JPS63139643A - Rotary body copying method - Google Patents

Rotary body copying method

Info

Publication number
JPS63139643A
JPS63139643A JP28652886A JP28652886A JPS63139643A JP S63139643 A JPS63139643 A JP S63139643A JP 28652886 A JP28652886 A JP 28652886A JP 28652886 A JP28652886 A JP 28652886A JP S63139643 A JPS63139643 A JP S63139643A
Authority
JP
Japan
Prior art keywords
stylus
model
center
speed
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28652886A
Other languages
Japanese (ja)
Inventor
Hitoshi Matsuura
仁 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP28652886A priority Critical patent/JPS63139643A/en
Priority to PCT/JP1987/000872 priority patent/WO1988004216A1/en
Publication of JPS63139643A publication Critical patent/JPS63139643A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/121Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing
    • B23Q35/123Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing the feeler varying the impedance in a circuit

Abstract

PURPOSE:To enable improvement of machining efficiency, by constructing such that the angular rotary speed of a model can be varied according to the distance between the center of rotation of the model and the center of stylus, thereby machining with constant cutting face speed at all times. CONSTITUTION:A controller CPU reads out current position in the direction of Z-axis from a current position counter CZ for every sampling time DELTAT and operates the displacement DELTAZ in the direction of Z-axis of a stylus ST, then operates the current value L of R0 based on the radius S of the stylus St being inputted from a keyboard KB and set into a memory MEM and the distance R0 between the lowermost point of the stylus ST under initial state and the center of rotation of a model MDL. Then the speed VX in the direction of X-axis is read out from a distribution circuit DC and employed together with the distance L for obtaining the angular rotary speed W of the model MDL which is outputted subsequently. DA converters DA1, DA2 input a speed component VZ and an angular speed W to drive circuits DRZ, DRQ so as to rotate motors MZ, MQ thus rotating the model MDL through a belt B, while simultaneously move the stylus St in Z-direction thus carrying out machining by means of a cutter CT.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は回転体ならい方法に係り、特に回転体であるモ
デルの回転角速度をモデルに接触するスタイラスの中心
とモデル回転中心間の距離に応じて可変制御する回転体
ならい方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for tracing a rotating body, and in particular, the rotational angular velocity of a model, which is a rotating body, is determined according to the distance between the center of a stylus that contacts the model and the center of rotation of the model. This invention relates to a method for tracing a rotating body that is variably controlled.

〈従来技術〉 ならい制御において、表面ならい方法は第3図に示すよ
うにスタイラスSTを送り軸であるX軸方向にならい領
域であるX、〜x2の範囲内で移動させると共に、モデ
ルMDLの形状に応じてならい軸であるZ軸方向に上下
させ、結果的にスタイラスをしてモデルMDLをなられ
せて図示しないカッタでワークにモデル形状通りの加工
を施すものである。そして、かかる表面ならい方法にお
いては、送り軸(X軸)より上方のモデル形状のみがな
られれる。
<Prior art> In the profiling control, the surface profiling method moves the stylus ST in the direction of the X axis, which is the feed axis, within the range of X, ~x2, which is the feed axis, and the shape of the model MDL. The stylus is moved up and down in the Z-axis direction, which is the tracing axis, according to the shape of the model MDL, and the model MDL is then curved using a stylus to process the work according to the model shape using a cutter (not shown). In this surface tracing method, only the model shape above the feed axis (X-axis) can be traced.

ところで、カムやゴルフのクラブヘッドをならい加工す
る場合には、片面だけはなく表裏両面をならい加工する
必要がある。かかる表裏両面のならいにおいて前述の表
面ならい方法を適用しようとすると第4図に示すように
スタイラスSTを表面ならいから裏面ならいに移行する
時180°回転させなくてはならない(第4図点線参照
)。しかし、スタイラスを180°回転させてならいを
行わせる構成は複雑となり、好ましくない。
By the way, when patterning a cam or a golf club head, it is necessary to pattern both the front and back sides, not just one side. In order to apply the above-mentioned surface tracing method to such both the front and back sides, the stylus ST must be rotated 180 degrees when transitioning from front side tracing to back side tracing as shown in Figure 4 (see dotted line in Figure 4). . However, a configuration in which tracing is performed by rotating the stylus 180 degrees is complicated and undesirable.

そこで、スクイラスを回転させる必要がない回転体なら
い方法が提案され、実用化されている。
Therefore, a rotating body tracing method that does not require rotating the squill has been proposed and put into practical use.

この回転体ならい方法は、第5図に示すようにモデルM
DLを所定の回転軸の回りに回転させると共に、モデル
に接触するスタイラスSTを、該スクイラスの中心06
と回転中心O1を結ぶ方向(Z軸方向)にモデル形状に
応じて前後退させてならい制御を行うものである。
This method of tracing a rotating body is based on the model M as shown in Figure 5.
While rotating the DL around a predetermined rotation axis, the stylus ST, which is in contact with the model, is rotated at the center 06 of the stylus.
The control is performed by moving the model forward and backward in the direction connecting the rotation center O1 and the rotation center O1 (Z-axis direction) according to the shape of the model.

〈発明が解決しようとしている問題点〉しかし、従来の
回転体ならいにおいてはモデルMDLを一定の角速度で
回転させるものであった。
<Problems to be Solved by the Invention> However, in the conventional rotating body model, the model MDL was rotated at a constant angular velocity.

このため、モデルの回転中心とスタイラスのモデル接触
点間の距離に応じてスタイラスとモデルの相対速度が変
化し、カッタとワークの相対速度(切削速度)が変化す
ることになり、従って従来はLが最大となる点における
切削速度(最大切削速度)が許容値を越えないように角
速度を決定する必要があり、このため角速度を大きくと
れず加工効率が低いという問題があった。
For this reason, the relative speed between the stylus and model changes depending on the distance between the center of rotation of the model and the point of contact with the model of the stylus, and the relative speed (cutting speed) between the cutter and workpiece changes. It is necessary to determine the angular velocity so that the cutting speed (maximum cutting speed) at the point where it is maximum does not exceed a permissible value, and for this reason, there has been a problem that the angular velocity cannot be set high, resulting in low machining efficiency.

以上から、本発明の目的はモデルの角速度、換言すれば
切削速度を可変制御でき、加工効率を向上できる回転体
ならい方法を提供することである。
From the foregoing, it is an object of the present invention to provide a rotating body tracing method that can variably control the angular velocity of a model, in other words, the cutting speed, and improve machining efficiency.

く問題点を解決するための手段〉 第1図は本発明方法の概略説明図である。Means to solve problems〉 FIG. 1 is a schematic explanatory diagram of the method of the present invention.

STはスタイラス、MDLはモデル、09はスタイラス
の中心、OL、lはモデルの回転中心、Sはスタイラス
半径、Rはスタイラスの最下端点とモデル回転中心Of
、間の距離、Lは0SOr、1!1の距離である。
ST is the stylus, MDL is the model, 09 is the center of the stylus, OL, l is the center of rotation of the model, S is the radius of the stylus, R is the lowest point of the stylus and the center of model rotation Of
, the distance between L is 0SOr, 1!1 distance.

く作用〉 モデルMDLを回転させると共に、モデルに接触するス
タイラスSTを、該スタイラスの中心06と回転中心O
1,lを結ぶ方向であるZ軸方向(垂直方向)にモデル
形状に応じて上下させて回転体ならいを行う。
Action> While rotating the model MDL, the stylus ST in contact with the model is aligned between the center 06 of the stylus and the center of rotation O.
The rotating body is traced by moving it up and down in accordance with the model shape in the Z-axis direction (vertical direction), which is the direction connecting the points 1 and 1.

すなわち、スクイラスSTの三次元変位量を用いてZ軸
方向及びZ軸に直交するX軸方向(水平方向)の速度成
分v2.vxを周知の表面ならい方法における手法と同
一の手法で演算する。そして、スタイラスの中心OSと
モデルの回転中心O,,1間の距離りを監視し、該距離
りと水平速度成分vxを用いてモデルの回転角速度Wを
求め、速度成分Vzによりスタイラス5TieZ軸方向
に移動させ、求めた角速度WでモデルMDLを回転させ
てならい制(a!It!!行う。
That is, the velocity component v2. in the Z-axis direction and the X-axis direction (horizontal direction) orthogonal to the Z-axis is calculated using the three-dimensional displacement of the squirrel ST. vx is calculated using the same method as in the well-known surface tracing method. Then, the distance between the center OS of the stylus and the rotation center O,,1 of the model is monitored, the rotational angular velocity W of the model is determined using the distance and the horizontal velocity component vx, and the rotational angular velocity W of the model is determined by the velocity component Vz. , rotate the model MDL at the obtained angular velocity W, and perform tracing control (a!It!!).

〈実施例〉 第1図は本発明方法の概略説明図で、同図(A)は初期
状態、同図(B)はモデルが90°回転した後の状態で
ある。
<Example> FIG. 1 is a schematic explanatory diagram of the method of the present invention, in which (A) shows the initial state and (B) shows the state after the model has been rotated by 90 degrees.

STはスタイラス%MDLはモデル、0.はスタイラス
の中心、0.、lはモデルの回転中心、Sはスタイラス
半径、Rはスタイラスの最下端点とモデル回転中心四間
の距離、LはOsO□間の距離である。
ST is stylus % MDL is model, 0. is the center of the stylus, 0. , l is the center of rotation of the model, S is the radius of the stylus, R is the distance between the lowest point of the stylus and the center of rotation of the model, and L is the distance between OsO□.

尚、スタイラスの中心点OSとモデルの回転中心Oを結
ぶ方向がZ軸方向(垂直方向)であり、Z軸に直交する
方向がX軸方向(水平方向)である。
Note that the direction connecting the center point OS of the stylus and the rotation center O of the model is the Z-axis direction (vertical direction), and the direction orthogonal to the Z-axis is the X-axis direction (horizontal direction).

モデルMDLは回転中心O0の回りを時計方向(Q軸方
向)に回転し、またモデルMDLに接触するスタイラス
STはZ軸方向にモデル形状に応じて上下するようにな
っている。
The model MDL rotates clockwise (Q-axis direction) around the rotation center O0, and the stylus ST that contacts the model MDL moves up and down in the Z-axis direction according to the model shape.

第2図は本発明を実現する装置のブロック図である。FIG. 2 is a block diagram of a device implementing the invention.

DGは変位合成回路、CCは切替回路、INDは割出回
路、ARN、ARTは速度演算回路、ADDIは加算型
、DCは分配回路、DAI、DA2はDA変換器、cp
uはコンピュータ構成の制御装置、MEMはメモリ、K
Bはキーボード、MZ、MQはZ軸及び回転軸であるQ
軸のサーボモータ、DRZ、DRQはZ軸及びQ軸サー
ボモータを駆動するW!A勅回路、PZ、PQは位置検
出器、CZ、CQは現在位置を記憶するアップ/グラン
カウンタ(現在位置カウンタ)、TRはトレーサヘッド
、STはスタイラス、CTはカッタ、Bはベルト、Wは
ワーク、MDLはモデルである。
DG is a displacement synthesis circuit, CC is a switching circuit, IND is an indexing circuit, ARN, ART are speed calculation circuits, ADDI is an addition type, DC is a distribution circuit, DAI, DA2 are DA converters, cp
u is a computer-configured control device, MEM is a memory, and K
B is the keyboard, MZ, MQ are the Z axis and rotation axis Q
The axis servo motors, DRZ and DRQ, drive the Z-axis and Q-axis servo motors W! A control circuit, PZ and PQ are position detectors, CZ and CQ are up/grand counters (current position counters) that memorize the current position, TR is a tracer head, ST is a stylus, CT is a cutter, B is a belt, and W is a Work and MDL are models.

尚、トレーサヘッドTRと力・ンタCTは一体にZ方向
に移動するようになっており、またモデルMDLとワー
クWはベルトを介して同一の回転を行うようになってい
る。
It should be noted that the tracer head TR and the force/contact CT move together in the Z direction, and the model MDL and the workpiece W rotate in the same direction via a belt.

以下、第1図、第2図に従って本発明方法を説明する。The method of the present invention will be explained below with reference to FIGS. 1 and 2.

予め、キーボードKBからスタイラスSTの半径Sと、
初期状態(第1図(A)参照)におけるスタイラスの最
下端点とモデル回転中心06間の距@  Roとを入力
してメモリMEMに設定しておく。
In advance, the radius S of the stylus ST from the keyboard KB,
The distance @Ro between the lowest point of the stylus and the model rotation center 06 in the initial state (see FIG. 1(A)) is input and set in the memory MEM.

この状態において、モデルMDLを初期状態位置に位置
させ、ついで回転体ならいの起動をかけてアプローチ動
作によりスタイラスSTをモデルに接触させる(第1図
(A)参照)。
In this state, the model MDL is positioned at the initial state position, and then the rotating body tracing is started and the stylus ST is brought into contact with the model by an approach operation (see FIG. 1(A)).

スクイラスSTがモデルMDLに接触してアプローチが
終了すれば゛以下に示す本発明にかかる回転体ならいが
開始する。
When the approach ends with the squirrel ST coming into contact with the model MDL, the following rotating body tracing according to the present invention begins.

トレーサヘッドTRは、モデルMDLに接触して移動す
るスタイラスSTの三次元変位に応じた変位信号CX、
ε7.C2を出力し、変位合成回路DGは、変位信号ε
8.ε7.ε2から合成変位信号ε=r丁を作成して加
算器ADD1 に加え、加算器ADDIは合成変位信号εと基準変位信
号C0との差を求めて速度演算回路ARN。
The tracer head TR generates a displacement signal CX corresponding to the three-dimensional displacement of the stylus ST moving in contact with the model MDL;
ε7. C2, and the displacement synthesis circuit DG outputs a displacement signal ε
8. ε7. A composite displacement signal ε=r is created from ε2 and added to the adder ADD1, and the adder ADDI calculates the difference between the composite displacement signal ε and the reference displacement signal C0 and sends it to the speed calculation circuit ARN.

ARTに加え、速度演算回路ARN、ARTは、それぞ
れ法線方向速度信号V 、及び接線方向速度信号vTを
求めて分配回路DCに加える。又、切替回路CCは、変
位信号ε8.ε2を割出回路INDに加え、割出回路I
NDは変位信号ε8.ε2に基づいて変位方向信号si
nα、 QO8Qを作成し、分配回路DCに加える。分
配回路DCは、変位方向信号s i na、 cosa
、法線方向速度信号v7及び接線方向速度信号v7から
X軸、Z軸方向の指令速度信号v<、vzを作成する。
In addition to ART, speed calculation circuits ARN and ART obtain a normal direction speed signal V 1 and a tangential direction speed signal vT, respectively, and apply them to the distribution circuit DC. Further, the switching circuit CC receives the displacement signal ε8. Add ε2 to the indexing circuit IND, and the indexing circuit I
ND is the displacement signal ε8. Displacement direction signal si based on ε2
Create nα, QO8Q and add it to the distribution circuit DC. The distribution circuit DC receives displacement direction signals sina, cosa
, the command speed signals v<, vz in the X-axis and Z-axis directions are created from the normal speed signal v7 and the tangential speed signal v7.

以上は直交座標系におけろ表面ならい制御と全く同じで
あり周知である。
The above is exactly the same as surface profiling control in the orthogonal coordinate system and is well known.

一方、制御装置cpuは所定のサンプリング時間ΔT毎
に現在位置カウンタCZから2軸の現在位置2.を読み
取ると共に、 z −2→ΔZ により、1サンプリング時間ΔTの間のZ軸方向移動量
ΔZ、を求めると共に(z、はΔT前の時刻における現
在位置) ΔZ+ΔZ →Δ2 により、初期位置(第1図(B)点線参照)と現位@(
第1図(B)実線参照)におけるスタイラス中心09の
Z軸方向変位量ΔZを演算する。
On the other hand, the control device cpu calculates the current position 2 of the two axes from the current position counter CZ at every predetermined sampling time ΔT. At the same time, from z -2 → ΔZ, the Z-axis direction movement amount ΔZ during one sampling time ΔT is determined (z is the current position at the time before ΔT), and from ΔZ+ΔZ → Δ2, the initial position (first Figure (B) dotted line) and current position @(
The Z-axis direction displacement amount ΔZ of the stylus center 09 in FIG. 1 (B) solid line) is calculated.

ついで、制御装置CPUは次式 %式% により、スタイラスSTの中心Osとモデルの回転中心
0,1間の距離りを演算する。
Next, the control device CPU calculates the distance between the center Os of the stylus ST and the rotation centers 0 and 1 of the model using the following formula %.

しかる後、制御装置CPUは分配回路DCからX軸方向
速度vxを読み取り、前記求めた距離りと速度成分vX
を用いて該水平速度vxに応じたモデルの回転角速度W
を次式 %式% により求めて出力する。
After that, the control device CPU reads the X-axis direction velocity vx from the distribution circuit DC, and uses the determined distance and velocity component vX.
The rotational angular velocity W of the model according to the horizontal velocity vx is calculated using
is calculated using the following formula % formula % and output.

DA変換器DAI、DA2はそれぞれZ軸速度成分v2
、角速度Wをアナログの速度指令電圧に変換して駆動回
路DRZ、DRQに入力し、対応のサーボモータMZ、
MQを回転させる。これにより、モデルMDLが回転す
ると共にスタイラスSTがZ方向に移動し、同様にワー
クWがモデルと一体に回転すると共にカッタCTがスタ
イラスと一体に移動してワークにモデル形状通りの加工
が施される。そして、以後新たな変位1に基づいて上記
動作が繰り返される。
DA converters DAI and DA2 each have Z-axis velocity component v2
, Converts the angular velocity W into an analog speed command voltage and inputs it to the drive circuits DRZ, DRQ, and connects the corresponding servo motor MZ,
Rotate MQ. As a result, the model MDL rotates and the stylus ST moves in the Z direction. Similarly, the workpiece W rotates together with the model and the cutter CT moves together with the stylus, so that the workpiece is machined according to the model shape. Ru. Thereafter, the above operation is repeated based on the new displacement 1.

〈発明の効果〉 以上本発明によればモデルの回転角速度を、モデル回転
中心点とスタイラスの中心点間の距離に応じて可変制御
するように構成したから、常時切削面速度一定の切削速
度で加工ができ、加工効率を向上することができる。
<Effects of the Invention> According to the present invention, the rotational angular velocity of the model is variably controlled in accordance with the distance between the model rotational center point and the stylus center point, so that the cutting speed can be maintained at a constant cutting surface speed at all times. It can be processed and the processing efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の概略説明図、 第2図は本発明を実現する装置のブロック図、第3図乃
至第5図は従来方法説明図である。 ST・・スタイラス、MDL・・モデル、0、・・スタ
イラスの中心、 0、、・・モデルの回転中心、 S・・スタイラス半径、 L・・0.0、間の距離 特許出願人        ファナック株式会社第1 
図 (A)                      
     (B)MOL  モテル ζ5
FIG. 1 is a schematic explanatory diagram of the method of the present invention, FIG. 2 is a block diagram of an apparatus for realizing the present invention, and FIGS. 3 to 5 are diagrams explanatory of the conventional method. ST...Stylus, MDL...Model, 0...Center of stylus, 0,...Rotation center of model, S...Stylus radius, L...0.0, distance between Patent applicant FANUC Corporation 1st
Diagram (A)
(B) MOL Motel ζ5

Claims (1)

【特許請求の範囲】 モデルを回転させると共に、モデルに接触するスタイラ
スを該回転中心方向にモデル形状に応じて前後退させて
ならい制御を行う回転体ならい方法において、 スタイラス中心と前記回転中心を結ぶ第1の方向及び該
第1方向に直交する第2の方向の速度成分V_z、V_
xをそれぞれスタイラスの三次元変位量を用いて演算す
ると共に、スタイラスの中心と前記モデルの回転中心間
の距離Lを監視し、 該距離Lと第2方向の速度成分V_xを用いてモデルの
回転角速度を求め、 速度成分V_zによりスタイラスを第1方向に移動させ
、前記求めた角速度でモデルを回転させてならい制御を
行うことを特徴とする回転体ならい方法。
[Scope of Claims] A method for tracing a rotating body in which a model is rotated and a stylus in contact with the model is moved forward and backward in the direction of the rotation center according to the shape of the model to perform tracing control, which connects the stylus center and the rotation center. Velocity components V_z, V_ in a first direction and a second direction perpendicular to the first direction
x using the three-dimensional displacement of the stylus, monitor the distance L between the center of the stylus and the rotation center of the model, and calculate the rotation of the model using the distance L and the velocity component V_x in the second direction. A method for tracing a rotating body, comprising determining an angular velocity, moving a stylus in a first direction using a velocity component V_z, and rotating a model at the determined angular velocity to perform tracing control.
JP28652886A 1986-12-01 1986-12-01 Rotary body copying method Pending JPS63139643A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28652886A JPS63139643A (en) 1986-12-01 1986-12-01 Rotary body copying method
PCT/JP1987/000872 WO1988004216A1 (en) 1986-12-01 1987-11-11 Rotator profiling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28652886A JPS63139643A (en) 1986-12-01 1986-12-01 Rotary body copying method

Publications (1)

Publication Number Publication Date
JPS63139643A true JPS63139643A (en) 1988-06-11

Family

ID=17705577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28652886A Pending JPS63139643A (en) 1986-12-01 1986-12-01 Rotary body copying method

Country Status (2)

Country Link
JP (1) JPS63139643A (en)
WO (1) WO1988004216A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148846A (en) * 2006-12-15 2008-07-03 Daikoku Denki Co Ltd Game parlor managing system
CN109531277A (en) * 2019-01-07 2019-03-29 重庆文理学院 Ratio copying device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184749A (en) * 1989-12-11 1991-08-12 Fanuc Ltd Profile controller for rotator
US5941368A (en) * 1997-04-04 1999-08-24 Horak; Ralph M. Idler support system for tubular conveyors
US6079551A (en) * 1998-04-03 2000-06-27 Horak; Ralph M. Idler support system for tubular conveyors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622661A (en) * 1979-07-31 1981-03-03 Ishikawajima Harima Heavy Ind Exhaust gas purifying device for waterrgranulated slag manufacture equipment
JPS613621A (en) * 1984-06-15 1986-01-09 Tokai Rika Co Ltd Steering wheel and its manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158781A (en) * 1974-11-19 1976-05-22 Tahara Shoei Kiko Kk Kyokuzahyokei niokeru naraiseigyohoshiki
JPS57114347A (en) * 1980-12-30 1982-07-16 Fanuc Ltd Rotary model profile milling control apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622661A (en) * 1979-07-31 1981-03-03 Ishikawajima Harima Heavy Ind Exhaust gas purifying device for waterrgranulated slag manufacture equipment
JPS613621A (en) * 1984-06-15 1986-01-09 Tokai Rika Co Ltd Steering wheel and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148846A (en) * 2006-12-15 2008-07-03 Daikoku Denki Co Ltd Game parlor managing system
CN109531277A (en) * 2019-01-07 2019-03-29 重庆文理学院 Ratio copying device

Also Published As

Publication number Publication date
WO1988004216A1 (en) 1988-06-16

Similar Documents

Publication Publication Date Title
JP2810709B2 (en) Non-contact profile control device
Yang et al. A high accuracy on-line estimation algorithm of five-axis contouring errors based on three-point arc approximation
JPS63139643A (en) Rotary body copying method
US4575665A (en) Tracer control method
JP2790643B2 (en) Numerical control unit
KR950013510B1 (en) Copy control system
KR890001353B1 (en) Numerical control device
JPS63216657A (en) Pick-feeding method in rotor copying
JPH0677910B2 (en) Control method for industrial robot
JPH04143805A (en) Five-axis nc data producer using three-axis data
WO1991015335A1 (en) Profile control method
JPH0230460A (en) Profile control method
JPS6238096B2 (en)
JPS6148709A (en) Movement control method of contactor
JPH02274457A (en) Copy control device
JPH0232102B2 (en)
EP0359817B1 (en) Pick feed method in rotary member profiling
JPH0219905A (en) Digitizing method
JP2001087990A (en) Circular arc groove processing method in a work
JPS6335373B2 (en)
JPS6091405A (en) Numerical controller
CN116991113A (en) Parameter coordinate precision machining method for five-axis composite numerical control machine tool
JPH04283053A (en) Profile control device
JPH0241846A (en) Working method for scroll shape
JPH07104691B2 (en) Constant velocity arc locus controller for multi-axis servo mechanism