JPS631382Y2 - - Google Patents

Info

Publication number
JPS631382Y2
JPS631382Y2 JP19537483U JP19537483U JPS631382Y2 JP S631382 Y2 JPS631382 Y2 JP S631382Y2 JP 19537483 U JP19537483 U JP 19537483U JP 19537483 U JP19537483 U JP 19537483U JP S631382 Y2 JPS631382 Y2 JP S631382Y2
Authority
JP
Japan
Prior art keywords
temperature
light irradiation
lamp
discharge lamp
metal rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19537483U
Other languages
Japanese (ja)
Other versions
JPS60105014U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19537483U priority Critical patent/JPS60105014U/en
Publication of JPS60105014U publication Critical patent/JPS60105014U/en
Application granted granted Critical
Publication of JPS631382Y2 publication Critical patent/JPS631382Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

【考案の詳細な説明】 本考案は光照射装置、特に産業用途に使用され
る紫外線光照射装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a light irradiation device, particularly an ultraviolet light irradiation device used for industrial purposes.

光照射装置において、紫外線を効率良く発生さ
せようとする場合に、内蔵される放電灯の発光条
件を制御するために放電灯の最冷点温度を適温に
制御することが行われている。例えば低圧水銀灯
の場合に、波長254nmの紫外線を効率良く放射さ
せるために最冷点温度を放電灯内部で40〜45℃に
保持することが望ましいが、産業用途の場合は、
放電灯の消費電力が大きいことや灯体の光照射用
開口が前面ガラスでおゝわれて灯体が略閉塞型に
なることなどによつて、その最冷点温度が放電灯
の点灯中に上昇してしまうことがあり、この昇温
を防止するために既に多種多様の冷却機構を附加
した光照射装置が提案されている。
In order to efficiently generate ultraviolet rays in a light irradiation device, the coldest point temperature of the discharge lamp is controlled to an appropriate temperature in order to control the light emission conditions of the built-in discharge lamp. For example, in the case of a low-pressure mercury lamp, it is desirable to maintain the coldest point temperature inside the discharge lamp at 40 to 45 degrees Celsius in order to efficiently emit ultraviolet rays with a wavelength of 254 nm, but in the case of industrial use,
Due to the high power consumption of discharge lamps and the fact that the light emitting opening of the lamp body is covered with a front glass, making the lamp body almost closed, the coldest point temperature of the discharge lamp is In order to prevent this temperature rise, light irradiation devices equipped with various cooling mechanisms have already been proposed.

ところで従来の冷却機構は、風冷型と水冷型と
に大別される。このうち、風冷型は強制送風や自
然対流を利用して装置内に所定の冷却風を流して
放電灯のガラス封体を冷却するものであるが、外
気温度や装置の設置場所の環境などによつてその
冷却効果が左右され、そしてガラス封体の熱伝導
が悪いためにこのガラス封体の外部から空冷して
も放電灯の内部が効率よく冷却されず、またその
応答性も低い問題点がある。更に近時は半導体の
製造工程に光照射装置が利用されることが多く、
半導体はゴミなどの微小な異物を極力避ける必要
があるが、冷却風中に浮遊したゴミなどの微小な
異物が半導体に付着しやすい不具合があつた。
By the way, conventional cooling mechanisms are broadly classified into air-cooled types and water-cooled types. Among these, the wind-cooled type uses forced air or natural convection to flow a specified amount of cooling air inside the device to cool the glass envelope of the discharge lamp, but it depends on factors such as the outside temperature and the environment where the device is installed. The cooling effect is influenced by the temperature of the lamp, and because the glass enclosure has poor thermal conductivity, air cooling from the outside of the glass enclosure does not efficiently cool the inside of the discharge lamp, and its response is also low. There is a point. Furthermore, recently, light irradiation equipment is often used in the semiconductor manufacturing process.
Semiconductors need to be protected from dust and other tiny foreign objects as much as possible, but there has been a problem in which dust and other tiny foreign objects floating in the cooling air tend to adhere to semiconductors.

これらの問題点を解決するために、ガラス封体
に熱伝導性の良い金属ブロツクなどを接触させ、
この金属ブロツクなどを水冷する方法が提案され
ている。これは前記の風冷型に比べて、外部の環
境に左右される事が少くて正確に制御することが
できるが構造が複雑で装置が大型化する問題点が
あり、また、熱伝導性の悪いガラス封体を介して
冷却することには変りがないのでその制御効率に
限界があつた。
In order to solve these problems, a metal block with good thermal conductivity is brought into contact with the glass enclosure.
A method of cooling this metal block with water has been proposed. Compared to the above-mentioned air-cooled type, this type is less affected by the external environment and can be controlled more accurately, but it has the problem of a complicated structure and an increase in the size of the device. Since cooling was still performed through a poor glass enclosure, there was a limit to its control efficiency.

そこで本考案は、簡単な構造であつて、放電灯
の最冷点温度を正確に、かつ早い応答速度で制御
することが可能な光照射装置を提供することを目
的とし、この目的は、光照射用開口を有する灯体
内に放電灯が配置された光照射装置であつて、該
放電灯のガラス封体の最冷点近傍の所定位置に金
属棒を挿通して封入し、この金属棒のガラス封体
より外部に突出した部分をペルチエ効果素子など
を利用したサーモモジユール等により温度制御す
ることを特徴とする光照射装置により達成され
る。
Therefore, the purpose of the present invention is to provide a light irradiation device that has a simple structure and can accurately control the temperature of the coldest point of a discharge lamp with a fast response speed. This is a light irradiation device in which a discharge lamp is placed in a lamp body having an irradiation opening, and a metal rod is inserted into a predetermined position near the coldest point of the glass enclosure of the discharge lamp to seal it. This is achieved by a light irradiation device characterized in that the temperature of the portion protruding outward from the glass enclosure is controlled by a thermomodule or the like using a Peltier effect element or the like.

以下に図面に示す実施例に基いて本考案を具体
的に説明する。
The present invention will be specifically described below based on embodiments shown in the drawings.

図面は半導体ウエハーのベーキング工程に使用
される光照射装置の断面図であるが、装置箱1の
ほゞ中央には鏡面処理の施された反射ミラー2が
水平に配置され、その周辺の下方には垂直の副反
射ミラー3が配置されてミラーボツクスを構成し
ている。紫外線ランプ4はその発光部4aがミラ
ーボツクス内に、その電極部4bを取り囲むガラ
ス封体4cが反射ミラー2の背部である上方に位
置するようにランプ保持具1aによつて保持され
ている。この紫外線ランプ4はアーク長が100cm
余であり、波長254nmの紫外線が王として発生す
る低圧水銀灯であるが、電極部4bを取り囲むガ
ラス封体4cは垂直姿勢で配設され、発光部4a
は略W字形の蛇行状に屈曲されて水平の面光源を
構成している。そして電極部4bを取り囲むガラ
ス封体4cよりポケツト状の水銀溜り部4dが突
設されている。この発光部4aの下方に光照射用
開口が設けられているが、この開口には石英ガラ
スよりなる前面ガラス5が設けられ、紫外線ラン
プ4よりの紫外線がこの前面ガラス5を透過して
下方に照射される。そして、被照射物6である半
導体ウエハーは直径が6インチ(約153mm)の大
型のものであり、発光部4aより約2.5cm下方に
支持具7により支持されている。
The drawing is a cross-sectional view of a light irradiation device used in the baking process of semiconductor wafers.A reflective mirror 2 with a mirror finish is placed horizontally in the center of the device box 1, and a mirror 2 is placed below the periphery. A vertical sub-reflection mirror 3 is arranged to form a mirror box. The ultraviolet lamp 4 is held by a lamp holder 1a such that its light emitting part 4a is located within a mirror box and a glass enclosure 4c surrounding its electrode part 4b is located above the back of the reflecting mirror 2. This ultraviolet lamp 4 has an arc length of 100cm.
Although this is a low-pressure mercury lamp that mainly emits ultraviolet rays with a wavelength of 254 nm, the glass enclosure 4c surrounding the electrode part 4b is arranged in a vertical position, and the light emitting part 4a
is bent in a meandering substantially W-shape to form a horizontal surface light source. A pocket-shaped mercury reservoir portion 4d is provided protruding from the glass enclosure 4c surrounding the electrode portion 4b. A light irradiation opening is provided below the light emitting section 4a, and a front glass 5 made of quartz glass is provided in this opening, and the ultraviolet rays from the ultraviolet lamp 4 are transmitted through the front glass 5 and directed downward. irradiated. The semiconductor wafer which is the object 6 to be irradiated is a large one with a diameter of 6 inches (approximately 153 mm), and is supported by a support 7 approximately 2.5 cm below the light emitting section 4a.

次に、紫外線ランプ4の水銀溜り部4dにはタ
ングステンからなる金属棒8が挿通して封止され
ている。この金属棒8はタングステン製に限られ
るものではないが、石英ガラスに封入しやすくて
熱伝導度がよい金属が望ましい。また、形状も丸
棒に限られず、角棒や更には平板状であつてもよ
い。この金属棒8の外部に突出した部分は制御ボ
ツクス9内で温度制御されるが、この部分は平板
状をなしており、この上下面には多数のサーモモ
ジユールが接着された制御用金属板10が密着さ
れている。ペルチエ効果素子利用のサーモモジユ
ールは、一方向に電流を流すとその電流値に応じ
てその一面において発熱するとともに他面におい
て吸熱し、逆方向に電流を流すと吸熱面と発熱面
とが逆になる機能を有するが、熱慣性が小さく、
わずかな消費電力で精密に制御することが可能で
ある。そして、金属棒8の温度が実測され、この
実測温度と予め設定された目標冷却温度(例えば
40℃)との差に応じた大きさと方向のペルチエ効
果素子に通電される。なお、制御用金属板10に
冷却ブロツクを接触させてサーモモジユールの下
面を冷却可能としておけば、金属棒8の温度を降
下させるために、サーモモジユールの上面が吸熱
し、逆に下面が発熱するときに発熱面が冷却され
てサーモモジユールを有効に作動させることがで
きる。
Next, a metal rod 8 made of tungsten is inserted into the mercury reservoir 4d of the ultraviolet lamp 4 and sealed. The metal rod 8 is not limited to being made of tungsten, but is preferably a metal that can be easily sealed in quartz glass and has good thermal conductivity. Furthermore, the shape is not limited to a round bar, but may be a square bar or even a flat plate. The temperature of the part of the metal rod 8 that protrudes outside is controlled in the control box 9, and this part has a flat plate shape, and a control metal plate with many thermomodules bonded to the upper and lower surfaces thereof. 10 is closely attached. A thermomodule that uses a Peltier effect element generates heat on one side and absorbs heat on the other side depending on the current value when current is passed in one direction, and when current is passed in the opposite direction, the heat-absorbing and heat-generating surfaces are reversed. However, it has small thermal inertia and
Precise control is possible with low power consumption. Then, the temperature of the metal rod 8 is actually measured, and this actual temperature and a preset target cooling temperature (for example,
Current is applied to the Peltier effect element whose size and direction correspond to the difference between the temperature and the temperature (40°C). Note that if a cooling block is brought into contact with the control metal plate 10 so that the lower surface of the thermomodule can be cooled, the upper surface of the thermomodule absorbs heat and conversely the lower surface absorbs heat in order to lower the temperature of the metal rod 8. When heat is generated, the heat generating surface is cooled and the thermo module can be operated effectively.

しかして、制御ボツクス9に目標冷却温度を設
定して、紫外線ランプ4を点灯すると被照射物6
に紫外線が照射されるが、紫外線ランプ4は略密
閉空間内に配置されているので短時間内で、例え
ば40℃の目標冷却温度より高温に昇温する。そし
て金属棒8もこれにつれて昇温しようとするが、
目標冷却温度より昇温すればサーモモジユールが
吸熱して降下させ、それ以降はサーモモジユール
は微小な範囲で発熱と吸熱を繰返して目標冷却温
度に保持させる。このとき、金属棒8は熱伝導性
が大きいため、外部に突出した部分が目標冷却温
度に保持されると、紫外線ランプ4内に封入され
た先端部分も直ちにほゞこれに等しい温度とな
り、紫外線ランプ4の最冷点温度は目標冷却温度
と等しい温度に正確に制御される。従つて、紫外
線ランプ4は効率よく作動し、波長254nmの紫外
線を大量に発生させることができる。
When the target cooling temperature is set in the control box 9 and the ultraviolet lamp 4 is turned on, the irradiated object 6
However, since the ultraviolet lamp 4 is placed in a substantially closed space, the temperature rises to a higher temperature than the target cooling temperature of, for example, 40° C. within a short time. The metal rod 8 also tries to rise in temperature, but
When the temperature rises above the target cooling temperature, the thermomodule absorbs heat and lowers the temperature. From then on, the thermomodule repeatedly generates and absorbs heat in a small range to maintain the target cooling temperature. At this time, since the metal rod 8 has high thermal conductivity, when the part protruding to the outside is maintained at the target cooling temperature, the tip part sealed inside the ultraviolet lamp 4 immediately reaches a temperature almost equal to this, and the ultraviolet rays The coldest point temperature of the lamp 4 is precisely controlled to be equal to the target cooling temperature. Therefore, the ultraviolet lamp 4 can operate efficiently and generate a large amount of ultraviolet light with a wavelength of 254 nm.

このように本考案は、放電灯のガラス封体の最
冷点近傍の所定位置に金属棒を挿通して封入し、
この金属棒のガラス封体より外部に突出した部分
をペルチエ効果素子などのサーモモジユールによ
り温度制御するようにしたので、熱伝導性の近い
ガラス封体を介することなく、熱伝導性の高い金
属棒を媒体として放電灯の内部を直接温度制御で
きる。従つて、制御効率が良くて応答性が早く、
最冷点温度を適温に正確に保持することができる
ので放電灯を制御するのに非常に好ましい結果が
得られる。そして、ペルチエ効果素子などのサー
モモジユールを使用するので、空冷や水冷のため
の装置や設備を必要とせずに簡単な構造でよく、
わずかな消費電力で正確に制御することができ
る。更には冷却風が被照射物に当ることがないの
で、ゴミなどの微小な異物を極力嫌う半導体の製
造工程にも適している。以上説明したように、本
考案に従えば、構造が簡単であつて、放電灯の最
冷点温度を正確に、かつ早い応答速度で制御する
ことが可能な光照射装置を提供することができ
る。
In this way, the present invention involves inserting a metal rod into a predetermined position near the coldest point of the glass enclosure of a discharge lamp and enclosing it.
Since the temperature of the part of the metal rod that protrudes outside the glass enclosure is controlled by a thermomodule such as a Peltier effect element, it is possible to use a highly thermally conductive metal without going through a glass enclosure with similar thermal conductivity. The temperature inside the discharge lamp can be directly controlled using the rod as a medium. Therefore, control efficiency is good and response is fast.
Since the temperature of the coldest spot can be accurately maintained at an appropriate temperature, very favorable results can be obtained for controlling the discharge lamp. Since thermomodules such as Peltier effect elements are used, a simple structure is required without the need for air cooling or water cooling equipment.
Accurate control with low power consumption. Furthermore, since the cooling air does not hit the irradiated object, it is also suitable for semiconductor manufacturing processes where minute foreign matter such as dust is to be avoided as much as possible. As explained above, according to the present invention, it is possible to provide a light irradiation device that has a simple structure and is capable of controlling the coldest point temperature of a discharge lamp accurately and with a fast response speed. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案施例の正面断面図、第2図は側
断面図、第3図は要部の拡大断面図をそれぞれ示
す。 1……装置箱、2……反射ミラー、3……副反
射ミラー、4……紫外線ランプ、4a……発光
部、4b……電極部、4c……ガラス封体、4d
……水銀溜り部、6……被照射物(半導体ウエハ
ー)、8……金属棒、9……制御ボツクス、10
……制御用金属板。
FIG. 1 is a front sectional view of an embodiment of the present invention, FIG. 2 is a side sectional view, and FIG. 3 is an enlarged sectional view of the main parts. 1... Equipment box, 2... Reflection mirror, 3... Sub-reflection mirror, 4... Ultraviolet lamp, 4a... Light emitting section, 4b... Electrode section, 4c... Glass enclosure, 4d
...Mercury reservoir, 6...Irradiated object (semiconductor wafer), 8...Metal rod, 9...Control box, 10
...Control metal plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光照射用開口を有する灯体内に放電灯が配置さ
れた光照射装置であつて、該放電灯のガラス封体
の所定位置に金属棒を挿通して封入し、該金属棒
のガラス封体より外部に突出した部分をペルチエ
効果素子などを利用したサーモモジユールにより
温度制御することを特徴とする光照射装置。
A light irradiation device in which a discharge lamp is disposed in a lamp body having an opening for light irradiation, in which a metal rod is inserted into a predetermined position of the glass enclosure of the discharge lamp and the metal rod is enclosed in the glass enclosure. A light irradiation device characterized in that the temperature of a portion protruding to the outside is controlled by a thermo module using a Peltier effect element or the like.
JP19537483U 1983-12-21 1983-12-21 light irradiation device Granted JPS60105014U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19537483U JPS60105014U (en) 1983-12-21 1983-12-21 light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19537483U JPS60105014U (en) 1983-12-21 1983-12-21 light irradiation device

Publications (2)

Publication Number Publication Date
JPS60105014U JPS60105014U (en) 1985-07-17
JPS631382Y2 true JPS631382Y2 (en) 1988-01-14

Family

ID=30752910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19537483U Granted JPS60105014U (en) 1983-12-21 1983-12-21 light irradiation device

Country Status (1)

Country Link
JP (1) JPS60105014U (en)

Also Published As

Publication number Publication date
JPS60105014U (en) 1985-07-17

Similar Documents

Publication Publication Date Title
KR100465346B1 (en) X-ray generator and electrostatic remover using the same
KR100977886B1 (en) Heat treatment apparatus and storage medium
JP3606149B2 (en) Light source device
JPH08142U (en) Heat removal means for discharge lamps
KR100970013B1 (en) Heat treating device
BRPI0709539A2 (en) solar cell concentration instrument
JP3827492B2 (en) Discharge lamp
KR20060116802A (en) Laser system
JPS631382Y2 (en)
JP2004312991A (en) Thermal power generation device
JPH08250071A (en) Lamp and light source device
JPS6158173A (en) Liquid fuel cell
JP6922236B2 (en) Laser light emitting device, engine spark plug system
US3163366A (en) Controlled cooled gaseous discharge luminaire
JPH08106812A (en) Light source device
JPS6111401B2 (en)
JPS6314337Y2 (en)
CN210035296U (en) Energy-saving searchlight
JPH0263182A (en) Semiconductor laser device
JP2602647B2 (en) Metal vapor discharge lamp
JPH0741568Y2 (en) Halogen lamp with soldering mirror
JP2004333098A (en) Electric furnace
JP2002335029A (en) Band narrowed laser
JP2001006851A (en) Far infrared heater
JPH07118300B2 (en) High-power ultraviolet radiation device