JPS63138206A - Minute distance measuring system - Google Patents

Minute distance measuring system

Info

Publication number
JPS63138206A
JPS63138206A JP28432686A JP28432686A JPS63138206A JP S63138206 A JPS63138206 A JP S63138206A JP 28432686 A JP28432686 A JP 28432686A JP 28432686 A JP28432686 A JP 28432686A JP S63138206 A JPS63138206 A JP S63138206A
Authority
JP
Japan
Prior art keywords
waveform
feature points
distance
electron
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28432686A
Other languages
Japanese (ja)
Inventor
Makoto Kato
誠 加藤
Tetsuo Yokoyama
哲夫 横山
Hisahiro Furuya
寿宏 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28432686A priority Critical patent/JPS63138206A/en
Publication of JPS63138206A publication Critical patent/JPS63138206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To execute a minute distance measurement which does not depend on a material, by deriving a distance between feature points of a sample extracted on a scanning waveform generated from the quantity calculated from a prescribed equation to the same point of an image obtained from a detector, or a waveform which has brought said waveform to an arithmetic processing. CONSTITUTION:An electron beam 103 emitted from an electron gun 102 in a mirror body 101 is deflected and converged onto a sample 106 by an electron lens system 104. An emitted secondary electron 107 is detected by right and left detectors 108, 109, a detecting signal passes through an A/D converter 110 and inputted to a memory of a computer 111, and the result of calculation and an image are displayed on a display 113. On the other hand, the computer 111 derives a scanning waveform which does not depend on a material by using the quantity calculated by a numerator/denominator homogeneous equation, (Il-I)/2(Il-I)<1/2>=(Fl-F)/2(FlF)<1/2>2, and derives a distance between feature points on its waveform. In this regard, ratios of secondary electrons for reaching the right and left detectors, and detecting signals are denoted as F, Fl, and I, Il, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体等の微細加工物の検査に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to the inspection of microfabricated objects such as semiconductors.

特に高精度な微小距離測定方式に関する。In particular, it relates to highly accurate small distance measurement methods.

〔従来の技術〕[Conventional technology]

半導体の微細化に伴い、その製造工程の管理のだめの線
幅測定には、高分解能の走査電子顕微鏡が用いられるよ
うになってきている。従来、半導体の線幅等の微小距離
の測定には、特開昭59−112217号公報に見られ
るように、試料上を1ライン走査し、その波形中の特徴
点付近を2本の直線で近似し、その交点を特徴点の位置
として、複数の特徴点間の距離を以って測長していた。
With the miniaturization of semiconductors, high-resolution scanning electron microscopes have come to be used to measure line widths during the control of the manufacturing process. Conventionally, to measure minute distances such as semiconductor line widths, one line is scanned over the sample, and two straight lines are drawn around the characteristic points in the waveform, as shown in Japanese Patent Laid-Open No. 112217/1983. The distances between the plurality of feature points were measured using the approximation and the intersection point as the position of the feature point.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、走査電子顕微鏡による走査波
形が材質に依存し、同一の形状であっても、材質の相違
により走査波形が大きく異なってくるという点について
配慮されておらず、一つの特徴点抽出の方式は、一部の
材質のものにしか適用できないという問題があった。
The above conventional technology does not take into consideration the fact that the scanning waveform produced by a scanning electron microscope depends on the material, and even if the shape is the same, the scanning waveform will differ greatly depending on the material. The problem with the extraction method is that it can only be applied to some materials.

本発明の目的は、材質に依存しない、特徴点抽出を行い
測長する微小距離測定方式を提供することにある。
An object of the present invention is to provide a minute distance measurement method for extracting feature points and measuring length, which does not depend on the material.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、走査電子顕微鏡信号に含まれる。 The above objectives are included in the scanning electron microscope signal.

材質によるコントラストの成分を除去し、形状に依存す
るコントラスト成分のみよシなる信号を作成し、この信
号よりなる走査波形上で特徴抽出を行うことにより達成
される。
This is achieved by removing the contrast component due to the material, creating a signal containing only the contrast component depending on the shape, and extracting features on the scanning waveform made of this signal.

〔作用〕[Effect]

走査電子顕微鏡の信号は、試料の表面から放出される2
次電子の総蓋と放出された2次電子が検出器へ到達する
割付により決定される。前者は。
The signal of a scanning electron microscope is emitted from the surface of the sample2
It is determined by the total number of secondary electrons and the allocation of the emitted secondary electrons reaching the detector. The former.

大略、材質に依存する定数ηと、その点の形状や入射電
子線の加速′亀゛圧等に依存するが材質には依存しない
F8の積に書ける。2つの検出器が左右にある場合を想
定し、左右それぞれの検出器に到達する割合を、それぞ
れF、とFtと書くと、左右の検出器よシ得られる信号
11Fと工6は次式%式% ここで、ItとI、の分母分子の同次式を作ると例えば
次式のように材質に依存する定数ηが消去される。
Roughly, it can be written as the product of a constant η, which depends on the material, and F8, which depends on the shape of the point, the acceleration pressure of the incident electron beam, etc., but does not depend on the material. Assuming that there are two detectors on the left and right, and the ratio of reaching the left and right detectors is written as F and Ft, respectively, the signal 11F and process 6 obtained from the left and right detectors are calculated by the following formula % Equation % Here, if a homogeneous equation of the denominator and numerator of It and I is created, the constant η that depends on the material is eliminated, as shown in the following equation, for example.

このように1分母分子同次の有理式で計算した量を用い
ると、材質に依存しない走査波形を得ることができる。
By using a quantity calculated using a rational formula with one denominator and numerator homogeneity in this manner, a scanning waveform that does not depend on the material can be obtained.

そこで、この走査波形上で、特徴点の認識をすれば、材
質に依存しない距離測定を行うことができる。
Therefore, by recognizing feature points on this scanning waveform, distance measurement that does not depend on the material can be performed.

〔実施例〕 以下1本発明の一実施例を第1図から第4図で説明する
。第1図は本発明の一実施例である半導体線幅測定方式
のハードウェア構成図である。鏡体101中の電子銃1
02より放出された電子線103は電子レンズ系104
により、試料台105上の試料106上に偏向収束し、
それに対応し2次電子107が放出され、右検出器10
8及び左検出器109に検知される。検知された信号は
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a hardware configuration diagram of a semiconductor line width measurement method that is an embodiment of the present invention. Electron gun 1 in mirror body 101
The electron beam 103 emitted from the electron lens system 104
As a result, the deflection is focused on the sample 106 on the sample stage 105,
Correspondingly, secondary electrons 107 are emitted, and the right detector 10
8 and the left detector 109. The detected signal is.

A/L)変換器でディジタル化され、キーボード112
の指示の1に動作する計算機111中のメモリーに人力
される。これらの信号より作られる画像や計測結果は、
ディスプレイ113に表示される。
A/L) is digitized by a converter and the keyboard 112
The computer 111 is manually inputted into the memory of the computer 111, which operates according to one of the instructions. The images and measurement results created from these signals are
It is displayed on the display 113.

次に、第2図は6本発明の一実施例の処理の流れ図であ
る。ブロック201では、右検出器108゜左検出器1
09よ)、1ライン分の信号を入力する。ブロック20
2では、ブロック201で入力した信号に対し、同次有
理式の演算を行う。本実施例では、前述の作用の項で述
べたと同じ式(3) t−用いる。この式は1面の傾き
を表現する式であるので、第3図(a)の材質A301
と材質B502の2層よシなる半導体の断面を本実施例
のハードウェアで観察した場合、左検出器信号は、第3
図(b)の走査波形303.右検出器信号は、第3図(
C)の走査波形304のようになるが、同次有理式の演
算結果は第3図(d)の波形305のようになる。次に
ブロック203では特徴点の抽出を行う。
Next, FIG. 2 is a flowchart of processing in an embodiment of the present invention. In block 201, right detector 108° left detector 1
09), input the signal for one line. block 20
In step 2, a homogeneous rational expression is operated on the signal input in block 201. In this embodiment, the same equation (3) t- as described in the section of the above-mentioned operation is used. This formula expresses the inclination of one plane, so the material A301 in Fig. 3(a)
When a cross section of a semiconductor consisting of two layers of material B502 and B502 is observed using the hardware of this embodiment, the left detector signal is
Scanning waveform 303 in figure (b). The right detector signal is shown in Figure 3 (
The scanning waveform 304 shown in C) is obtained, but the result of the calculation of the homogeneous rational expression is shown as the waveform 305 shown in FIG. 3(d). Next, in block 203, feature points are extracted.

本実施例では、第3図(a)の線バター/の右エツジ3
06と左エツジ3070間の距離を求めるのが目的であ
る。そのため、第4図において、a形305に対し、し
きい値401としきい値402金設定し、それぞれ外側
の交点を、左測定エツジ位置403と右測定エツジ位t
1404とする。ブロック204では、この2つの測定
エツジ間の距離を計算する。ブロック205では結果′
jt表示する。
In this embodiment, the right edge 3 of the line butter/ in FIG.
The purpose is to find the distance between 06 and the left edge 3070. Therefore, in FIG. 4, a threshold value 401 and a threshold value 402 are set for the a-type 305, and the outer intersections are set at the left measurement edge position 403 and the right measurement edge position t.
1404. Block 204 calculates the distance between the two measurement edges. In block 205 the result'
Display jt.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、材質に依存しない波形上で特徴点抽出
を行えるので、多様な材質よりなる試料に対しても高精
度な測長を行うことができるという効果がある。
According to the present invention, since feature points can be extracted on a waveform that does not depend on the material, there is an effect that highly accurate length measurement can be performed even on samples made of various materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の・・−ドウエア構成図、第
2図は本発明の一実施例の処理の流れ図。 第3図と第4図は第2図ブロック、203部分の出力波
形を示す図である。
FIG. 1 is a software configuration diagram according to an embodiment of the present invention, and FIG. 2 is a flowchart of processing according to an embodiment of the present invention. 3 and 4 are diagrams showing the output waveform of the block 203 in FIG. 2.

Claims (1)

【特許請求の範囲】[Claims] 1、複数の検出器を備えた走査電子顕微鏡において、そ
れぞれの検出器より得た画像の同一点に対する画像濃度
の分母分子同次の式より計算された量より作成した走査
波形あるいは、この走査波形に加算等の処理を行つた波
形上で、試料上の特徴点を抽出し、複数の特徴点間の距
離を求めることを特徴とする微小距離測定方式。
1. In a scanning electron microscope equipped with multiple detectors, a scanning waveform created from a quantity calculated from the denominator and numerator homogeneous equation of the image density for the same point of the image obtained from each detector, or this scanning waveform A micro-distance measurement method that extracts feature points on a sample from a waveform that has been subjected to processing such as addition, and calculates the distance between multiple feature points.
JP28432686A 1986-12-01 1986-12-01 Minute distance measuring system Pending JPS63138206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28432686A JPS63138206A (en) 1986-12-01 1986-12-01 Minute distance measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28432686A JPS63138206A (en) 1986-12-01 1986-12-01 Minute distance measuring system

Publications (1)

Publication Number Publication Date
JPS63138206A true JPS63138206A (en) 1988-06-10

Family

ID=17677106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28432686A Pending JPS63138206A (en) 1986-12-01 1986-12-01 Minute distance measuring system

Country Status (1)

Country Link
JP (1) JPS63138206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539998B2 (en) 2011-03-17 2013-09-24 Kouichi Sakakibara Anti-skid device for tires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539998B2 (en) 2011-03-17 2013-09-24 Kouichi Sakakibara Anti-skid device for tires

Similar Documents

Publication Publication Date Title
US5422724A (en) Multiple-scan method for wafer particle analysis
US5267017A (en) Method of particle analysis on a mirror wafer
JPH01311551A (en) Pattern shape measuring device
US10663416B2 (en) Pattern measuring method, pattern measuring apparatus, and computer program storage device
JP2840801B2 (en) Automatic setting method of coordinate conversion coefficient
JP2002243428A (en) Method and device for pattern inspection
JPS61290312A (en) Sectional shape measuring apparatus
JPS63138206A (en) Minute distance measuring system
US8552371B2 (en) Method for adjusting imaging magnification and charged particle beam apparatus
JPH01115043A (en) Defect inspection device by scanning electronic microscope
US11164720B2 (en) Scanning electron microscope and calculation method for three-dimensional structure depth
US20190362938A1 (en) Charged Particle Beam Device
JP2650281B2 (en) Surface shape measurement method by scanning electron microscope
JP2005069953A (en) Apparatus and method for shape measuring
JP2001148016A (en) Sample inspecting device, sample display device, and sample displaying method
JPS6162849A (en) Density curve analytical system of automatic multifunctional analyser
JPH09166698A (en) Method for measuring charged particle beam
US20230094023A1 (en) Charged particle beam image processing device and charged particle beam apparatus including the same
JPS6347334B2 (en)
JPH06258240A (en) Method of coordinate transformation
JPH03289507A (en) Method and apparatus for measuring size of pattern
JPH0648250B2 (en) Method for measuring electron beam energy spectrum
JPS63215910A (en) Section measurement
JPS5867027A (en) Mark position detecting method for electronic beam exposing device
SU884005A1 (en) Method of measuring diameter of electronic probe in raster electron microscope