JPS631394Y2 - - Google Patents

Info

Publication number
JPS631394Y2
JPS631394Y2 JP17430778U JP17430778U JPS631394Y2 JP S631394 Y2 JPS631394 Y2 JP S631394Y2 JP 17430778 U JP17430778 U JP 17430778U JP 17430778 U JP17430778 U JP 17430778U JP S631394 Y2 JPS631394 Y2 JP S631394Y2
Authority
JP
Japan
Prior art keywords
auxiliary relay
breaker
closing
contact
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17430778U
Other languages
Japanese (ja)
Other versions
JPS5592221U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17430778U priority Critical patent/JPS631394Y2/ja
Publication of JPS5592221U publication Critical patent/JPS5592221U/ja
Application granted granted Critical
Publication of JPS631394Y2 publication Critical patent/JPS631394Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Description

【考案の詳細な説明】 本考案は、しや断器への投入指令時に用いられ
る高速度動作大容量補助リレー回路に関するもの
である。
[Detailed Description of the Invention] The present invention relates to a high-speed operation, large-capacity auxiliary relay circuit used when issuing a closing command to a breaker.

電磁補助リレーの特徴として、高速度動作の補
助リレーは、高速度を目的とする為、機械的に軽
量の接点構造が要求される。一方、直流100Vの
制御電源に、数アンペアの電流が流れるしや断器
投入コイル(誘導負荷)を接続する場合、このコ
イルと直列に接続される投入指令接点にも数アン
ペアの電流が流れるため、投入指令接点復帰時に
電流をしや断できるように補助リレーには磁気吹
消装置をつける等、その接点構造も大形となり、
従つて、必然的に、低速動作は止むを得ないもの
となる。第1図にしや断器投入回路の系統図の1
例を示す。CBはしや断器、EQは自動同期投入装
置である。自動同期投入装置EQによつて各々の
計器用変圧器PT−B,PT−Lより導入した電圧
でしや断器CBの投入条件を判定する。この為、
自動同期投入装置は、高速度動作を必要とする。
第2図に第1図に於ける母線BUSと送電線LINE
間の位相関係の一例を示す。しや断器CBの投入
が第2図に示す電力系統電圧の位相平面に於て、
必要な位相差0゜〜±θ゜の間にしや断器の投入を行
なえずにこれを外れた点での投入を行なう恐れが
ある。自動同期投入装置EQは、母線BUC電圧〓E
と送電線LIN〓E電圧〓E2相互の同期を確認の上、
許容位相差−θ〜O+θの間でしや断器を投入す
る必要がある。第3図に母線BUSと送電線LIN
〓Eの位相平面の移動状態を示す。第3図に於て、
母線BUS電圧〓E1を基準にとり、送電線LIN〓E電
圧〓E2を従属(比較)側とした場合、両者間に僅
かの周波数差があれば、第3図に示すように、各
電圧ベクトルは、位相平面上を回転し、仮に位相
差+θに近い部分で投入条件が成立し、投入指令
をしや断器に与えても、電圧ベクトルの回転(移
動)の為、実際にしや断器1次回路が接続される
のは低速度動作リレーを使用した場合、実投入位
相差は、θ+θ′となり、電力系統へ与えるシヨツ
クは大きなものとなる。これを避けるには、前も
つてこのθ′なる位相ずれを想定し、位相差θを狭
くしておく方法がある。この方法は、投入範囲を
狭くすることになり、電力系統運用上好ましくな
い。
A characteristic of electromagnetic auxiliary relays is that high-speed operation auxiliary relays are required to have a mechanically lightweight contact structure because the purpose is high speed. On the other hand, when connecting a breaker closing coil (inductive load) with a current of several amperes flowing through a 100V DC control power supply, a current of several amperes also flows to the closing command contact connected in series with this coil. The auxiliary relay is equipped with a magnetic blow-off device to quickly cut off the current when the closing command contact returns, and the contact structure is also larger.
Therefore, low-speed operation is inevitably unavoidable. Figure 1: System diagram of Nishiya breaker closing circuit
Give an example. The CB bridge, disconnector, and EQ are automatic synchronization devices. The automatic synchronization closing device EQ determines the closing conditions for the circuit breaker CB using the voltage introduced from each potential transformer PT-B and PT-L. For this reason,
Automatic synchronization devices require high speed operation.
Figure 2 shows the bus line BUS and transmission line LINE in Figure 1.
An example of the phase relationship between In the phase plane of the power system voltage shown in Figure 2, when the circuit breaker CB is turned on,
There is a risk that the breaker cannot be closed within the required phase difference of 0° to ±θ° and may be closed at a point outside of this range. Automatic synchronization device EQ uses bus line BUC voltage〓E
1 and transmission line LIN〓E voltage〓E 2 After confirming mutual synchronization,
It is necessary to turn on the breaker when the allowable phase difference is between -θ and O+θ. Figure 3 shows bus line BUS and power transmission line LIN
〓 Shows the moving state of the phase plane of E. In Figure 3,
If the bus line BUS voltage〓E1 is taken as a reference and the transmission line LIN〓E voltage〓E2 is used as the dependent (comparison) side, if there is a slight frequency difference between the two, each voltage will change as shown in Figure 3. The vector rotates on the phase plane, and even if the closing condition is satisfied near the phase difference +θ and a closing command is given to the switch, the voltage vector will rotate (move) and the switch will not actually disconnect. If a low-speed operation relay is used to connect the primary circuit of the power supply, the actual power-on phase difference will be θ+θ', and the shock given to the power system will be large. To avoid this, there is a method of assuming a phase shift of θ' in advance and narrowing the phase difference θ. This method narrows the input range, which is not preferable in terms of power system operation.

最近では、電子計算機を使つたしや断器の自動
制御も行なわれているが、このような場合もやは
り前記と同様、高速度リレーを必要とする。この
ように、同様なケースは、多々有り、高速度大容
量リレーの必要性は多い、第4図に従来の接点増
幅回路を示す。第4図に於てFは、投入指令接
点、Xはその信号増幅接点、CBはしや断器の投
入コイルを示す。例えば、しや断器投入指令の接
点をFとすれば、電流しや断容量の大きい補助リ
レーXによつて、しや断器CBへ投入指令を出す。
この時は、一般的に補助リレーXの動作速度を速
くすることは、その接点構造上難かしい。
Recently, automatic control of insulators and disconnectors has been carried out using electronic computers, but such a case still requires high-speed relays as described above. As described above, there are many similar cases, and there is a great need for high-speed, large-capacity relays. FIG. 4 shows a conventional contact amplifier circuit. In Fig. 4, F indicates the closing command contact, X indicates its signal amplification contact, and the closing coil of the CB armature or disconnector. For example, if the contact point for the line breaker closing command is F, then the auxiliary relay X, which has a large current line breaker capacity, issues a closing command to the line breaker CB.
In this case, it is generally difficult to increase the operating speed of the auxiliary relay X due to its contact structure.

本考案は動作速度が速く、大容量の接触子を有
するしや断器の投入指令回路を得ることを目的と
する。第5図が本考案の一例である。第5図に於
いてFは投入指令点、Yは高速動形の補助リレ
ー、Y-a1,Y-a2は同補助リレーの出力接点、Z
は電流しや断容量の大きい補助リレー、Z-aは同
補助リレーの出力接点、CBはしや断器の投入コ
イルそしてPおよびNは直流制御電源を示す。こ
れによると、しや断器CBへの最初の投入信号は、
補助リレーYの接点Y-a1で行ない、その後、補
助リレーZで補助リレーYの接点を側路し保護す
る。投入指令Fが復帰した場合は、最初に補助リ
レーYが復帰し、続いて補助リレーZが復帰す
る。この様にしておくと、しや断器CBの制御電
流は、補助リレーZでしや断することになり高速
度動作大容量接点補助リレー回路を得ることが出
来る。
The object of the present invention is to obtain a closing command circuit for a shunt breaker that has a high operating speed and a large capacity contactor. FIG. 5 shows an example of the present invention. In Figure 5, F is the closing command point, Y is the high-speed moving auxiliary relay, Y -a1 and Y -a2 are the output contacts of the auxiliary relay, and Z
indicates an auxiliary relay with a large current flow and disconnection capacity, Z -a indicates the output contact of the same auxiliary relay, CB terminal and breaker closing coil, and P and N indicate the DC control power supply. According to this, the first input signal to the breaker CB is
This is done at contact Y -a1 of auxiliary relay Y, and then auxiliary relay Z bypasses the contact of auxiliary relay Y to protect it. When the closing command F returns, the auxiliary relay Y returns first, and then the auxiliary relay Z returns. By doing so, the control current of the breaker CB is cut off by the auxiliary relay Z, and a high-speed operation large-capacity contact auxiliary relay circuit can be obtained.

第6図に、この回路のタイムダイヤグラムを示
す。第6図に於て、Fは投入指令接点、Yは、高
速度動作補助リレー、Zは電流しや断容量の大き
い補助リレー、Iは、しや断器投入電流である。
第6図に示すように、しや断器投入指令は、高速
度動作補助リレーYの動作時間遅れt1だけ、遅れ
る事になり、電流しや断容量の大きい補助リレー
Zを、使用した場合よりもt2だけ時間を短かくす
ることができる。
FIG. 6 shows a time diagram of this circuit. In FIG. 6, F is a closing command contact, Y is a high-speed operation auxiliary relay, Z is an auxiliary relay with a large current breaker capacity, and I is a breaker closing current.
As shown in Fig. 6, the line breaker closing command is delayed by the operation time delay t1 of the high-speed operation auxiliary relay Y, and when the auxiliary relay Z, which has a large current line breaker capacity, is used. The time can be reduced by t2 .

t3は、電流しや断容量の大きい補助リレーの復
帰時間である。
t3 is the recovery time of the auxiliary relay, which has a large current and breaking capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、しや断器投入回路のブロツク系統
図、第2図、第3図は、電力系統と同期投入装置
の位相特性図、第4図は、従来の補助リレー回路
図、第5図は、考案の回路図、第6図は、考案回
路のタイムダイヤグラムである。 P、Nは電源母線、Yは、高速度動作形補助リ
レー、Fは、指令用信号接点、CBは、しや断器
制御コイル、Zは、電流しや断容量の大きい補助
リレー。
Figure 1 is a block system diagram of the breaker closing circuit, Figures 2 and 3 are phase characteristic diagrams of the power system and synchronous closing device, Figure 4 is a conventional auxiliary relay circuit diagram, and Figure 5 is a diagram of the conventional auxiliary relay circuit. The figure is a circuit diagram of the invention, and FIG. 6 is a time diagram of the invention circuit. P and N are power bus bars, Y is a high-speed operation type auxiliary relay, F is a command signal contact, CB is a breaker control coil, and Z is an auxiliary relay with a large current breaker capacity.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 投入指令接点の閉路により付勢される高速動作
形の第1の補助リレーと、この第1の補助リレー
の第1の出力接点が閉路したとき付勢されるしや
断器投入コイルと、前記第1の補助リレーの第2
の出力接点が閉路したとき付勢され、前記第1の
補助リレーよりも電流しや断容量が大きくかつ、
復帰時限の長い第2の補助リレーとを備え、この
第2の補助リレーの出力接点を前記第1の補助リ
レーの第1の出力接点に対して並列接続してなる
しや断器の投入指令回路。
a fast-acting first auxiliary relay that is energized by the closing of the closing command contact; a breaker closing coil that is energized when the first output contact of the first auxiliary relay is closed; 2nd of 1st auxiliary relay
is energized when the output contact of the first auxiliary relay is closed, and has a larger current carrying capacity than the first auxiliary relay, and
and a second auxiliary relay with a long recovery time, and the output contact of the second auxiliary relay is connected in parallel to the first output contact of the first auxiliary relay to issue a command to close the circuit breaker. circuit.
JP17430778U 1978-12-21 1978-12-21 Expired JPS631394Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17430778U JPS631394Y2 (en) 1978-12-21 1978-12-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17430778U JPS631394Y2 (en) 1978-12-21 1978-12-21

Publications (2)

Publication Number Publication Date
JPS5592221U JPS5592221U (en) 1980-06-26
JPS631394Y2 true JPS631394Y2 (en) 1988-01-14

Family

ID=29180800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17430778U Expired JPS631394Y2 (en) 1978-12-21 1978-12-21

Country Status (1)

Country Link
JP (1) JPS631394Y2 (en)

Also Published As

Publication number Publication date
JPS5592221U (en) 1980-06-26

Similar Documents

Publication Publication Date Title
US5450309A (en) Method and device for switching inverters in parallel
US4477855A (en) Protecting system for transmission lines
JPS631394Y2 (en)
JP3094558B2 (en) Network relay
CN218005864U (en) Inconsistent protection circuit of circuit breaker body three-phase
CN213768319U (en) Control equipment of contactor of train
CN108683383A (en) A kind of frequency conversion failure cutting frequency control circuit
SU864413A1 (en) Device for protecting balance-type of parallel power transmission lines
JP2624532B2 (en) Power system operation method
CN216649309U (en) Dual-power automatic switching device for turbomachinery automatic control system
JP2799065B2 (en) Reclosing method of current differential protection relay
US2361208A (en) Current balance relay system
SU1624583A1 (en) Device for single-phase av reclosing of three-phase power line
US2405083A (en) Out-of-step relay arrangement
SU1644287A1 (en) Device for centralized overcurrent protection of network
SU1238186A1 (en) Device for automatic reclosing of sections of distribution network of independent power systems
CN109149652A (en) A kind of novel micro-capacitance sensor control of soft device
Basu et al. Improvement of transient stability by sequentially switched autoreclosing circuit breaker
JPS59188319A (en) Ground switch control system
JP3044832B2 (en) Trip circuit
SU1062823A1 (en) Device for determining power direction
CN1019723B (en) Electric interlocking loop for switching device
JPS59113721A (en) Ground switch control system
CN112491033A (en) Outdoor switch box automation equipment control circuit
JPH04289623A (en) Thyristor switch