JPS6313754B2 - - Google Patents

Info

Publication number
JPS6313754B2
JPS6313754B2 JP2501280A JP2501280A JPS6313754B2 JP S6313754 B2 JPS6313754 B2 JP S6313754B2 JP 2501280 A JP2501280 A JP 2501280A JP 2501280 A JP2501280 A JP 2501280A JP S6313754 B2 JPS6313754 B2 JP S6313754B2
Authority
JP
Japan
Prior art keywords
concentration
activated carbon
total mercury
wastewater
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2501280A
Other languages
Japanese (ja)
Other versions
JPS56121682A (en
Inventor
Nobuyuki Shishido
Hidemi Michishita
Shinichi Tomita
Mitsuru Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP2501280A priority Critical patent/JPS56121682A/en
Publication of JPS56121682A publication Critical patent/JPS56121682A/en
Publication of JPS6313754B2 publication Critical patent/JPS6313754B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、有機水銀化合物を含有する廃水の浄
化方法に関するものである。 有機水銀化合物は、植物病菌に対する散布剤、
乳化剤、粉剤および水和剤として稲、果樹、果
菜、たばこ、野菜などに広く使用された。このよ
うな農薬としての他に、医薬品としては、マーキ
ユロクロム(“赤チンキ”)などがある。 これら、より効果のある医薬品の開発ととも
に、患者に大量使用された水虫薬や血液製剤の防
腐剤による、医療を原因とする水銀中毒の報告が
あいついだことにより医薬品としての水銀剤は下
降傾向を辿つたが、殺菌系用途には、代替が困難
で、必要不可欠のものがある。 これら有機水銀化合物の浄化処理方法として
は、塩素ガスにより酸化分解し、次いで硫化ソー
ダにより不溶化し、分離除去する方法、イオン交
換樹脂、活性炭等によつて吸着除去する方法が知
られている。 しかしながら有機水銀の使用形態の多様特殊化
および排水中に許容される総水銀量を減少させる
ためには、上記諸方法の単独或いは、組合わせに
よつては、「排水基準を定める総理府令」(総理府
令35昭和46年6月21日)によつて規定される、総
水銀濃度5ppb以下を満足させることが困難とな
つてきている。 式〔〕の構造を有するチメロサール(エチル
水銀チオサリチル酸ナトリウム)は防腐剤として
生物学的製剤に0.01W/V%加えることになつて
いるが、チメロサールが添加されている生物学的
製剤は有効期限終了後何らかの方法によつて処分
しなければならない。また、上記式〔〕の構造
を有する外科用、創面の消毒剤であるマーキユロ
クロムについても、廃棄に際しては同様の問題が
生ずる。 本発明者らは上記の有機水銀化合物を含有する
廃水を容易に、しかも、充分低濃度迄、浄化処理
する方法を目的とし、鋭意検討した結果、上記廃
水を電解処理して、有機水銀化合物を総水銀濃度
として好適には5ppm以下に下げ、次いでこの電
解処理液を活性炭または/およびキレート樹脂に
よる吸着処理を行うことによつて最終的に総水銀
濃度として5ppb以下に低下させることができる
ことを発見し、本発明を完成した。 すなわち本発明は 下記一般式〔〕または〔〕 (一般式〔〕中のRは炭素数1乃至8のアルキ
ル基を、また一般式〔〕中のXはハロゲン原子
を表わす。)で表わされる有機水銀化合物を含有
する廃水を、電解処理し、得られた処理上澄水を
酸性に調整し、次いで活性炭処理または/および
キレート樹脂処理することを特徴とする有機水銀
化合物を含有する廃水の浄化方法をその要旨とす
るものである。 本発明の電解処理方法は、有機水銀化合物を含
有する廃水中に所定の陽極及び陰極を挿入して、
所定の電流密度および電量濃度において、直流に
て電気分解を行う方法が採用される。 陽極としてはアルミニウム(Al)が適当であ
り、陰極としてはAl、鉄(Fe)またはカーボン
を挙げることができる。特に陽極および陰極に
Alを使用すれば陽極面に酸化によつて生じる酸
化物の皮膜を生ずることが少なく、皮膜による電
解電圧の降下が生じないため、電流を一定に保持
することが容易である。 電解処理で残存水銀濃度を好ましくは5ppm以
下にするためには、電流密度としては6〜12A/
cm2であり(図1、図3および図5参照)、電量濃
度としては2A・h/以上(図2、図4および
図6参照)である。 電解処理した処理水はPH約10であり水酸化アル
ミニウム等のゲル状沈殿を含むが、これらを分離
除去した後、次の工程で活性炭吸着処理を行う場
合は、塩酸、硫酸などの酸を用いて、PHを6〜7
に調整する。またキレート樹脂による吸着処理を
行う場合は、同様に酸を用いて、PHを3〜6、多
くの場合は4程度に調整する。 上記の吸着処理で使用する活性炭としては、石
炭系、植物系等の活性炭を使用することができ、
またキレート樹脂としては、スチレン−ジビニル
ベンゼン系の共重合体を母体とし、これにチオー
ル基、チオウレイド基、ポリアルキレンポリアミ
ノ基を導入した公知キレート樹脂を使用すること
ができる。 活性炭処理または/およびキレート樹脂処理と
しては、これらを充填した塔に電解処理液の沈殿
を除去した後PHを酸性に調整したもの、または電
解処理液の上澄液でPHを酸性に調整したものを通
過させるのであるが、この場合の通液条件として
は、公知の空間速度(以下SVと略記する)1〜
15(h-1)、好ましくは1〜5(h-1)線速度(以下
LVと略記する)1〜15(mh-1)、好ましくは1〜
5(mh-1)に設定すればよい。 このように本発明に従い、有機水銀化合物を含
有する廃水を電解処理した後、酸性に調整し、次
いで活性炭または/およびキレート樹脂処理する
ことにより、排水規制値(=5ppb)以下に容易
に該廃水を浄化処理することができる。 次に本発明を実施例および比較例によつて説明
するが、本発明はこれら実施例に限定されるもの
ではない。 実施例 1 構造式: で表わされるチメロサール1000ppm(総水銀とし
て49.5ppm)を含有する次のような組成の生物学
的製剤の有効期限切れ廃水(NaCl0.9%、
HCHO40ppm、蛋白性窒素10〜150ppm)の300
mlをビーカーに採取し、陽極および陰極ともに
Alを使つて、反応開始時PH7で電流密度に対す
る電解処理水中の総水銀濃度の変化を調べる実験
を行い、図1および表1に示す結果を得た。図に
おいて1、および2は、おのおの電量濃度3.33お
よび4.44Ah/での電流密度に対する在存水銀
濃度を示す。また電量濃度に対する処理水中の総
水銀濃度の変化を調べる実験を電流0.5、1.0、2.0
および4.0Aで行い図2および表2に示す結果を
得た。 ここで電流密度とは電極電位の高低に依存し
て、電極における酸化還元反応の強弱を示し、通
常、浸せき部分のうち相手の極に対する面につい
てA/dm2で表わす。また電量濃度とは単位電解
液量に対して通した電気量を表わし、理論量の何
倍を与えたかを示すもので、通例Ah/または
Ah/molで示され、反応量を規制するものであ
る。 この結果に基き、電流密度4.5A/dm2、電量
濃度5Ah/の条件で電解処理した結果、処理後
の廃水中の総水銀濃度は1.9ppmとなつた。更に
これをPH6.8に規定硫酸を使つて調整した後、SV
=2(h-1)、LV=1(mh-1)で石炭系活性炭
(“ダイアホープ008”;三菱化成工業株式会社製)
を約100ml充填した活性炭塔に通液したところ、
流出液中のチメロサール濃度は5.2ppb(総水銀と
して2.6ppb)となつた。 なお、総水銀の測定方法としてはJISK0102−
1971の工場排水試験方法(還元気化原子吸光法)
に準拠して行つた。以下の実施例または比較例に
ついても同じである。
The present invention relates to a method for purifying wastewater containing organic mercury compounds. Organic mercury compounds are used as spray agents against plant pathogens,
It was widely used as an emulsifier, powder, and hydrating agent for rice, fruit trees, fruit vegetables, tobacco, vegetables, etc. In addition to these pesticides, other pharmaceuticals include markyurochrome ("red tincture"). Along with the development of more effective medicines, reports of medically-induced mercury poisoning caused by athlete's foot medicines and preservatives in blood products that were used in large quantities by patients continued to be reported, leading to a decline in the use of mercury medicines as medicines. However, in sterilization applications, there are some that are difficult to replace and are indispensable. As methods for purifying these organic mercury compounds, there are known methods in which they are oxidized and decomposed with chlorine gas, then insolubilized with sodium sulfide, and then separated and removed, and methods in which they are adsorbed and removed using ion exchange resins, activated carbon, etc. However, in order to diversify and specialize the use of organic mercury and to reduce the total amount of mercury allowed in wastewater, the above-mentioned methods may be used singly or in combination according to the ``Prime Minister's Office Ordinance Setting Effluent Standards.'' It is becoming difficult to satisfy the total mercury concentration of 5 ppb or less as stipulated by Prime Minister's Office Ordinance 35 June 21, 1970). Thimerosal (sodium ethylmercury thiosalicylate), which has the structure of formula [], is supposed to be added to biological preparations as a preservative at 0.01W/V%, but biological preparations to which thimerosal has been added have an expiration date. After completion, it must be disposed of in some way. Furthermore, the same problem occurs when disposing of Markyurochrome, which is a surgical and wound disinfectant having the structure of the above formula []. The present inventors aimed at a method for purifying wastewater containing the above-mentioned organic mercury compounds easily and to a sufficiently low concentration, and as a result of intensive studies, the above-mentioned wastewater was electrolytically treated to remove the organic mercury compounds. It was discovered that the total mercury concentration can be lowered preferably to 5 ppm or less, and then the total mercury concentration can be finally reduced to 5 ppb or less by adsorption treatment of this electrolytically treated solution with activated carbon and/or chelate resin. and completed the present invention. That is, the present invention has the following general formula [] or [] (R in the general formula [] represents an alkyl group having 1 to 8 carbon atoms, and X in the general formula [] represents a halogen atom) is subjected to electrolytic treatment, The gist of the present invention is a method for purifying wastewater containing organic mercury compounds, which comprises adjusting the obtained treated supernatant water to be acidic and then treating it with activated carbon and/or chelate resin. The electrolytic treatment method of the present invention involves inserting a predetermined anode and cathode into wastewater containing an organic mercury compound.
A method of performing electrolysis with direct current at a predetermined current density and coulometric concentration is adopted. Aluminum (Al) is suitable as the anode, and Al, iron (Fe) or carbon can be mentioned as the cathode. Especially for anode and cathode
If Al is used, an oxide film caused by oxidation is less likely to be formed on the anode surface, and the electrolytic voltage does not drop due to the film, so it is easy to maintain a constant current. In order to reduce the residual mercury concentration to preferably 5 ppm or less by electrolytic treatment, the current density should be 6 to 12 A/
cm 2 (see FIGS. 1, 3, and 5), and the coulometric concentration is 2 A·h/or more (see FIGS. 2, 4, and 6). The electrolytically treated water has a pH of approximately 10 and contains gel-like precipitates such as aluminum hydroxide, but after these are separated and removed, if activated carbon adsorption treatment is performed in the next step, an acid such as hydrochloric acid or sulfuric acid is used. and pH 6-7
Adjust to. When adsorption treatment is performed using a chelate resin, the pH is adjusted to 3 to 6, in most cases about 4, using an acid. As the activated carbon used in the above adsorption treatment, activated carbon such as coal-based or plant-based activated carbon can be used.
Further, as the chelate resin, a known chelate resin having a styrene-divinylbenzene copolymer as a base material into which a thiol group, a thioureido group, or a polyalkylene polyamino group can be introduced can be used. For activated carbon treatment and/or chelate resin treatment, the PH is adjusted to acidic after removing the precipitate of the electrolytic treatment solution in a tower filled with these, or the PH is adjusted to acidic with the supernatant liquid of the electrolytic treatment liquid. In this case, the liquid passing conditions are a well-known space velocity (hereinafter abbreviated as SV) of 1 to 1.
15 (h -1 ), preferably 1 to 5 (h -1 ) linear velocity (below
(abbreviated as LV) 1 to 15 (mh -1 ), preferably 1 to 15
5 (mh -1 ). As described above, according to the present invention, wastewater containing organic mercury compounds is electrolytically treated, adjusted to acidity, and then treated with activated carbon or/and chelate resin, thereby easily reducing the wastewater to below the wastewater regulation value (=5ppb). can be purified. Next, the present invention will be explained using Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Structural formula: Expired wastewater of a biological product with the following composition containing 1000 ppm of thimerosal (49.5 ppm as total mercury) (NaCl 0.9%,
HCHO40ppm, protein nitrogen 10-150ppm) 300
Collect ml in a beaker, and both the anode and cathode
Using Al, an experiment was conducted to examine the change in total mercury concentration in electrolyzed water with respect to current density at pH 7 at the start of the reaction, and the results shown in Figure 1 and Table 1 were obtained. In the figure, 1 and 2 indicate the existing mercury concentration versus current density at coulometric concentrations of 3.33 and 4.44 Ah/, respectively. In addition, experiments were conducted to investigate changes in total mercury concentration in treated water with respect to coulometric concentration at currents of 0.5, 1.0, and 2.0.
and 4.0A, and the results shown in FIG. 2 and Table 2 were obtained. The current density here indicates the strength of the redox reaction at the electrode depending on the level of the electrode potential, and is usually expressed in A/dm 2 for the surface of the immersed portion facing the other electrode. In addition, the coulometric concentration refers to the amount of electricity passed per unit amount of electrolyte, and indicates how many times the theoretical amount is given, usually Ah/or
It is expressed in Ah/mol and controls the amount of reaction. Based on this result, as a result of electrolytic treatment under the conditions of current density 4.5 A/dm 2 and coulometric concentration 5 Ah/, the total mercury concentration in the treated wastewater was 1.9 ppm. Furthermore, after adjusting this to pH 6.8 using specified sulfuric acid, SV
= 2 (h -1 ), LV = 1 (mh -1 ) and coal-based activated carbon (“Diahope 008”; manufactured by Mitsubishi Chemical Corporation)
When the liquid was passed through an activated carbon tower filled with about 100ml of
The thimerosal concentration in the effluent was 5.2 ppb (2.6 ppb as total mercury). The method for measuring total mercury is JISK0102-
1971 factory wastewater test method (reduction vaporization atomic absorption spectrometry)
This was done in accordance with the. The same applies to the following Examples and Comparative Examples.

【表】【table】

【表】【table】

【表】 実施例 2 チメロサール102.4ppm(総水銀として
50.7ppm)を含む、実施例1に記載した組成の生
物学的製剤の有効期限切れ廃水の300mlをビーカ
ーに採取し、Alを陽極に、Feを陰極にして電解
反応開始前のPH7として電流密度に対する処理水
中の総水銀濃度の変化を調べる実験を行い、表3
および図3に示す結果を得た。図3は電量濃度
3.33Ah/における電流密度と残存水銀濃度と
の関係を示す。また電量濃度に対する電解処理水
中の総水銀濃度の変化を調べる実験を行い、表4
および図4に示す結果を得た。 この結果を参考にして電流密度4.5A/dm2
電量濃度5Ah/の条件下で電解処理した結果、
処理後の水中の総水銀濃度は0.3ppmとなつた。
更にこれをPH6.8に調整した後、SV=2(h-1)、
LV=1(mh-1)で石炭系活性炭“ダイアホープ
008”を約100ml充填した活性炭塔に通液したとこ
ろ、流出液中の総水銀濃度は2.4ppbとなつた。
[Table] Example 2 Thimerosal 102.4ppm (as total mercury)
Collect 300 ml of expired wastewater from a biological product with the composition described in Example 1, containing 50.7 ppm), and use Al as the anode and Fe as the cathode to adjust the current density to PH7 before the start of the electrolytic reaction. An experiment was conducted to investigate changes in the total mercury concentration in treated water, and Table 3
The results shown in FIG. 3 were obtained. Figure 3 shows coulometric concentration
The relationship between current density and residual mercury concentration at 3.33Ah/ is shown. We also conducted an experiment to investigate the change in total mercury concentration in electrolyzed water with respect to coulometric concentration, and Table 4
The results shown in FIG. 4 were obtained. Based on this result, the current density is 4.5A/dm 2 ,
As a result of electrolytic treatment under conditions of coulometric concentration 5Ah/,
The total mercury concentration in the water after treatment was 0.3ppm.
After further adjusting this to PH6.8, SV = 2 (h -1 ),
Coal-based activated carbon “Diahope” at LV=1 (mh -1 )
When the liquid was passed through an activated carbon tower filled with approximately 100 ml of 008'', the total mercury concentration in the effluent was 2.4 ppb.

【表】 ころで比較した。
[Table] Comparison was made by roller.

【表】【table】

【表】 実施例 3 チメロサール102ppm(総水銀として50.6ppm)
を含む実施例1で記載した組成の生物学的製剤の
有効期限切れ廃水300mlをビーカーに採取し、Al
を陽極に、C(カーボン)を陰極にして電解反応
開始時のPHを7として、電流密度に対する電解処
理液中の総水銀濃度の変化を調べる実験を行い、
表5および図5に示す結果を得た。この場合、陽
極に酸化物の皮膜が生じた電圧を上げて、電流を
一定に保つた。図5は電流濃度3.33Ah/にお
ける、電流密度に対する残存水銀濃度を示す。ま
た電量濃度に対する処理水中の総水銀濃度の変化
を調べる実験を行い、表6および図6に示す結果
を得た。 この結果に基き、電流密度4.5A/dm2、電量
濃度4.5Ah/の条件下で電解処理した結果、処
理後の廃水中の総水銀濃度は0.9ppmとなつた。
更にこのPH10の電解処理液を規定硫酸を用いて微
酸性に調整した後、SV=2(h-1)、LV=1(m
h-1)で石炭系活性炭“ダイアホープ008”を約
100ml充填した活性炭塔に通液したところ、流出
液中の総水銀濃度は2.6ppbとなつた。
[Table] Example 3 Thimerosal 102ppm (50.6ppm as total mercury)
Collect 300 ml of expired wastewater of a biological product with the composition described in Example 1 containing Al
An experiment was conducted to investigate the change in the total mercury concentration in the electrolytic treatment solution with respect to current density, using C (carbon) as the anode and C (carbon) as the cathode, and setting the pH at the start of the electrolytic reaction to 7.
The results shown in Table 5 and FIG. 5 were obtained. In this case, the voltage at which an oxide film formed on the anode was increased and the current held constant. Figure 5 shows the residual mercury concentration versus current density at a current density of 3.33Ah/. In addition, an experiment was conducted to examine the change in the total mercury concentration in the treated water with respect to the coulometric concentration, and the results shown in Table 6 and FIG. 6 were obtained. Based on this result, as a result of electrolytic treatment under the conditions of a current density of 4.5 A/dm 2 and a coulometric concentration of 4.5 Ah/, the total mercury concentration in the treated wastewater was 0.9 ppm.
Furthermore, after adjusting this PH10 electrolytic treatment solution to slightly acidic using normal sulfuric acid, SV = 2 (h -1 ), LV = 1 (m
h -1 ) of coal-based activated carbon “Diahope 008”.
When the liquid was passed through an activated carbon tower filled with 100 ml, the total mercury concentration in the effluent was 2.6 ppb.

【表】 ころで比較した。
[Table] Comparison was made by roller.

【表】 実施例 4 本実験は、電流密度を実施例の4.5A/dm2
9.1A/dm2に上げることによつて生じるであろ
う電解処理効果の差異を見るために行つた。チメ
ロサール100ppm(総水銀として49.5ppm)含む実
施例1に記載した組成の生物学的製剤の有効期限
切れ廃水の300mlをビーカーに採取し、陽極およ
び陰極ともにAlを使用して、電解反応開始時の
PHを7に調整した後、電流密度9.1A/dm2、電
量濃度3.3Ah/の電解条件下で処理した結果、
処理後の廃水中の総水銀濃度は3.1ppmとなつた。
更にこれを規定硫酸でPH6.8に調整した後、SV=
2(h-1)、LV=1(mh-1)で石炭系活性炭“ダイ
アホープ008”を約100ml充填した活性炭塔に通液
したところ、流出液中の総水銀濃度は1.5ppbとな
つた。 実施例 5 実施例1に記載したのと同一の組成をもつ生物
学的製剤の有効期限切れ廃水を陽極にAlを、陰
極にC(炭素)を用いて、電流密度4.55D/dm2
および電量濃度4.44Ah/の条件下で電解処理
したところ、処理液中の総水銀濃度は2.5ppmと
なつた。これを規定硫酸を用いてPHを6.8に調整
してから石炭系活性炭“ダイアホープ008”を100
ml充填した活性炭塔にSV=2(h-1)、LV=1
(h-1)で通液する実験を行つた結果、表7に示す
ような結果が得られた。即ち処理後の総水銀濃度
は、いずれも約3ppbであつた。
[Table] Example 4 In this experiment, the current density was set to 4.5A/dm 2 as in the example.
This was done to see the difference in electrolytic treatment effect that would occur by raising the temperature to 9.1 A/dm 2 . Collect 300 ml of expired wastewater of a biological preparation with the composition described in Example 1 containing 100 ppm of thimerosal (49.5 ppm as total mercury) into a beaker, and use Al as both the anode and the cathode.
After adjusting the pH to 7, it was treated under electrolytic conditions with a current density of 9.1 A/dm 2 and a coulometric concentration of 3.3 Ah/.
The total mercury concentration in the wastewater after treatment was 3.1ppm.
Furthermore, after adjusting this to pH6.8 with normal sulfuric acid, SV=
2 (h -1 ) and LV = 1 (mh -1 ), the liquid was passed through an activated carbon tower filled with approximately 100 ml of coal-based activated carbon "Diahope 008", and the total mercury concentration in the effluent was 1.5 ppb. Example 5 Expired wastewater of a biological product having the same composition as described in Example 1 was used at a current density of 4.55 D/dm 2 using Al as an anode and C (carbon) as a cathode.
When electrolytically treated under conditions of a coulometric concentration of 4.44 Ah/, the total mercury concentration in the treated solution was 2.5 ppm. Adjust the pH of this to 6.8 using specified sulfuric acid, and then add coal-based activated carbon "Diahope 008" to 100%.
SV = 2 (h -1 ), LV = 1 in an activated carbon tower filled with ml
As a result of conducting an experiment in which liquid was passed at (h -1 ), the results shown in Table 7 were obtained. That is, the total mercury concentration after treatment was about 3 ppb in all cases.

【表】 注:表中において“通液倍率”は、カラム
に充填された活性炭の体積の何倍
量の原水を通水したかを示すものであ
る。
比較例 電解処理の終了したPH10の電解処理水のPH調整
を行わず、そのままキレート樹脂、活性炭の順で
通液処理した。 チメロサール94.5ppm(総水銀として46.8ppm)
含む実施例1に記載の組成をもつ生物学的製剤の
有効期限切れ廃水4.5を用いて、陽極および陰
極にAlを使つて、PH7で電流密度6.5A/dm2
電量濃度3.3Ah/となるように電解処理した結
果、処理後の廃水中の総水銀濃度は5.9ppmとな
つた。更にこのまま、電解処理後のPH、即ちPH10
のままでキレート樹脂(“ダイヤイオンCR−
20”;三菱化成工業株式会社製、スチレン・ジビ
ニルベンゼン系共重合体の母体にポリアミノ基を
導入したもの。50mlを充填したキレート樹脂塔に
SV=5(h-1)、LV=2(mh-1)で通液し、更に
これとシリーズで石炭系活性炭(“ダイアホープ
008”)100ml充填した活性炭塔にSV=2(h-1)、
LV=1(mh-1)で通液した結果、流出液中の総
水銀濃度は0.2ppmであつた。 なおキレート樹脂通液後の処理廃水中の総水銀
濃度は0.25ppmであつた。 こようにPH10では実施例1および実施例5に比
較してキレート樹脂および活性炭による吸着は悪
かつた。 実施例 6 高濃度の有機水銀化合物、即ちチメロサール
2080ppm(総水銀として1030ppm)を含む水溶液
(NaCl0.9%、PH5.7)4.5を用いて、陽極および
陰極にAlを使つて、電流密度6.5A/dm2電量濃
度3.3Ah/となるように直流電流を用いて電解
処理した結果、処理水中の総水銀濃度は8.9ppm
となつた。次いでこの処理液をPH6.8に調整して
から石炭系活性炭“ダイアホープ008”を100ml充
填したカラムにSV=2(h-1)、LV=1(mh-1
で通液した結果、流出液中の総水銀濃度は5.1ppb
であつた。 更に、この流出液をPH3.8に調整後、シリーズ
にキレート樹脂(“ダイヤイオンCR−20”)50ml
を充填したカラムにSV=5(h-1)、LV=2(m
h-1)で通液した結果、流出液中の総水銀濃度は
4.0ppbとなつた。 実施例 7 2%のマーキユロクロム(総水銀として
5340ppm)を含む水溶液(NaCl0.9%、消泡剤3
ml、PH10.6)4.5を用いて、陽極および陰極と
もにAlを使つて、電流密度6.5A/dm2電量濃度
3.3Ah/となるようにして直流電流で電解処理
した結果、総水銀濃度は7.6ppmとなつた。 この電解処理液をPH6.8に調整してから石炭系
活性炭“ダイアホープ008”を100ml充填したカラ
ムにSV=2(h-1)、LV=1(mh-1)で通液した
ところ流出液中の総水銀濃度は4.0ppbとなつた。 更に、この流出液をPH3.8に調整後、シリーズ
にキレート樹脂(“ダイヤイオンCR−20”)50ml
を充填したカラムにSV=5(h-1)、LV=2(m
h-1)で通液した結果、流出液中の総水銀濃度は
2.3ppbとなつた。
[Table] Note: In the table, “liquid flow rate” refers to how many times the volume of activated carbon packed in the column.
This indicates how much raw water was passed through.
Comparative Example After the electrolytic treatment was completed, the electrolyzed water with a pH of 10 was passed through the chelate resin and activated carbon in that order without adjusting the pH. Thimerosal 94.5ppm (46.8ppm as total mercury)
A current density of 6.5 A/dm 2 at PH 7, using Al for the anode and cathode, using expired wastewater of a biological product with the composition described in Example 1, including:
As a result of electrolytic treatment to achieve a coulometric concentration of 3.3 Ah/, the total mercury concentration in the treated wastewater was 5.9 ppm. Furthermore, as it is, the PH after electrolytic treatment, that is, PH10
Chelate resin (“Diaion CR-”)
20”; Manufactured by Mitsubishi Chemical Industries, Ltd., polyamino groups are introduced into the base of styrene/divinylbenzene copolymer.Into a chelate resin tower filled with 50ml
SV = 5 (h -1 ), LV = 2 (mh -1 ).
SV = 2 (h -1 ) in an activated carbon tower filled with 100 ml of
As a result of passing the liquid at LV=1 (mh -1 ), the total mercury concentration in the effluent was 0.2 ppm. The total mercury concentration in the treated wastewater after passing through the chelate resin was 0.25 ppm. Thus, at PH10, adsorption by the chelate resin and activated carbon was poorer than in Examples 1 and 5. Example 6 High Concentrations of Organomercurial Compounds, namely Thimerosal
Using an aqueous solution (NaCl 0.9%, PH5.7) 4.5 containing 2080 ppm (1030 ppm as total mercury), using Al for the anode and cathode, the current density was 6.5 A/dm 2 and the coulometric concentration was 3.3 Ah/. As a result of electrolytic treatment using direct current, the total mercury concentration in the treated water was 8.9ppm.
It became. Next, this treated solution was adjusted to pH 6.8, and then placed in a column filled with 100 ml of coal-based activated carbon "Diahope 008" with SV = 2 (h -1 ) and LV = 1 (mh -1 ).
The total mercury concentration in the effluent was 5.1ppb.
It was hot. Furthermore, after adjusting this effluent to pH 3.8, 50 ml of chelate resin (“Diaion CR-20”) was added to the series.
SV = 5 (h -1 ), LV = 2 (m
h -1 ), the total mercury concentration in the effluent was
It became 4.0ppb. Example 7 2% Markyurochrome (as total mercury)
5340ppm) (NaCl 0.9%, antifoaming agent 3)
ml, PH10.6) 4.5, using Al for both the anode and cathode, current density 6.5A/dm 2 coulometric density
As a result of electrolytic treatment with direct current at 3.3Ah/, the total mercury concentration was 7.6ppm. After adjusting the pH of this electrolyzed solution to 6.8, it was passed through a column filled with 100ml of coal-based activated carbon "Diahope 008" at SV = 2 (h -1 ) and LV = 1 (mh -1 ), and the effluent was The total mercury concentration inside was 4.0ppb. Furthermore, after adjusting this effluent to pH 3.8, 50 ml of chelate resin (“Diaion CR-20”) was added to the series.
SV = 5 (h -1 ), LV = 2 (m
h -1 ), the total mercury concentration in the effluent was
It was 2.3ppb.

【図面の簡単な説明】[Brief explanation of the drawing]

図1,3,5は電解処理後の電流密度と残存水
銀濃度との関係を示す図であり、図2,4,6は
電量濃度と残存水銀濃度との関係を示す図であ
る。
1, 3, and 5 are diagrams showing the relationship between the current density and the residual mercury concentration after electrolytic treatment, and FIGS. 2, 4, and 6 are diagrams showing the relationship between the coulometric concentration and the residual mercury concentration.

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕または〔〕 (一般式〔〕中のRは炭素数1乃至8のアルキ
ル基を、また一般式〔〕中のXはハロゲン原子
を表わす。)で表わされる有機水銀化合物を含有
する廃水を電解処理し、得られた処理水を酸性に
調整し、次いで活性炭処理または/およびキレー
ト樹脂処理することを特徴とする有機水銀化合物
を含有する廃水の浄化方法。
[Claims] 1. The following general formula [] or [] (R in the general formula [] represents an alkyl group having 1 to 8 carbon atoms, and X in the general formula [] represents a halogen atom) is electrolytically treated and obtained. A method for purifying wastewater containing organic mercury compounds, which comprises adjusting the treated water to be acidic and then treating it with activated carbon and/or chelate resin.
JP2501280A 1980-02-29 1980-02-29 Purification of waste water containing organomercury compound Granted JPS56121682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2501280A JPS56121682A (en) 1980-02-29 1980-02-29 Purification of waste water containing organomercury compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2501280A JPS56121682A (en) 1980-02-29 1980-02-29 Purification of waste water containing organomercury compound

Publications (2)

Publication Number Publication Date
JPS56121682A JPS56121682A (en) 1981-09-24
JPS6313754B2 true JPS6313754B2 (en) 1988-03-28

Family

ID=12153997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2501280A Granted JPS56121682A (en) 1980-02-29 1980-02-29 Purification of waste water containing organomercury compound

Country Status (1)

Country Link
JP (1) JPS56121682A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2350356A (en) * 1998-11-18 2000-11-29 Univ Northumbria Newcastle Removal of organometallic material from liquids
US8034246B2 (en) * 2007-05-16 2011-10-11 Exxonmobil Research & Engineering Company Wastewater mercury removal process

Also Published As

Publication number Publication date
JPS56121682A (en) 1981-09-24

Similar Documents

Publication Publication Date Title
US8709231B2 (en) Method for enriching water with oxygen by an electrolytic process, oxygen enriched water or beverage and uses thereof
RU2120413C1 (en) Medicinal liquid for conservative treatment (variants), method of its preparing and dialysis device (variants)
Pitzer et al. Thermodynamics of electrolytes. 11. Properties of 3: 2, 4: 2, and other high-valence types
US20020134691A1 (en) Reducing electrolyzed water and method for producing same
US4045553A (en) Method of treating silver impregnated activated carbon
小林邦男 et al. Effect of pH on the toxicity and accumulation of pentachlorophenol in goldfish.
JPS6313754B2 (en)
Imai et al. Preparation of dithiocarbamatecellulose derivatives and their adsorption properties for trace elements
US20030089618A1 (en) Reducing electrolyzed water and method for producing same
Shapiro et al. The mechanism for the degradation of cystamine by ionizing radiation
JPH0432717B2 (en)
EP0987222A2 (en) Electrolyzed aqueous solution containing water for injection
JPH03167160A (en) Purification of aqueous solution of quaternary ammonium hydroxide
OMORI et al. Experimental studies on toxicity of tin in canned orange juice
US4451375A (en) Iodine adsorption via picolylamine ion exchange resins
CN110804111A (en) Defluorination high polymer material, synthesis method thereof and application thereof in municipal water treatment
Öner et al. The role of zinc ion in the development of gastric ulcers in rats
JP2000290251A (en) Peracetic acid composition
SU1636343A1 (en) Method of water treatment
Waage et al. Thrombotic thrombocytopenic purpura in 2 siblings: Defective platelet function and plasma factor deficiency occurring simultaneously
RU1838246C (en) Method of water treatment from bromides
KR910004019B1 (en) Process for the preparation of artificial medicinal mud
JP3528287B2 (en) Pure water production method
JPS59150594A (en) Treatment of precursor of organic halogen compound in raw service water
US3767687A (en) Process for removing dissolved organic lead compounds from aqueous media