.

ことを実現するには、如何なる手段を講ずればよいかを
高炉炉頂部の1/7の縮小模型を用いて数々試験した結
果、得られたものである。
This was obtained as a result of numerous tests using a 1/7 scale model of the top of a blast furnace to determine what measures should be taken to achieve this.

すなわち、本発明は、ベル式高炉に原料を装入する場合
に、鉱石、焼結鉱ペレットおよびコークス(以下これら
を主原料という)と、この主原料と成分あるいは性状の
異なる原料(以下これらを異種原料という)を高炉炉内
に装入するにあたり、大ベル上に主原料と異種原料とを
段后伏に区分して積層し、かつ前記異種原料を所定の位
置に積層した後、大ベルを開いて装入する方法である。
That is, when charging raw materials into a bell-type blast furnace, the present invention combines ore, sintered ore pellets, and coke (hereinafter referred to as main raw materials) and raw materials with different components or properties from these main raw materials (hereinafter referred to as these). When charging different types of raw materials (referred to as different types of raw materials) into a blast furnace, the main raw materials and different type of raw materials are layered on a large bell in a stacked manner, and after stacking the different types of raw materials at predetermined positions, This method involves opening and loading the container.

〔作   用〕[For production]

以下本発明について図面を用いて説明する。 The present invention will be explained below with reference to the drawings.

主原料の一つである焼結鉱を赤色、青色、黄色に着色し
、前記着色した焼結鉱を第1図に示す高炉炉頂部の縮小
模型の大ベル(8)上に赤色焼結鉱(A)を下段層に、
青色焼結鉱(B)を中段層に、黄色焼結鉱(C)を上段
層に、それぞれ等体積となるよう3段に分けて積層した
。その後大ベル(8)を開いて縮小模型の高炉炉内に装
入した。その結果を第2図に示す。この結果から判るよ
うに、下段層に積層した赤色焼結!!(A)は炉中心部
の堆積率が高く、炉壁側に行くにつれ徐々に低下してい
る。
Sintered ore, which is one of the main raw materials, is colored red, blue, and yellow. (A) in the lower layer,
The blue sintered ore (B) was layered in the middle layer, and the yellow sintered ore (C) was layered in the upper layer, each layer being divided into three layers with equal volume. Thereafter, the large bell (8) was opened and the material was charged into a scaled-down model blast furnace. The results are shown in FIG. As you can see from this result, the red sintered layer is laminated in the lower layer! ! In (A), the deposition rate is high in the center of the furnace, and gradually decreases toward the furnace wall.

中段層に積層した青色焼結鉱(B)は炉中心部と炉壁の
中間部に堆積率が高い。上段層に積層した黄色焼結鉱(
C)は炉壁側に多く堆積している。
The blue sintered ore (B) layered in the middle layer has a high deposition rate between the furnace center and the furnace wall. Yellow sintered ore (
C) is largely deposited on the furnace wall side.

このように、原料の大ベル上に積層する段層の位置によ
り、炉内に装入した後の原料の炉内半径方向の分布が独
特のパターンをなすことが判った。
In this way, it has been found that the distribution of the raw material in the radial direction inside the furnace after being charged into the furnace forms a unique pattern depending on the position of the stages stacked on the large bell of the raw material.

本発明は、この知見からなされたものであり次の特徴が
ある。
The present invention was made based on this knowledge and has the following features.

(1)主原料と成分あるいは性状の異なる異種原料を所
内の所望の位置に分布装入することができる。
(1) Different types of raw materials with different components or properties from the main raw materials can be distributed and charged at desired locations within the plant.

(11)異種原料の装入に先立って、炉内堆積物表面に
、故意に凹凸を作るような操作を行わないため、070
分布制御性が悪化しない。
(11) Prior to charging different raw materials, in order to avoid operations that intentionally create unevenness on the surface of deposits in the furnace, 070
Distribution controllability does not deteriorate.

(+i)異種原料装入のために大ベルの装入バッチ数を
増す必要がないので複雑な装入シーケンスを設ける必要
がない。
(+i) Since there is no need to increase the number of large bell charging batches due to charging different materials, there is no need to provide a complicated charging sequence.

本発明によれば、以上の特徴があるから高炉炉況の調整
に充分寄与できるものである。
According to the present invention, since it has the above-mentioned features, it can sufficiently contribute to the adjustment of blast furnace furnace conditions.

例えば、高炉操業中に炉壁側鉱石の溶は落ちが悪くスリ
ップが頻発するような場合には、溶は落ち性状が改善で
きる塩基度の高い異種原料を大ベルの上段層に積層した
あと炉内に装入すれば、塩基度の高い原料が炉壁側に多
(分布されるので炉況が改善できるのである。
For example, if during blast furnace operation, the ore on the wall side of the furnace does not drain well and slips occur frequently, then a different type of raw material with high basicity that can improve the pouring properties is laminated in the upper layer of the large bell, and then By charging the raw material inside the furnace, the raw material with high basicity is distributed in large quantities on the furnace wall side, which improves the furnace condition.

〔実施例1〕 高炉炉頂部の177 m小桟型を用いて主原料と性状の
異なる原料を異種原料とした場合の例を示す。
[Example 1] An example will be shown in which a 177 m small crosspiece type at the top of a blast furnace is used to use a material having different properties from the main material as a different material.

通常粒径の焼結鉱を主原料、細粒焼結鉱を異種原料とし
、第1表に示す3つのケースについて試験した。
Three cases shown in Table 1 were tested using sintered ore of normal particle size as the main raw material and fine-grained sintered ore as a different raw material.

第1表 (Iln考) 模型の縮小比に合せて粒径1〜3龍を細
粒焼結鉱とし、粒径3〜15自1を通常焼結鉱とした。
Table 1 (Inspection) In accordance with the reduction ratio of the model, grain sizes of 1 to 3 were used as fine sintered ore, and grain sizes of 3 to 15 to 1 were used as normal sintered ore.

第1表のケース(a)は、異種原料(細粒蜆結鉱)を大
ベル上の下段層に4.51積層し、主原料(通常粒径焼
結鉱)を中段層および上段層にそれぞれ15cm堆積し
たあと炉内に装入した場合。
In case (a) of Table 1, different raw materials (fine-grained sintered ore) are stacked in the lower layer on the large bell, and the main raw material (normal grained sintered ore) is layered in the middle and upper layers. When charged into the furnace after 15 cm of each was deposited.

ケース(b)は、異種原料を中段層に3cm積層し、主
原料を下段層および下段層にそれぞれ151堆積したあ
と炉内に装入した場合。ケース(C)は異1a原料を上
段層に1.51積層し、主原料を下段層および中段層に
それぞれ15c11堆積したあと炉内に装入した場合を
示す。
Case (b) is a case in which different raw materials are stacked in a 3 cm layer in the middle layer, and the main raw material is deposited in 151 layers each in the lower layer and then charged into the furnace. Case (C) shows a case in which 1.51 layers of the different 1a raw materials were stacked in the upper layer, and 15c11 layers of the main raw material were deposited in the lower and middle layers, respectively, and then charged into the furnace.

その結果を第3図に示す。同図から判るようにケース(
a)、(b)、(c)のいずれの場合も炉中心部から炉
壁側に向かって細粒焼結鉱堆積率が徐々に高(なる傾向
を示している。  しかし、ケース(C)のように異種
原料を上段層に配した場合が他の2つのケースよりもは
るかに多く炉壁側に堆積スルパターンを示している。従
って、高炉操業において細粒焼結鉱を使用する場合ある
いは細粒焼結鉱を用いて炉況を改善する場合には、この
パターンを活用すれば円滑な高炉操業が可能となる。
The results are shown in FIG. As you can see from the figure, the case (
In all cases a), (b), and (c), the fine sinter deposition rate gradually increases from the furnace center toward the furnace wall. However, in case (C) The case where different types of raw materials are arranged in the upper layer shows much more deposited patterns on the furnace wall side than the other two cases.Therefore, when using fine sintered ore in blast furnace operation or When using fine-grained sintered ore to improve furnace conditions, utilizing this pattern will enable smooth blast furnace operation.

〔実施例2〕 実施例1と同じように、炉O1縮小模型を用いて主原料
と成分の異なる原料を異種原料とした場合の例を示す。
[Example 2] As in Example 1, an example will be shown in which a reduced model of furnace O1 is used to use a raw material different in composition from the main raw material as a different raw material.

焼結鉱を主原料、石灰石を異種原料とし、第2表に示す
3つのケースについて試験した。
Three cases shown in Table 2 were tested using sinter as the main raw material and limestone as a different raw material.

第2表 (備考) 模型の縮小比1/7に合せて焼結鉱の粒径を
1〜15■11石灰石の粒径を3〜6nとした。
Table 2 (Notes) In accordance with the model reduction ratio of 1/7, the grain size of the sintered ore was set to 1 to 15 cm.11 The grain size of the limestone was set to 3 to 6 nm.

第2表のケース(d)は異11原料(石灰石)をベル上
の下段層に4.51積層し、主原料(焼結鉱)を中段層
および上段層にそれぜれ15cm堆積したあと装入した
場合。ケース(e)は異種原料を中段層に31積層し、
主原料を下段層および上段層にそれぞれ15cm堆積し
たあと装入した場合。
In case (d) of Table 2, different 11 raw materials (limestone) are laminated in 4.51 layers in the lower layer above the bell, and the main raw material (sintered ore) is deposited 15 cm each in the middle and upper layers. If you enter In case (e), 31 different materials are stacked in the middle layer,
When the main raw material is charged after depositing 15 cm in each of the lower and upper layers.

ケース<r>は異種原料を上段層に1.51積層し、主
原料を下段層および中段層にそれぞれ堆積したあと装入
した場合である。
Case <r> is a case where 1.5 times of different raw materials are stacked in the upper layer, and the main raw material is charged after being deposited in the lower layer and the middle layer.

その結果を第4図に示す、同図から判るように、ケース
(d)の異種原料を下段層に積層した場合のパターンは
、炉中心部の堆積が多(炉壁側に向って徐々に低下して
いる。ケース(e)の異種原料を中段層に配した場合は
、炉中心部と炉壁の中間部で堆積率が高いパターンを示
している。 ケース(f)の異U原料を上段に配した場
合は、炉中心部の堆積率は低いが炉壁側に向って急勾配
で上昇するパターンを示している。
The results are shown in Figure 4. As can be seen from the figure, the pattern in case (d) when different types of raw materials are stacked in the lower layer is that there is a lot of deposition in the center of the furnace (gradually towards the furnace wall). In case (e), when different types of raw materials are arranged in the middle layer, a pattern is shown in which the deposition rate is high in the middle part between the furnace center and the furnace wall. When placed in the upper stage, the deposition rate is low in the center of the furnace, but shows a pattern that rises steeply toward the furnace wall.

以上2つの実施例は、いずれも大ベル上に原料を3段層
にする場合について述べたが、本発明はこれらの実施例
に制約されるものではない。また、実高炉操業にあたっ
ては、種々の原料および異種絹料とを組合せた場合のパ
ターンを作成しておき、高炉炉況に適した最適な成分、
性杖およびパターンを採用することにより安定した高炉
操業ができる。
In the above two embodiments, the raw materials are arranged in three layers on a large bell, but the present invention is not limited to these embodiments. In addition, for actual blast furnace operation, patterns for combining various raw materials and different types of silk materials are created, and the optimal ingredients and
Stable blast furnace operation can be achieved by adopting a flexible rod and pattern.

なお、本発明において、大ベル上に主原料および異種原
料を段層する方法としては、小ベル上に主原料と異種原
料を別々に受は入れ大ベル上に落下する方法を採用すれ
ばよい。
In addition, in the present invention, as a method of layering the main raw material and different types of raw materials on the large bell, it is sufficient to adopt a method in which the main raw materials and different types of raw materials are received separately on the small bell and then dropped onto the large bell. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は大ベル上に主原料と異U
原料とを区分して1伏に堆積したあと装入するだけで、
異種原料を炉内半径方向の所望の位置に分布装入するこ
とができ、また異種原料が極めて局所的に装入されるこ
とがないのでO/Cも悪化しないので安定した高炉操業
ができる。そして、異!i際料の装入のために新たな装
置を設°けたり、制御シーケンスの増強も必要としない
という利点もある。
As explained above, the present invention has a main material and a different U material on a large bell.
All you have to do is separate the raw materials, pile them up, and then charge them.
Different types of raw materials can be distributed and charged at desired positions in the radial direction of the furnace, and since different types of raw materials are not charged locally, O/C does not deteriorate, allowing stable blast furnace operation. And different! Another advantage is that there is no need to install new equipment or to enhance the control sequence for charging the material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の焼結鉱を大ベル上に積層した状態
を示す図。第2図は第1図の焼結鉱を炉内に装入した後
の分布状聾を示す図。第3図は異種原料に細粒焼結鉱を
使用した場合の炉内分布を示す図。第4図は異種原料に
石灰石を使用した場合の炉内分布を示す図。第5図は高
炉炉m部の断面図、第6図は炉内上部の断面図である。 1・・・ベルトコンベアー 3・・・固定ホッパ−6・
・・小ベル      8・・・大ベル■・・・異種原
FIG. 1 is a diagram showing a state in which sintered ore according to the method of the present invention is stacked on a large bell. FIG. 2 is a diagram showing the distribution of deafness after the sintered ore shown in FIG. 1 is charged into a furnace. FIG. 3 is a diagram showing the distribution in the furnace when fine-grained sintered ore is used as the different raw material. FIG. 4 is a diagram showing the distribution in the furnace when limestone is used as a different raw material. FIG. 5 is a sectional view of the m-section of the blast furnace, and FIG. 6 is a sectional view of the upper part of the furnace. 1...Belt conveyor 3...Fixed hopper-6.
...Small bell 8...Large bell ■...Different raw materials

Claims (1)

【特許請求の範囲】[Claims] ベル式高炉に主原料と、この主原料と成分あるいは性状
の異なる異種原料とを装入する方法において、前記主原
料と異種原料とを大ベル上に堆積するにあたり、主原料
と異種原料とを区分して積層し、かつ前記異種原料を高
さ方向に所定の層厚をなすよう積載した後、大ベルを開
いて所内に装入することを特徴とするベル式高炉の原料
装入方法。
In a method of charging a main raw material and a different type of raw material with different components or properties from the main raw material into a bell-type blast furnace, when the main raw material and the different type of raw material are deposited on a large bell, the main raw material and the different type of raw material are A method for charging raw materials into a bell-type blast furnace, which comprises dividing and stacking raw materials and loading the different kinds of raw materials in a height direction so as to form a predetermined layer thickness, and then opening a large bell and charging the raw materials into the plant.
JP28802786A 1986-12-02 1986-12-02 Method for charging raw material into bell type blast furnace Pending JPS63140007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28802786A JPS63140007A (en) 1986-12-02 1986-12-02 Method for charging raw material into bell type blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28802786A JPS63140007A (en) 1986-12-02 1986-12-02 Method for charging raw material into bell type blast furnace

Publications (1)

Publication Number Publication Date
JPS63140007A true JPS63140007A (en) 1988-06-11

Family

ID=17724867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28802786A Pending JPS63140007A (en) 1986-12-02 1986-12-02 Method for charging raw material into bell type blast furnace

Country Status (1)

Country Link
JP (1) JPS63140007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820591A (en) * 2014-03-03 2014-05-28 攀钢集团攀枝花钢钒有限公司 Bell type blast furnace smelting method by using small-size sinters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820591A (en) * 2014-03-03 2014-05-28 攀钢集团攀枝花钢钒有限公司 Bell type blast furnace smelting method by using small-size sinters
CN103820591B (en) * 2014-03-03 2015-07-22 攀钢集团攀枝花钢钒有限公司 Bell type blast furnace smelting method by using small-size sinters

Similar Documents

Publication Publication Date Title
KR20040058021A (en) Raw material charging method for bell-less blast furnace
JPS63140007A (en) Method for charging raw material into bell type blast furnace
JP5387278B2 (en) Raw material charging method for blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JP2782786B2 (en) Raw material charging apparatus and charging method for bellless blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JPS63317605A (en) Method for charging raw material in blast furnace
JP6769507B2 (en) How to charge raw materials for blast furnace
JP4608906B2 (en) Raw material charging method for bell-less blast furnace
JPH0510402B2 (en)
JPS63317606A (en) Method for charging raw material in blast furnace
JPS62290809A (en) Raw material charging method for blast furnace
JP3874319B2 (en) Method and apparatus for charging small amounts of charged materials into a bell-less blast furnace
JPH01316404A (en) Method for charging raw material in blast furnace
JPH02259005A (en) Method for charging raw material in blast furnace
JPH03193806A (en) Method for charging raw material in blast furnace
US20240052439A1 (en) Method for charging raw materials into blast furnace
JPH02305911A (en) Bell-less type raw material charging method for vertical furnace
JP2021070870A (en) Method for charging raw material into blast furnace and method for producing molten iron
JPS62127412A (en) Raw material charging method for blast furnace
JPH0336206A (en) Method for charging raw material in bellless blast furnace
JPH07331311A (en) Method for charging raw material into blast furnace
JPWO2019187998A1 (en) Blast furnace raw material charging method
JP2808342B2 (en) Blast furnace charging method
JPH11269514A (en) Raw material hopper