JPS63139001A - Production of hydrogen fluoride and silicon tetrafluoride - Google Patents

Production of hydrogen fluoride and silicon tetrafluoride

Info

Publication number
JPS63139001A
JPS63139001A JP28089886A JP28089886A JPS63139001A JP S63139001 A JPS63139001 A JP S63139001A JP 28089886 A JP28089886 A JP 28089886A JP 28089886 A JP28089886 A JP 28089886A JP S63139001 A JPS63139001 A JP S63139001A
Authority
JP
Japan
Prior art keywords
hydrogen fluoride
silicon tetrafluoride
fluorite
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28089886A
Other languages
Japanese (ja)
Inventor
Eiji Shioda
塩田 英司
Kazuaki Yamamoto
和明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP28089886A priority Critical patent/JPS63139001A/en
Publication of JPS63139001A publication Critical patent/JPS63139001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To simultaneously obtain hydrogen fluoride and silicon tetrafluoride in high yield at a low cost by reacting inexpensive low-grade fluorite with concd. sulfuric acid under heating, circulating a generated gas contg. hydrogen fluoride and silicon tetrafluoride to the reaction system and continuing the reaction. CONSTITUTION:Fluorite contg. 1-30wt% silicic acid (expressed in terms of SiO2) is reacted with sulfuric acid having >=95wt% concn. at 100-300 deg.C. A generated gas contg. hydrogen fluoride and silicon tetrafluoride is circulated to the reaction system and the reaction is continued to simultaneously obtain hydrogen fluoride and silicon tetrafluoride. In order to circulate the gas, the gas generated in a reactor may be diverted from a pipe for drawing the gas and introduced again into the reactor. When plural reactors are arranged in series, the gas generated in the first reactor is introduced into the second reactor, where a similar reaction is carried out. Thus, hydrogen fluoride and silicon tetrafluoride can be simultaneously produced in high yield with inexpensive low-grade fluorite.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛍石から弗化水素及び四弗化珪素を同時に製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for simultaneously producing hydrogen fluoride and silicon tetrafluoride from fluorite.

近年、弗素関連工業の発展に伴ない弗化水素の需要は飛
躍的に増大する傾向にある。又、四弗化珪素はアモルフ
ァスシリコン薄膜半導体用の原料やドライエ、チング剤
あるいはフ嘉−ムドシリカの原料として近年注目されて
きている。
In recent years, with the development of fluorine-related industries, the demand for hydrogen fluoride has tended to increase dramatically. Silicon tetrafluoride has recently attracted attention as a raw material for amorphous silicon thin film semiconductors, a dryer, a ching agent, and a raw material for fuka-mudo silica.

〔従来の技術〕[Conventional technology]

従来、弗化水素及び1弗化珪素はその目的に応じて別々
に製造する所謂単独法と両者を同時に製造する併産法と
が知られている。
Hitherto, hydrogen fluoride and silicon monofluoride have been known to be produced separately depending on their purpose, in a so-called individual method, and in a co-production method, in which both are produced simultaneously.

弗化水素の単独法としては、弗化カルシラ・ム含有率9
7%以上、珪酸含有率(本明細書において、珪酸の含有
率は5iotによる)1%以下のアンド級蛍石の硫酸分
解による方法が古くから知られている。
As a single method for hydrogen fluoride, the content of calcilyl fluoride is 9.
A method using sulfuric acid decomposition of and-grade fluorite with a silicic acid content of 7% or more and 1% or less (in this specification, the silicic acid content is based on 5iot) has been known for a long time.

例えば、特公昭49−8656号公報には、弗化カルシ
ウム含有率97 wt%の蛍石と98 wt%濃硫酸を
混合機で全量混合し、ペーストあるいはスラリー状で反
応させ、一部生成した弗化水素を取り出すと共に未反応
の蛍石と硫酸及び反応生成物である石貴を後続のロータ
リーキルンに供給シ、ここで残余の反応を終結させ、弗
化水素と石膏を得る方法が記載されている。
For example, in Japanese Patent Publication No. 49-8656, fluorite with a calcium fluoride content of 97 wt% and 98 wt% concentrated sulfuric acid are mixed together in a mixer and reacted in the form of a paste or slurry, and the partially produced fluorite is mixed. A method is described in which hydrogen fluoride is extracted and unreacted fluorite, sulfuric acid, and the reaction product Seki are fed to a subsequent rotary kiln, where the remaining reaction is terminated to obtain hydrogen fluoride and gypsum. .

この方法では弗化水素のみを製品とする為、弗化カルシ
ウム含有率の高い蛍石を使用する事が必須であるが、近
年弗化カルシウム含有率97 wt%以上の蛍石の入手
が困難になりつつある。
Since this method produces only hydrogen fluoride, it is essential to use fluorite with a high calcium fluoride content, but in recent years it has become difficult to obtain fluorite with a calcium fluoride content of 97 wt% or more. It is becoming.

四弗化珪素の単独法としては、特開昭57−17414
号公報において、非晶質酸化珪素を硫酸中に懸濁分散さ
せた系に弗化水素ガスを導入する方法が提案されている
As a method for using silicon tetrafluoride alone, JP-A-57-17414
In the publication, a method is proposed in which hydrogen fluoride gas is introduced into a system in which amorphous silicon oxide is suspended and dispersed in sulfuric acid.

併産法は、弗化水素及び四弗化珪素を得ろ為、上述した
様な単独法を各々実施する場合に比べて、設備やユーテ
ィリティーを共用できるという点において有利である。
Since the co-production method obtains hydrogen fluoride and silicon tetrafluoride, it is advantageous in that equipment and utilities can be shared, compared to the case where each of the above-mentioned individual methods is carried out.

従来知られている併産法としては、特公昭55−186
43号公報の実施例にみられる様にリン鉱石の硫酸分解
により得られる四弗化珪素と弗化水素の混合ガスから各
々分離する方法がある。
As a conventionally known concurrent production method,
As shown in the example of Publication No. 43, there is a method of separating silicon tetrafluoride and hydrogen fluoride from a mixed gas obtained by decomposing phosphate rock with sulfuric acid.

この方法では、リン酸又はリン酸塩肥料の生産規模によ
り弗化水素及び四弗化珪素の生産量が規制されるという
欠点がある。
This method has the disadvantage that the production amount of hydrogen fluoride and silicon tetrafluoride is regulated by the production scale of phosphoric acid or phosphate fertilizer.

これに対して、珪酸含量の多い蛍石を濃硫酸により、1
00〜300℃で分解させる事により弗化水素と四弗化
珪素の混合ガスが得られる事が、特開昭49−3789
8号公報に記載されている。
On the other hand, fluorite with a high silicic acid content was treated with concentrated sulfuric acid for 1
It was disclosed in JP-A-49-3789 that a mixed gas of hydrogen fluoride and silicon tetrafluoride can be obtained by decomposition at 00 to 300°C.
It is described in Publication No. 8.

この方法によれば、珪酸含量の多い所謂低品位蛍石を使
用する為、入手は容易であり価格も安価であるという利
点があり、且プロ七ス的には、弗化水素の単独法と類似
の方法が採用できる可能性があり、単独法に比べて設備
コスト等の大幅な低減を期待できる。
According to this method, so-called low-grade fluorite with a high silicic acid content is used, so it has the advantage of being easy to obtain and inexpensive. There is a possibility that a similar method can be adopted, and a significant reduction in equipment costs can be expected compared to a single method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら本発明者等が、この方法を実施したところ
、蛍石の分解反応が充分進行昼ず、特に珪酸については
、反応温度、硫酸濃度等の条件を変えてもその分解率が
40〜30%程度しか進まず、四弗化珪素を収率良く得
ることが出来なかった。
However, when the present inventors implemented this method, they found that the decomposition reaction of fluorite was sufficiently progressing within a day, and the decomposition rate of silicic acid in particular was 40 to 30% even if conditions such as reaction temperature and sulfuric acid concentration were changed. Progress was only made to a certain extent, and silicon tetrafluoride could not be obtained in good yield.

本発明の目的は、上述した様な単独法に比べて設備、コ
スト等の大幅な低減が可能な併産法で、安価な低品位蛍
石を使用し、且つ蛍石の分解率が高く、高収率で弗化水
素及び四弗化珪素が得られる方法を提供することにある
The purpose of the present invention is to provide a co-production method that can significantly reduce equipment and costs compared to the single method described above, uses inexpensive low-grade fluorite, and has a high decomposition rate of fluorite. The object of the present invention is to provide a method by which hydrogen fluoride and silicon tetrafluoride can be obtained in high yield.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明の要旨は、蛍石と硫酸を反応させて弗化水素及び
四弗化珪素を得る方法において、珪酸含有量が1〜30
 vt%の蛍石と濃度95 wt%以上の硫酸を100
〜300℃で反応させ、且つ生成した弗化水素及び四弗
化珪素を含むガスを反応系に循環させながら反応を行わ
せることを特徴とする弗化水素及び四弗化珪素の製造方
法にあり、以下その詳細について説明する。
The gist of the present invention is to provide a method for obtaining hydrogen fluoride and silicon tetrafluoride by reacting fluorite and sulfuric acid, in which the silicic acid content is 1 to 30%.
100 vt% fluorite and sulfuric acid with a concentration of 95 wt% or more.
A method for producing hydrogen fluoride and silicon tetrafluoride, which is characterized in that the reaction is carried out at ~300°C, and the reaction is carried out while circulating a gas containing the generated hydrogen fluoride and silicon tetrafluoride into the reaction system. The details will be explained below.

本発明において使用する蛍石は、弗化カルシウム含有率
が97 wt%未満の所謂低品位蛍石の内で、珪酸含有
率が1〜S Owt%の蛍石に限定される。
The fluorite used in the present invention is limited to so-called low-grade fluorite having a calcium fluoride content of less than 97 wt%, and fluorite having a silicic acid content of 1 to SO wt%.

蛍石は、通常弗化カルシウム、珪酸、炭酸カルシウム及
びその他の不純物から成っており、弗化カルシウム含有
率97 wt%以上、珪酸含有率1wt%以下のものは
アンド級蛍石として弗化水素製造原料として利用されて
いるが、近年その入手は困難となりつつある。これに対
して、弗化カルシウム含有率97 wt%未満で珪酸含
有率1 wt%以上のものは低品位蛍石として埋蔵量も
多く、容易に入手できる。この様な低品位蛍石の内、本
発明においては珪酸含有率30 wt%以下のものを使
用する。30 wt%を越える場合、蛍石の分解は充分
に進行せず、収率が低下する。
Fluorite usually consists of calcium fluoride, silicic acid, calcium carbonate, and other impurities, and those with a calcium fluoride content of 97 wt% or more and a silicic acid content of 1 wt% or less are manufactured as and-grade fluorite. Although it is used as a raw material, it has become difficult to obtain in recent years. On the other hand, fluorite with a calcium fluoride content of less than 97 wt% and a silicic acid content of 1 wt% or more has large reserves as low-grade fluorite and is easily available. Among such low-grade fluorites, those with a silicic acid content of 30 wt% or less are used in the present invention. If it exceeds 30 wt%, the decomposition of fluorite will not proceed sufficiently and the yield will decrease.

珪酸含有率により最終的に得られる弗化水素量と四弗化
珪素量の割合が決まる。従って、珪酸含有率を選択する
ことにより弗化水素と四弗化珪素の製造割合をコン)o
−ルすることが可能である。
The ratio of the amount of hydrogen fluoride and the amount of silicon tetrafluoride finally obtained is determined by the silicic acid content. Therefore, by selecting the silicic acid content, the production ratio of hydrogen fluoride and silicon tetrafluoride can be controlled.
- It is possible to

硫酸は、濃度95wt%以上のものを使用する事が必要
である。95wt%未満では、生成ガス中に水蒸気が混
入しやすくなる。硫酸の使用量は、化学量論量以上であ
ればよい。
It is necessary to use sulfuric acid with a concentration of 95 wt% or more. If it is less than 95 wt%, water vapor tends to be mixed into the generated gas. The amount of sulfuric acid used may be at least the stoichiometric amount.

水蒸気は四弗化珪素と反応して弗化水素と珪酸を生成し
、四弗化珪素の収率が低下する。更に生成した珪酸は配
管の閉塞の原因となる。
Steam reacts with silicon tetrafluoride to produce hydrogen fluoride and silicic acid, reducing the yield of silicon tetrafluoride. Furthermore, the generated silicic acid causes clogging of pipes.

蛍石と硫酸の混合割合は、蛍石中の弗化カルシウムに対
して当量以上の硫酸と混合すれば良い。
The mixing ratio of fluorite and sulfuric acid may be such that sulfuric acid is mixed in an amount equal to or more than the amount of calcium fluoride in fluorite.

混合方法としては、連続式、バッチ式のいずれでも良く
、型式としては特に限定は無く、通常のパドル型攪拌g
を備えた攪拌混合槽あるいは必要に応じてニーダ−等も
使用できろ。
The mixing method may be either continuous or batch, and there is no particular limitation on the type, and ordinary paddle type stirring g
You can also use a stirring mixing tank equipped with a kneader or a kneader if necessary.

反応温度は100〜300℃で行うことが必要である。It is necessary to carry out the reaction at a temperature of 100 to 300°C.

100℃未満では、蛍石の分解が充分に進行せず、収率
が低下する。逆に300℃を越えると、原因は不明であ
るが、蛍石の反応性が不良となり収率が低下する。
If the temperature is less than 100°C, the decomposition of fluorite will not proceed sufficiently and the yield will decrease. On the other hand, if the temperature exceeds 300°C, the reactivity of fluorite becomes poor and the yield decreases, although the cause is unknown.

以上の様にして、蛍石と硫酸を混合反応させると、直ち
に弗化水素及び四弗化珪素を含む混合ガスが発生する。
As described above, when fluorite and sulfuric acid are mixed and reacted, a mixed gas containing hydrogen fluoride and silicon tetrafluoride is immediately generated.

発生したガスは、通常、連続的に速やかに反応系外へ取
り出し、分離、精製する事により製品として回収するが
、本発明においては発生ガスを反応系に循環させながら
反応を行わせる事が必須である。即ち、発生ガスを反応
系に循環させる事なく全量反応系外へ取り出した場合、
蛍石の分解は充分進行せず、特に珪酸の分解率は40〜
30%程度しか進行せず、残りの30〜60%は副生石
膏との混合物となり、リサイクル使用できないため四弗
化珪素の収率が極端に低下する。
The generated gas is usually continuously and quickly taken out of the reaction system and recovered as a product by separation and purification, but in the present invention it is essential to carry out the reaction while circulating the generated gas into the reaction system. It is. That is, when the generated gas is taken out of the reaction system in its entirety without being circulated through the reaction system,
The decomposition of fluorite does not progress sufficiently, and the decomposition rate of silicic acid in particular is 40~
Only about 30% progresses, and the remaining 30 to 60% becomes a mixture with by-product gypsum, which cannot be recycled and the yield of silicon tetrafluoride is extremely reduced.

循環方法としては、種々の方法が採用できる。Various methods can be adopted as the circulation method.

例えば、発生ガスの取出し用配管から枝分れさせ、元の
反応槽に導入する方法あるいは、複数の反応槽を配管に
より直列に配列させ、1段目で発生したガスの一部ある
いは全部を2段目に導入して反応を行わせろ方法が可能
である。
For example, the generated gas may be branched off from the piping for taking it out and introduced into the original reaction tank, or multiple reaction tanks may be arranged in series using piping, and some or all of the gas generated in the first stage may be transferred to the second stage. A possible method is to introduce it into a stage and allow the reaction to occur.

発生ガスの循環量は、特に規定は無いが、極端に少ない
と充分な効果の得られ難い事があるので、蛍石中の珪酸
に対して混合ガス中の弗化水素が当量以上になる程度の
混合ガスを循環することが望ましい。
There are no particular regulations regarding the circulating amount of the generated gas, but if it is extremely small, it may be difficult to obtain a sufficient effect, so it is recommended that the amount of hydrogen fluoride in the mixed gas be equal to or more than the equivalent amount of silicic acid in the fluorite. It is desirable to circulate a mixed gas of

具申の様にして弗化水素及び四弗化珪素を含む混合ガス
が得られろ。混合ガスから弗化水素及び四弗化珪素を分
離する方法としては特に限定は無く種々の方法により実
施できる。例えば、弗化水素と四弗化珪素の沸点の差を
利用することが出来る。即ち、弗化水素の沸点が199
℃であるのに対して、四弗化珪素は−95,7℃で昇華
する。従って、混合ガスを10℃程度に冷却することに
依り容易に分離できる。この時、混合ガス中に共存する
微量の水蒸気を除去する為、冷却前に濃硫酸中に通液し
ても差し支えない。
A mixed gas containing hydrogen fluoride and silicon tetrafluoride can be obtained as described above. There are no particular limitations on the method for separating hydrogen fluoride and silicon tetrafluoride from the mixed gas, and various methods can be used. For example, the difference in boiling point between hydrogen fluoride and silicon tetrafluoride can be used. That is, the boiling point of hydrogen fluoride is 199
℃, whereas silicon tetrafluoride sublimes at -95.7℃. Therefore, the mixed gas can be easily separated by cooling it to about 10°C. At this time, in order to remove trace amounts of water vapor coexisting in the mixed gas, it may be passed through concentrated sulfuric acid before cooling.

以上の方法により、低品位蛍石を原料として高収率で弗
化水素及び四弗化珪素を同時に製造する事が出来る。
By the above method, hydrogen fluoride and silicon tetrafluoride can be simultaneously produced in high yield using low-grade fluorite as a raw material.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな様に、本発明によれば、設備コ
スト等の大幅な低減が可能な併産法であり、安価な低品
位蛍石を使用し、高収率で弗化水素及び四弗化珪素を同
時に製造することができる。
As is clear from the above description, the present invention is a co-production method that can significantly reduce equipment costs, etc., and uses inexpensive low-grade fluorite to produce hydrogen fluoride and tetrafluoride in high yield. Silicon fluoride can be produced simultaneously.

次に本発明を実施例により、更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 珪酸含有率!3.9wt%、弗化カルシウム含有率F3
9. Owt%の蛍石をウィレー型粉砕機で粉砕した。
Example 1 Silicic acid content! 3.9wt%, calcium fluoride content F3
9. Owt% of fluorite was crushed using a Wiley type crusher.

循環用及び取り出し用の配管を備えた内容積1.5tの
鉛張り鉄製容器に粉砕蛍石を1009投入し、140℃
に加熱した。
1009 pieces of crushed fluorite were placed in a lead-lined iron container with an internal volume of 1.5 tons equipped with piping for circulation and extraction, and heated to 140°C.
heated to.

蛍石を攪拌しながら97 wt% 硫酸139.69を
添加混合した。硫酸添加直後から弗化水素及び四弗化珪
素を含む混合ガスが発生した。発生したガスの30 v
o1%を気触部が塩ビ製であるエアーポンプで循環させ
ながら反応を続行し、残りの30 vo1%を硫酸中に
通液させて脱湿し、次いで10℃に冷却した凝縮器中で
弗化水素を凝縮分離し、最後に液体窒素温度に冷却し、
粉末状の四弗化珪素を回収した。硫酸添加後、3時間反
応を続行した後、循環ポンプを停止し、発生ガス全量7
同収した。弗化水素及び四弗化珪素の収量は各々309
.159であり、蛍石中の弗化カルシウム及び珪酸の分
解率は各々91%、97%であった。
While stirring the fluorite, 139.69% of 97 wt% sulfuric acid was added and mixed. Immediately after the addition of sulfuric acid, a mixed gas containing hydrogen fluoride and silicon tetrafluoride was generated. 30v of generated gas
The reaction was continued while circulating 1% of the vol. 1% with an air pump whose contact part was made of PVC, and the remaining 30 vol. The hydrogen hydride is condensed and separated, and finally cooled to liquid nitrogen temperature,
Powdered silicon tetrafluoride was recovered. After adding sulfuric acid and continuing the reaction for 3 hours, the circulation pump was stopped and the total amount of gas generated was 7.
It was collected at the same time. The yield of hydrogen fluoride and silicon tetrafluoride was 309 each.
.. 159, and the decomposition rates of calcium fluoride and silicic acid in fluorite were 91% and 97%, respectively.

実施例2 珪酸含有率1a9wt%、弗化カルシウム含有率7a5
wt%の蛍石を・ウィレー型粉砕機で粉砕した。
Example 2 Silicic acid content 1a9wt%, calcium fluoride content 7a5
wt% of fluorite was crushed using a Wiley-type crusher.

内容積1.3tの鉛張鉄製容器を2個配管により連結し
て、1段目の反応槽で発生したガスが2段目の反応槽に
導入される様にした。各反応槽に粉砕蛍石を投入し、1
40℃に加熱した。各反応槽について蛍石を攪拌しなか
ら97 wt% 硫酸1129を添加混合した。1段目
で発生したガスは全量2段目の反応槽に導入し、2段目
の反応槽から取出したガスを硫酸中に通液させて脱湿し
、次いで実施例1と同様の操作で弗化水素と四弗化珪素
を得た。
Two lead-clad iron containers each having an internal volume of 1.3 tons were connected by piping so that the gas generated in the first stage reaction tank was introduced into the second stage reaction tank. Pour crushed fluorite into each reaction tank,
Heated to 40°C. In each reaction tank, 97 wt% sulfuric acid 1129 was added and mixed while stirring the fluorite. The entire amount of the gas generated in the first stage was introduced into the second stage reaction tank, and the gas taken out from the second stage reaction tank was dehumidified by passing it through sulfuric acid, and then the same operation as in Example 1 was carried out. Hydrogen fluoride and silicon tetrafluoride were obtained.

反応を3時間続行した後、2段目の反応槽中の残渣につ
いて分析した結果、珪酸の分解率は97%であり、得ら
れた弗化水素及び四弗化珪素量から、1段目と2段目の
弗化カルシウムの平均分解率は90%であった。
After continuing the reaction for 3 hours, analysis of the residue in the second stage reaction vessel revealed that the decomposition rate of silicic acid was 97%, and based on the amount of hydrogen fluoride and silicon tetrafluoride obtained, The average decomposition rate of calcium fluoride in the second stage was 90%.

比較例1 実施例1と同様にして、ただし生成ガスの循環を止めて
実施した。
Comparative Example 1 A test was carried out in the same manner as in Example 1, except that the circulation of the produced gas was stopped.

得られた弗化水素及び四弗化珪素は各々、639.79
であった。又、蛍石中の弗化カルシウム及び珪酸の分解
率は各々、84%、45%であった。
The obtained hydrogen fluoride and silicon tetrafluoride were each 639.79
Met. Furthermore, the decomposition rates of calcium fluoride and silicic acid in fluorite were 84% and 45%, respectively.

比較例2 実施例1と同様にして、ただし珪酸含有率3五1 wt
%、弗化カルシウム含有率65.Owl、%の蛍石を用
いて実施した。
Comparative Example 2 Same as Example 1, except that the silicic acid content was 351 wt.
%, calcium fluoride content 65. It was carried out using Owl,% fluorite.

得られた弗化カルシウム及び四弗化珪素は各々59.2
89であり、弗化カルシウム及び珪酸の分解率は各々7
4%、49%であった。
The obtained calcium fluoride and silicon tetrafluoride were each 59.2
89, and the decomposition rates of calcium fluoride and silicic acid are each 7
4% and 49%.

比較例3 実施例1と同様にして、ただし80%の硫酸を用いて実
施したところ、反応開始後30分で配管中に珪酸が析出
して、反応を続ける事ができなかった0 比較例4 実施例1と同様にして、ただし反応温度を80℃で実施
した。
Comparative Example 3 When carried out in the same manner as in Example 1, but using 80% sulfuric acid, silicic acid precipitated in the piping 30 minutes after the start of the reaction, and the reaction could not be continued.0 Comparative Example 4 The reaction was carried out in the same manner as in Example 1, except that the reaction temperature was 80°C.

弗化水素及び四弗化珪素の収量は各々219゜7、59
であり、弗化カルシウム及び珪酸の分解率は各々78%
、49%であった。
The yields of hydrogen fluoride and silicon tetrafluoride were 219°7 and 59, respectively.
The decomposition rate of calcium fluoride and silicic acid is 78% each.
, 49%.

比較例5 実施例1と同様にして、ただし反応温度を320℃で実
施した。
Comparative Example 5 The reaction was carried out in the same manner as in Example 1, except that the reaction temperature was 320°C.

弗化水素及び四弗化珪素の収量は各々25g。The yield of hydrogen fluoride and silicon tetrafluoride was 25 g each.

8りであり、弗化カルシウム及び珪酸の分解率は各々6
4%、52%であった。
8, and the decomposition rate of calcium fluoride and silicic acid is 6 each.
4% and 52%.

Claims (1)

【特許請求の範囲】[Claims] 蛍石と硫酸を反応させて弗化水素及び四弗化珪素を得る
方法において、珪酸含有率(SiO_2として)が1〜
30wt%の蛍石と濃度95wt%以上の硫酸を100
〜300℃で反応させ、且つ生成した弗化水素及び四弗
化珪素を含むガスを反応系に循環させながら反応を行わ
せることを特徴とする弗化水素及び四弗化珪素の製造方
法。
In the method of reacting fluorite and sulfuric acid to obtain hydrogen fluoride and silicon tetrafluoride, the silicic acid content (as SiO_2) is 1 to 1.
30 wt% fluorite and sulfuric acid with a concentration of 95 wt% or more
A method for producing hydrogen fluoride and silicon tetrafluoride, which comprises carrying out the reaction at a temperature of 300° C. to 300° C. and circulating a gas containing generated hydrogen fluoride and silicon tetrafluoride in a reaction system.
JP28089886A 1986-11-27 1986-11-27 Production of hydrogen fluoride and silicon tetrafluoride Pending JPS63139001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28089886A JPS63139001A (en) 1986-11-27 1986-11-27 Production of hydrogen fluoride and silicon tetrafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28089886A JPS63139001A (en) 1986-11-27 1986-11-27 Production of hydrogen fluoride and silicon tetrafluoride

Publications (1)

Publication Number Publication Date
JPS63139001A true JPS63139001A (en) 1988-06-10

Family

ID=17631480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28089886A Pending JPS63139001A (en) 1986-11-27 1986-11-27 Production of hydrogen fluoride and silicon tetrafluoride

Country Status (1)

Country Link
JP (1) JPS63139001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036854A (en) * 2009-08-10 2011-02-24 General Electric Co <Ge> Method for desulfurizing fluid and method for operating coal combustion system
CN103754920A (en) * 2014-01-22 2014-04-30 瓮福(集团)有限责任公司 Method for preparing nanometer calcium sulfate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036854A (en) * 2009-08-10 2011-02-24 General Electric Co <Ge> Method for desulfurizing fluid and method for operating coal combustion system
CN103754920A (en) * 2014-01-22 2014-04-30 瓮福(集团)有限责任公司 Method for preparing nanometer calcium sulfate

Similar Documents

Publication Publication Date Title
US3944606A (en) Process of producing alkali metal or ammonium citrates
CN110642282A (en) Method for preparing calcium fluoride and potassium bicarbonate by using carbon dioxide
US3792151A (en) Process for producing phosphoric acid
IL100495A (en) Production of phosphoric acid and hydrogen fluoride from phosphate rock and fluosilicic acid
JPS6064948A (en) Manufacture of nitric acid ester of organic hydroxy compound
US3271107A (en) Silica pigments from fluosilicic acid
US5382423A (en) Apparatus for recovering calcium fluoride from fluoroetchant
US4515762A (en) Process for processing waste gases resulting during the production of silicon
US4644076A (en) Continuous process for the synthesis of hexamethyldisilazane
JPS6340714A (en) Manufacture of silicon tetrafluoride
CN112679387B (en) Preparation method and application of acetamidine hydrochloride
US2714123A (en) Production of dichlorohydrin from allyl chloride
US3897523A (en) Continuous process for producing dialkyl phosphorochloridothionates
US4499063A (en) Preparation of silane, SiH4
JPS63139001A (en) Production of hydrogen fluoride and silicon tetrafluoride
CN105002521B (en) A kind of method that impurity magnesium in electrolytic manganese system is removed using fluorine-containing mineral
US3619136A (en) Process for producing phosphoric acid
US3773838A (en) Method of preparing dimethylsulphoxide
JPH01153501A (en) Production of hydrogen fluoride and silicon tetrafluoride
US4062929A (en) Production of hydrogen fluoride
IE41784B1 (en) Recovery of fluorine from aqueous liquids
US2977190A (en) Production of alkali metal phosphates and carbon dioxide
US4337228A (en) Process for the production of sulfates
US2458847A (en) Process for manufacture of magnesium products
US3005685A (en) Process for desilicifying fluorspar and the like minerals