JPS6313677A - Ac tig welding method - Google Patents

Ac tig welding method

Info

Publication number
JPS6313677A
JPS6313677A JP15813686A JP15813686A JPS6313677A JP S6313677 A JPS6313677 A JP S6313677A JP 15813686 A JP15813686 A JP 15813686A JP 15813686 A JP15813686 A JP 15813686A JP S6313677 A JPS6313677 A JP S6313677A
Authority
JP
Japan
Prior art keywords
period
current
electric current
reverse polarity
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15813686A
Other languages
Japanese (ja)
Other versions
JPH0790366B2 (en
Inventor
Kazuhiro Takenaka
一博 竹中
Keizo Honda
啓三 本多
Hideyuki Yamamoto
英幸 山本
Kikuo Terayama
寺山 喜久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Daihen Corp
Original Assignee
Toshiba Corp
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Daihen Corp filed Critical Toshiba Corp
Priority to JP15813686A priority Critical patent/JPH0790366B2/en
Publication of JPS6313677A publication Critical patent/JPS6313677A/en
Publication of JPH0790366B2 publication Critical patent/JPH0790366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To independently adjust the cleaning width and the depth of penetration and to perform the optimum welding in accordance with the required quality by fixing a reversed polarity electric current value and a period of a straight polarity electric current and making variable the period of the reversed polarity electric current and the straight polarity electric current value. CONSTITUTION:In the TIG welding of a aluminum, the reversed polarity electric current value IRP and the period TSP of the straight polarity electric current are fixed and the period TRP of the reversed polarity electric current and the straight polarity electric current value ISP are set variably. Then, the depth of penetration and the width of cleaning are adjusted independently respectively by the straight polarity electric current value ISP and the period TRP of the reversed polarity electric current. A reversed polarity period adjuster 8 is provided to a DC power source circuit to adjust only the reversed polarity period for said adjustment and the straight polarity electric current value ISP is changed by a reference signal ES of a reference signal setter 10. As a result, the width of cleaning and the depth of penetration are adjusted independently and the optimum welding in accordance with the requirement can be performed.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、交流電源を用いるアルミニウムまたはアルミ
ニウム合金の非消耗電極不活性ガスアーク溶接(以後T
iC溶またという)方法の改良に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention is directed to non-consumable electrode inert gas arc welding (hereinafter T
This paper relates to an improvement of the iC method.

[従来の技術] アルミニウムおよびアルミニウム合金のTIG溶接にお
いては、良好な溶着部を得るために表面の酸化被膜を破
壊する(クリーニング)手段として電極側を正電位とす
る逆極性の成分を含む交流アーク溶接電源が用いられる
。この場合必要なりリーニング幅を得るために逆極性時
に溶接部に供給する電力を所定値に調整するとともに必
要な溶着部を得るためには正極性(電極が負電位)時の
供給電力もまた調整することが必要である。 これらの
調整は通常の漏洩変圧器を用いて垂下特性を与えただけ
の交流アーク溶接機では不可能であるので正逆両極性の
期間を調整できるように工夫シタ電源袋v1.(例えば
特開昭54−121255号)を用いる方法が提案され
ている。第5図に従来技術で用いる電源の例を示す。同
図において21.21は商用交流電源から電力を受ける
入力端子、22は入力電圧を所定の出力電圧に変換する
ための変圧器、23aおよび23bはそれぞれ相互に逆
の極性に接続された単方向サイリスクであり、24a、
24bは各単方向サイリスタ23a。
[Prior Art] In TIG welding of aluminum and aluminum alloys, an alternating current arc containing a component of opposite polarity with a positive potential on the electrode side is used as a means of destroying (cleaning) the oxide film on the surface in order to obtain a good weld. A welding power source is used. In this case, in order to obtain the necessary leaning width, the power supplied to the welding part during reverse polarity is adjusted to a specified value, and in order to obtain the necessary welded part, the power supplied during positive polarity (the electrode is at a negative potential) is also adjusted. It is necessary to. These adjustments cannot be made with an AC arc welding machine that only provides drooping characteristics using a normal leakage transformer, so we have devised a way to adjust the period of both forward and reverse polarity. (For example, Japanese Patent Laid-Open No. 54-121255) has been proposed. FIG. 5 shows an example of a power supply used in the prior art. In the figure, 21.21 is an input terminal that receives power from a commercial AC power supply, 22 is a transformer for converting the input voltage into a predetermined output voltage, and 23a and 23b are unidirectionally connected with mutually opposite polarity. Sairisk, 24a,
24b is each unidirectional thyristor 23a.

23bにそれぞれ直列に接続されたりアクドルであり、
各リアクトルには図示のように共通の鉄心にその巻線が
巻かれており、かつその極性はそれぞれに直列接続され
ているサイリスタの導通によって共有する鉄心に同方向
の磁束が発生するように定められている。25はタング
ステンからなる非消耗電極であり、26はアルミニウム
やその合金からなる被溶接物である。電極25.被溶接
物26および溶接アークは溶接負荷Rを形成している。
23b are connected in series or are actuators, respectively.
As shown in the figure, each reactor has a winding wound around a common core, and its polarity is determined so that magnetic flux in the same direction is generated in the common core by conduction of the thyristors connected in series with each reactor. It is being 25 is a non-consumable electrode made of tungsten, and 26 is a welded object made of aluminum or its alloy. Electrode 25. The workpiece 26 and the welding arc form a welding load R.

27は溶接電流を定めるための基準信号源であり、基準
信号e を出力する。28は溶接電流を検出して溶接電
流に対応する信号e、を出力する電流検出器、29は基
準信号源27と電流検出器28との各出力を人力とし差
信号(Δe=e。
27 is a reference signal source for determining the welding current, and outputs a reference signal e. 28 is a current detector that detects the welding current and outputs a signal e corresponding to the welding current, and 29 is a difference signal (Δe=e) obtained by manually inputting each output of the reference signal source 27 and the current detector 28.

er)を出力する比較器である。30a、30bはサイ
リスタ23a、23bを点弧させるための点弧位相制御
回路であり、31は比較器29の出力Δeを点弧位相制
御回路30aと30bとに分割するためのアンバランス
比調整器である。このアンバランス比調整器31は図示
のように点弧位相制御回路30aおにび30 bに供給
する比較器9の出力Δeをそれぞれ相反する方向に増減
分割するものであり、Δe 十Δeb−Δeである。
This is a comparator that outputs er). 30a and 30b are firing phase control circuits for firing the thyristors 23a and 23b, and 31 is an unbalance ratio adjuster for dividing the output Δe of the comparator 29 into the firing phase control circuits 30a and 30b. It is. As shown in the figure, the unbalance ratio adjuster 31 increases or decreases the output Δe of the comparator 9 supplied to the ignition phase control circuit 30a and 30b in opposite directions, and divides the output Δe into Δe plus Δeb−Δe. It is.

第6図は第5図の装置の動作を説明するための線図であ
り、変圧器22の二次無負荷出力電圧Eと溶接電流1o
と溶接負荷Rとからなる溶接電圧Io@Rおよびリアク
I・ル24a、24bを流れる電流I 、の各変化の様
rを時間tを横軸にして示しである。いま第6図に示す
時刻TIにおいて点弧位相制御回路30aが点弧(1(
号を出力し、サイリスタ23aが導通ずる。サイリスタ
23aが導通すると溶接型1f(i l +]は2次巻
線の端子22a1サイリスタ23a1リアクトル24a
1溶接負荷Rおよび2次巻線の端子22bの経路を流れ
る。
FIG. 6 is a diagram for explaining the operation of the device shown in FIG. 5, showing the secondary no-load output voltage E of the transformer 22 and the welding current 1o.
The changes in the welding voltage Io@R consisting of the welding load R and the current I flowing through the reactors 24a and 24b are shown with time t as the horizontal axis. Now, at time TI shown in FIG. 6, the firing phase control circuit 30a starts firing (1(
The signal is output, and the thyristor 23a becomes conductive. When the thyristor 23a becomes conductive, the welding type 1f (i l +) connects the terminal 22a1 of the secondary winding, the thyristor 23a1, and the reactor 24a.
1 flows through the path of the welding load R and the terminal 22b of the secondary winding.

このとき時刻t < 72の期間においてはEo>1.
;Rとなる。リアクトル24Hのインダクタンスしを大
きな値に選定しておくと、溶接電流の増加は抑制されて
リアクトル24aには差分Eo−1o’R=e−L(旧
/ dt)の起電力が発生して、第6図の斜線で示され
た部分に相当するエネルギーが蓄積される。
At this time, during the period of time t<72, Eo>1.
; becomes R. If the inductance of the reactor 24H is selected to a large value, the increase in welding current is suppressed and an electromotive force of the difference Eo-1o'R=e-L (old/dt) is generated in the reactor 24a. Energy corresponding to the shaded area in FIG. 6 is accumulated.

つぎに時刻t > 72になると、Eo<Io・Rにな
るが溶接電流はわずかずつしか減少できないので、リア
クトル24aにはtくT2のときとは逆に−L(旧/ 
dt)の起電力を発生し、先に蓄積されたエネルギーを
放出して溶接負荷Rに時刻tくT のときと同一方向に
電流Ioを流し続ける。
Next, at time t > 72, Eo < Io・R, but the welding current can only be reduced little by little, so the reactor 24a has t and -L (old/
dt), the previously accumulated energy is released, and the current Io continues to flow through the welding load R in the same direction as at time t.

この電流IOはりアクドル24aのインダクタンスLが
大きいので変化は少ない。さらに時刻t〉T3になると
、EOの極性は逆になるがリアクトル24aのインダク
タンスしに蓄えられたエネルギーを放出して、時刻tく
T3のときと同一方向にほぼ一定の電流1oを溶接負荷
に供給しつづける。
This current IO does not change much because the inductance L of the axle 24a is large. Furthermore, at time t>T3, the polarity of EO is reversed, but the energy stored in the inductance of the reactor 24a is released, and a nearly constant current 1o is applied to the welding load in the same direction as at time t>T3. Continue to supply.

つぎに時刻t−T4において点弧位相制御回路30bか
らサイリスタ23bに点弧信号を供給してサイリスク2
3bを導通させると変圧器22の2次巻線の端子22b
1溶接負荷R、リアクトル24b1サイリスク23bお
よび2次巻線の端子22aに電流が流れる。このときり
アクドル24aに蓄えられていたエネルギーはりアクド
ル24aと24bとが前述のように共Hする鉄心に同一
方向の磁束を発生ずる極性に巻線の方向が定められてい
るので直ちにリアクトル24aに移行し、時刻t>T4
のときにリアクトル24bに流れる電流I 、ずなわち
溶接負荷Rを流れる電流1゜の絶対値は時刻t < i
’ 4のときと等しい値となる。
Next, at time t-T4, the firing signal is supplied from the firing phase control circuit 30b to the thyristor 23b, and the firing signal is supplied to the thyristor 23b.
When terminal 3b is made conductive, terminal 22b of the secondary winding of transformer 22
Current flows through the welding load R, the reactor 24b, the cyrisk 23b, and the terminal 22a of the secondary winding. At this time, the energy stored in the axle 24a is immediately transferred to the reactor 24a because the winding direction of the axle 24a and axle 24b is determined to have a polarity that generates magnetic flux in the same direction in the iron cores that are both H as described above. transition, time t>T4
The absolute value of the current I flowing through the reactor 24b, that is, the current 1° flowing through the welding load R at the time t < i
' The value is the same as when 4.

このとき溶接負荷Rおよびリアクトル24bの両端電圧
はサイリスタ23b側がマイナスとなりリアクトル24
Hのサイリスタ23a側がプラスとなり、またサイリス
ク23aのアノード側の2次巻線の端子22aがすでに
マイナスになっているので、サイリスタ23aは遮断と
なる。時刻t〉T4以後は」二記と同様の動作がくりか
えされる。
At this time, the welding load R and the voltage across the reactor 24b are negative on the thyristor 23b side, and the reactor 24
The thyristor 23a side of H is positive, and the terminal 22a of the secondary winding on the anode side of the thyristor 23a is already negative, so the thyristor 23a is cut off. After time t>T4, the same operation as described in section 2 is repeated.

第5図の装置は上記のように動作するので、アンバラン
ス比調整器31を調整してサイリスタ23aと23bの
各点弧時刻T1およびT4を変化させるとサイリスタ2
3aか点弧している逆極性期間TRPとサイリスタ23
bが点弧している正極性期間TSPを変化させることが
できる。また溶接電流のピーク値は基準信号設定器27
の設定値erを変化させることによって行うことができ
る。
Since the device shown in FIG. 5 operates as described above, by adjusting the unbalance ratio regulator 31 and changing the firing times T1 and T4 of the thyristors 23a and 23b, the thyristor 2
3a or ignition reverse polarity period TRP and thyristor 23
It is possible to change the positive polarity period TSP during which b is fired. Also, the peak value of the welding current is determined by the reference signal setting device 27.
This can be done by changing the setting value er.

[発明が解決しようとする問題点] 本発明者等の実験によるとアルミニウム等の交流TIG
溶接においては溶は込み深さは正極性電流1   di
極性期間TSPおよび正極性期間T8PとSF3 逆極性期間TRPとの1周期Tとに関して(ただしI 
は瞬時値) で定まり、またクリp −ニング幅は逆極性電流をIRPとすると(ただしIR
Pは瞬時値、またr1ζ2)で定まることがわかってい
る。
[Problems to be solved by the invention] According to experiments conducted by the present inventors, AC TIG of aluminum, etc.
In welding, the penetration depth is 1 di of positive polarity current.
Regarding one cycle T of the polarity period TSP and the positive polarity period T8P and SF3 and the reverse polarity period TRP (however, I
is determined by the instantaneous value), and the clipping width is determined by the reverse polarity current IRP (however, IR
It is known that P is determined by an instantaneous value and r1ζ2).

しかるに」1記従来装置を用いる溶接方法においては、
溶は込み深さを大きくしようとして、正極外電IMI 
spを大きくするように基準信号e、を大きくすると、
これに1゛トっで逆極性電流も大きくなってしまう。こ
のために−に記(2)式のように逆極性電流の略2乗に
よって定まるクリーニング幅が大きく変化してしまうこ
とになる。逆にクリーニング幅を小さくするために逆極
性期間TRPを小さくすると、これに伴ってl3l1”
T”RPであるから正極性期間、11;極性期間の電流
の占める割合が増加し溶は込み深さが増加してしまうこ
とになる。このようにとυ込み深さとクリーニング幅と
は相互に影響し合うので両者を独立して調整することは
できず、常に最適のとけ込み深さとクリーニング幅とが
得られるとは限らなかった。
However, in the welding method using the conventional device described in 1.
In an attempt to increase the penetration depth, the positive electrode external voltage IMI
When the reference signal e is increased to increase sp,
Adding to this, the reverse polarity current also increases. For this reason, the cleaning width, which is determined by approximately the square of the reverse polarity current, changes greatly as shown in equation (2) below. Conversely, if the reverse polarity period TRP is made smaller in order to reduce the cleaning width, l3l1''
Since T"RP, the proportion of the current in the positive polarity period increases and the penetration depth increases.In this way, the penetration depth and the cleaning width are mutually related. Because they influence each other, it is not possible to adjust both independently, and it is not always possible to obtain the optimum penetration depth and cleaning width.

[問題点を解決するための手段] 本発明においては、上記従来技術の問題点を解決するた
めに、溶は込み深さが前述の(1)式で、またクリーニ
ング幅が前述の(2)式で定まることに着1」L、逆極
性電流■。、と正極性期間TSPとを一定とし、正極性
電流ISPと逆極性期間TRPとを可変とすることによ
って、溶は込み深さを正極性電流ISPで、またクリー
ニング幅を逆極性期間TRPでそれぞれ単独に調整する
ことができる交流TIG溶接方法を提案したものである
[Means for Solving the Problems] In the present invention, in order to solve the problems of the prior art described above, the penetration depth is expressed by the above-mentioned formula (1), and the cleaning width is expressed by the above-mentioned formula (2). It is determined by the formula 1"L, reverse polarity current■. , and the positive polarity period TSP are kept constant, and the positive polarity current ISP and the reverse polarity period TRP are made variable, so that the penetration depth can be changed by the positive current ISP, and the cleaning width can be changed by the reverse polarity period TRP, respectively. This proposed an AC TIG welding method that can be adjusted independently.

[作用] 前述の(2)式にあるように、クリーニング幅は逆極性
電流IRPの略2乗によって定まるから、クリーニング
幅を調整する手段として逆極性電流11?、を調整する
と逆極性電流のわずかの変化に対してもクリーニング幅
が大きく変化することになり不利である。そこで本発明
においては逆極性電流は固定とし逆極性期間TRPを可
変としてクリーニング幅の調整を行うことにする。そし
てクリーニング幅の調整効果を明白にしかつ電極の消耗
量を増加させないために”l1l)を零近くの最小値が
ら最小値の数倍程度の変化幅でまかなうために逆極性電
流値IRPを正極性γ]i流lll′tISPよりも十
分に大きく設定しておく。特に逆極性期間TRPが零近
くでもクリーニング作用が消滅しないようにするには逆
極性電流lR11を溶接用ili源の出力電流の最大値
に設定しておくとよい。一方、溶は込み深さは前述の(
1)式で定まるからこれを調整するためには正極性電流
1 s p h’ iEJ””性明間TsPのいずれか
を調整すればよい。しかし正極性期間T81)を調整す
るとこの値によって1周期の期間T(T=”r1?P十
T sp)も変化することになり、1周期T中に占める
正極性期間T81)の割合によって調整の効果に大きな
差が生じることになる。しかも−1−述のように逆極性
期間TRPはクリーニング幅の調整のために変化させる
のでさらに調整の効果が複雑になる。
[Function] As shown in equation (2) above, the cleaning width is determined by approximately the square of the reverse polarity current IRP, so as a means for adjusting the cleaning width, the reverse polarity current 11? , is disadvantageous because the cleaning width changes greatly even with a slight change in the reverse polarity current. Therefore, in the present invention, the cleaning width is adjusted by fixing the reverse polarity current and making the reverse polarity period TRP variable. In order to make the adjustment effect of the cleaning width clear and not to increase the amount of electrode wear, the reverse polarity current value IRP is changed to positive polarity in order to cover "l1l) with a change range of several times the minimum value from a minimum value close to zero." Set the reverse polarity current lR11 to be sufficiently larger than the welding current lll'tISP.In particular, in order to prevent the cleaning effect from disappearing even when the reverse polarity period TRP is close to zero, the reverse polarity current lR11 should be set to the maximum output current of the welding source. On the other hand, the penetration depth should be set to the value mentioned above (
Since it is determined by the equation 1), in order to adjust it, it is sufficient to adjust either the positive polarity current 1 s p h'iEJ"" and the positive polarity TsP. However, when the positive polarity period T81) is adjusted, the period T of one cycle (T=”r1?P×T sp) will also change depending on this value, and it is adjusted according to the proportion of the positive polarity period T81) that occupies one cycle T. Moreover, since the reverse polarity period TRP is changed to adjust the cleaning width as described in -1-, the adjustment effect becomes even more complicated.

そこで溶は込み深さの調整のためには正極性期間TsP
は一定とし、正極性電流’SPを調整することにする。
Therefore, in order to adjust the penetration depth, the positive polarity period TsP
is assumed to be constant, and the positive polarity current 'SP is adjusted.

上記のようにすることによってクリーニング幅と溶は込
み深さとはそれぞれ単独に調整することが可能となる。
By doing as described above, the cleaning width and the penetration depth can be adjusted independently.

[実施例] 上記の本発明を実施するには、正逆側出力電流の期間お
よび電流を調整することが出来る交流アーク溶接用電源
が必要になる。第1図に本発明の溶接方法を実施するた
めの装置の例を示す。
[Example] In order to carry out the above-mentioned present invention, an AC arc welding power source that can adjust the period and current of the forward and reverse output currents is required. FIG. 1 shows an example of an apparatus for carrying out the welding method of the present invention.

同図において、1は基準信号e に対応して出力電流が
定まる定電流特性の直流電源であり、公知の定電流特性
の直流アーク溶接電源が使用できる。2a、2b、3a
、3bはそれぞれスイッチング用のトランジスタであり
、図示のようにブリッジ接続されている。4はタングス
テンからなる電極、5はアルミニウムなどの被溶接物で
ありトランジスタ2a、2b、3a、3bからなるブリ
ッジ回路の交流端子に接続されている。6はトランジス
タ2a、2b、3a、3bにそれぞれ開閉制御信号を供
給するためのトランジスタ駆動回路であり、人力信号の
極性または高低、有無に応じてトランジスタ2aと2b
またはトランジスタ3aと3bとをそれぞれ同時に導通
、遮断制御するためのベース駆動信号を出力する。7は
正極性時の期間と逆極性時の期間とをきりかえるための
信号Sを発生するための極性切換信号発生器であり、本
発明においては逆極性期間のみを調整するので逆極性期
間調整器8のみを外部に操作可能に設は正極性期間調整
器はその内部に設けて固定または半固定とする。この極
性切換信号発生器7としてはモノマルチバイブレータを
組合せてくりかえしタイマ回路を構成することによって
簡litに作成することができる。9お」;び10は、
逆極性電流値I および正極性電流値■8Pを定めるた
めの基準P 信号E およびE を供給するための基準信号膜「  
          8 定器であり、アナログスイッチ11にて極性切換信号発
生器7の出力信号Sに応じてどちらか一方が選択されて
基準信号e として直流電源1に供給される。このうち
逆極性電流を定めるための基準信号ERは本発明におい
ては所定の値に固定するので基準信号設定器9は固定(
または半固定)の設定器とする。
In the figure, reference numeral 1 denotes a DC power source with constant current characteristics whose output current is determined in accordance with the reference signal e, and a known DC arc welding power source with constant current characteristics can be used. 2a, 2b, 3a
, 3b are switching transistors, which are bridge-connected as shown. 4 is an electrode made of tungsten, and 5 is an object to be welded such as aluminum, which is connected to an AC terminal of a bridge circuit made up of transistors 2a, 2b, 3a, and 3b. 6 is a transistor drive circuit for supplying open/close control signals to the transistors 2a, 2b, 3a, and 3b, respectively;
Alternatively, it outputs a base drive signal for simultaneously controlling conduction and cutoff of transistors 3a and 3b, respectively. 7 is a polarity switching signal generator for generating a signal S for switching between a period of positive polarity and a period of reverse polarity; in the present invention, since only the period of reverse polarity is adjusted, the period of reverse polarity is adjusted. If only the regulator 8 is configured to be externally operable, the positive polarity period adjuster is provided internally and is fixed or semi-fixed. This polarity switching signal generator 7 can be simply produced by combining mono-multivibrators to form a repeat timer circuit. 9 and 10 are
Reference P for determining reverse polarity current value I and positive polarity current value ■8P Reference signal membrane for supplying signals E and E
8, one of which is selected by the analog switch 11 according to the output signal S of the polarity switching signal generator 7, and is supplied to the DC power supply 1 as the reference signal e. Of these, the reference signal ER for determining the reverse polarity current is fixed at a predetermined value in the present invention, so the reference signal setter 9 is fixed (
or semi-fixed) setting device.

また第2図は極性切替信号S、逆極性電流設定用基準信
号E 、正極性電流設定用基準信号E 、Rs 出力信号設定用基準信号e および溶接電流Ia「 の変化の例を時間の経過とともに示した線図である。
Figure 2 also shows examples of changes in the polarity switching signal S, the reference signal E for setting the reverse polarity current, the reference signal E for setting the positive polarity current, the reference signal e for setting the Rs output signal, and the welding current Ia over time. FIG.

第1図の装置の動作を第2図の線図とともに説明する。The operation of the apparatus shown in FIG. 1 will be explained with reference to the diagram in FIG. 2.

第1図の装置において図示しない起動スイッチにより溶
接を開始すると極性切換信号発生器7は第2図(a)に
示すように正極性期間信号として図の+側、逆極性期間
信号として図の一側の極性の信号Sをトランジスタ駆動
回路6およびアナログスイッチ11に供給する。トラン
ジスタ駆動回路6は極性切換信号Sの極性に応じて一側
信号が入力されたときにはトランジスタ2aと2bとを
同時に導通させ、+側信号が入力されたときには!・ラ
ンジスタ3aと3bとを導通させるように各トランジス
タを交互に開閉制御して、電極4と被溶接物5とに正、
逆側極性期間の異なる交流電力を伝達する。極性切換信
号発生器7の信号8はまたアナログスイッチ11にも供
給されるので直流電源1にはその出力電流を決定する基
準信号e として正極性期間用基準信号E と逆極性「
                         
          S期間用基準信号E1、とがトラ
ンジスタ3a、3bまたはトランジスタ2a、2bに対
する各導通信号に同期して供給される。この結果電極4
と被溶接物5とに供給される電流は各極性期間の長さと
ともにその値がそれぞれ設定値に調整された交流電流と
なる。
When welding is started using the start switch (not shown) in the apparatus shown in FIG. 1, the polarity switching signal generator 7 outputs a positive polarity period signal on the + side of the figure and a reverse polarity period signal on the + side of the figure as shown in FIG. 2(a). A signal S of the opposite polarity is supplied to the transistor drive circuit 6 and the analog switch 11. According to the polarity of the polarity switching signal S, the transistor drive circuit 6 simultaneously conducts the transistors 2a and 2b when the one side signal is input, and when the + side signal is input! - Each transistor is controlled to open and close alternately so that the transistors 3a and 3b are electrically connected, so that the electrode 4 and the workpiece 5 are connected to each other.
Transmits alternating current power with different periods of opposite polarity. Since the signal 8 of the polarity switching signal generator 7 is also supplied to the analog switch 11, the DC power supply 1 receives a reference signal e for the positive polarity period and a reference signal E for the reverse polarity period as a reference signal e for determining its output current.

A reference signal E1 for the S period is supplied in synchronization with each conductive signal to the transistors 3a, 3b or the transistors 2a, 2b. As a result, electrode 4
The current supplied to the welding object 5 and the workpiece 5 become alternating currents whose values are adjusted to respective set values along with the length of each polarity period.

第3図および第4図に本発明のTIGアーク溶接方法に
よって溶接を行ったときのクリーニング幅と溶は込み深
さとの関係をそれぞれ(イ)および(ロ)にて示す。第
3図は正極性電流I8Pを一定(250A)とし逆極性
期間Tl1Pを0.5 msから3.0 msまで変化
さU′たときのクリーニング幅Cv(イ)と溶は込み深
さDp  (ロ)の変化の様子を示し、第4図は逆極性
期間TR1)を一定(2ms)とし正極性電流I8Pを
変化させたときのクリーニング幅Cvと溶は込み深さD
pとの関係を示す。なお両図とも電極は直径3.2mo
+のトリウム入リタンゲステン電極を使用し、シールド
ガスとしてアルゴンガスを流しアーク長2.4+w、逆
極性電流IRP−250Aを使用し、板厚10mmのア
ルミニウム合金A 508344の平板上に下向で溶接
実験した結果である。
3 and 4 show the relationship between the cleaning width and the penetration depth when welding is performed by the TIG arc welding method of the present invention (A) and (B), respectively. Figure 3 shows the cleaning width Cv (A) and the penetration depth Dp ( Fig. 4 shows the cleaning width Cv and the penetration depth D when the reverse polarity period TR1) is kept constant (2 ms) and the positive polarity current I8P is changed.
shows the relationship with p. In both figures, the electrode has a diameter of 3.2mo.
Welding experiment using a + thorium-containing lithium gestin electrode, flowing argon gas as a shielding gas, arc length 2.4 + w, and reverse polarity current IRP-250A, on a flat plate of aluminum alloy A 508344 with a plate thickness of 10 mm, facing downward. This is the result.

第3図の(ロ)に示すように溶は込み深さは逆極性期間
TRPには無関係にほぼ一定であり、またクリーニング
幅は第4図の(イ)に示すように正極性電流値■sPに
は無関係であることがわかる。
As shown in Figure 3 (B), the penetration depth is almost constant regardless of the reverse polarity period TRP, and the cleaning width is determined by the positive polarity current value as shown in Figure 4 (A). It can be seen that this is unrelated to sP.

したがって本発明のように逆極性電流IRPと正極性期
間TSPとをそれぞれ一定とすれば、クリーニング幅C
wは逆極性期間TRPでかつ溶は込み深さDpは正極性
電流IsPの値でそれぞれ独立して調整できることがわ
かる。
Therefore, if the reverse polarity current IRP and the positive polarity period TSP are each constant as in the present invention, the cleaning width C
It can be seen that w is the reverse polarity period TRP and the penetration depth Dp can be adjusted independently by the value of the positive polarity current IsP.

なお本発明者等は、アルミニウムおよびその合金におい
て他の材質の被溶接物でも、また他の溶接条件に設定し
ても同様の結果が得られることを確認している。
Note that the present inventors have confirmed that similar results can be obtained with aluminum and aluminum alloys made of other materials, and even when other welding conditions are set.

また本発明においては逆極性電流を一定とし、逆極性期
間を可変としてクリーニング幅を調整するので、その調
整効果を明確にするために逆極性電流は使用する直Mt
電諒の数人出力値とするのがよく、また正極性113 
tAi値によって溶は込み深さを調整するのでその値は
逆極性電流以下としかつ逆極性期間を正極性肋間以下で
十分に小さな値とするのがよい。
In addition, in the present invention, since the reverse polarity current is kept constant and the cleaning width is adjusted by making the reverse polarity period variable, in order to clarify the adjustment effect, the reverse polarity current is
It is better to use the output value of several people in the power supply, and the positive polarity 113
Since the penetration depth is adjusted by the tAi value, it is preferable that the value be set to be less than the reverse polarity current and the reverse polarity period to be a sufficiently small value that is equal to or less than the positive polarity intercostal space.

さらに本発明は逆極性期間によりクリーニング幅を調整
し、正極性電流によって溶は込み深さを調整するので、
上述の例の他に正極性期間と逆極性期間との和である1
周期Tを一定とし、その中で逆極性期間の占める割合を
調整するようにしてTRP<<TSPとしておけば略同
様の結果が得られることは前述の(1)、(2)式から
明らかである。
Furthermore, in the present invention, the cleaning width is adjusted by the reverse polarity period, and the penetration depth is adjusted by the positive polarity current.
In addition to the above example, 1 which is the sum of the positive polarity period and the reverse polarity period
It is clear from equations (1) and (2) above that almost the same results can be obtained if the period T is constant and the ratio of the reverse polarity period is adjusted so that TRP<<TSP. be.

このためには逆極外車流値’R11を電源の最大値とし
ておくと都合がよい。
For this purpose, it is convenient to set the reverse extreme vehicle flow value 'R11 as the maximum value of the power supply.

なお電流値は一定のまま逆極性期間TRPを変化させた
ときの電極先端の消耗mを第1表に示す。
Table 1 shows the consumption m of the electrode tip when the reverse polarity period TRP is varied while the current value is constant.

この表から判るように逆極性期間TRPが長くなるほど
電極消耗mが増加する。この理由は、逆極性期間TRP
を長くするとこれに対応して正極性期間第1表 TSPの1周期に占める割合が減少する。一方アーク溶
接においては逆極性期間においては電極に流入する電子
によって電極が加熱され、正極性期間においては電極か
ら大量の電子が放出されるために電極が冷却される現象
がある。第1表の現象は正極性期間の比率の減少によっ
て冷却効果が減少し、結果として全体の電流値は変化し
ていないにもかかわらず電極の温度上昇が増加したため
と考えられる。それ故、電極の消耗を少なくするには逆
極性期間TRPを可能な限り短くすることが必要となる
。しかしTRPを短くするとクリーニング効=  16
 − 果が減少するので逆ll111性電流値を最大値近くと
してクリーニング幅の調整代を確保すればよい。
As can be seen from this table, the longer the reverse polarity period TRP becomes, the more the electrode consumption m increases. The reason for this is that the reverse polarity period TRP
As TSP becomes longer, the proportion of the positive polarity period in one cycle of TSP in Table 1 decreases accordingly. On the other hand, in arc welding, the electrode is heated by electrons flowing into the electrode during the reverse polarity period, and a large amount of electrons are emitted from the electrode during the positive polarity period, causing the electrode to be cooled. The phenomenon shown in Table 1 is thought to be because the cooling effect decreased due to a decrease in the ratio of positive polarity periods, and as a result, the temperature rise of the electrode increased even though the overall current value did not change. Therefore, in order to reduce electrode wear, it is necessary to make the reverse polarity period TRP as short as possible. However, if TRP is shortened, the cleaning effect = 16
- Since the effect decreases, it is sufficient to set the reverse ll111 current value close to the maximum value to ensure an adjustment margin for the cleaning width.

[発明の効果] 本発明は上記の通りであるのでクリーニング幅と溶は込
み深さとが独立して調整できるようになり、それぞれの
被溶接物および要求される溶接品質に最適の条件で溶接
することができる。
[Effects of the Invention] Since the present invention is as described above, the cleaning width and the penetration depth can be adjusted independently, and welding can be performed under the optimal conditions for each workpiece and the required welding quality. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶接方法を実施するだめの装置の例を
示す接続図、第2図は第1図の装置の動作を説明するだ
めの線図、第3図および第4図は本発明の溶接方法によ
って7ft1mしたときの結果を示す線図、第5図は従
来の溶接方法を実施するための装置の例を示す接続図、
第6図は第5図の装置の動作を説明するだめの線図であ
る。 1・・・・・・直流電源+   2 a +  2 b
 +  3 a +  3 b・・・・・・トランジス
タ、  4・・・・・・電極、  5・・・・・・被溶
接物、  6・・・・・・トランジスタ駆動回路。 7・・・・・・極性切換信号発生器、  8・・・・・
・逆極性期間調整器、9.10・・・・・基準信号設定
器。 11・・・・・・アナログスイッチ’   TRP・・
・・・・逆極性期間、  T ・・・・・・正極性期間
、  T・・・・・・1周期。 P ■ ・・・・・・正極性電流” RP・・・・・・逆極
性電流。 P Cν・・・・・・クリーニング幅、  Dp・・・・・
・溶は込み深さ 代理人 弁理士   中 井  宏 第1図
Fig. 1 is a connection diagram showing an example of a device for carrying out the welding method of the present invention, Fig. 2 is a diagram illustrating the operation of the device in Fig. 1, and Figs. A diagram showing the results when the welding method of the invention is applied to 7 ft 1 m, FIG. 5 is a connection diagram showing an example of a device for carrying out the conventional welding method,
FIG. 6 is a diagram illustrating the operation of the device of FIG. 5. 1...DC power supply + 2 a + 2 b
+ 3 a + 3 b...transistor, 4... electrode, 5... object to be welded, 6... transistor drive circuit. 7...Polarity switching signal generator, 8...
- Reverse polarity period adjuster, 9.10...Reference signal setter. 11...Analog switch' TRP...
...Reverse polarity period, T...Positive polarity period, T...1 cycle. P ■...Positive polarity current RP...Reverse polarity current. P Cν...Cleaning width, Dp...
・Welding penetration depth agent Patent attorney Hiroshi Nakai Figure 1

Claims (1)

【特許請求の範囲】 1、アルミニウムまたはアルミニウム合金からなる被溶
接物に対して、出力調整が可能な交流アーク溶接用電源
を用い、逆極性電流の値I_R_Pおよび正極性電流の
期間T_S_Pを一定とし、逆極性電流の期間T_R_
Pおよび正極性電流の値I_S_Pを可変としてTIG
溶接する交流TIG溶接方法。 2、前記逆極性電流の値I_R_Pを使用する交流アー
ク溶接電源の最大出力電流値に設定する特許請求の範囲
第1項に記載の交流TIG溶接方法。 3、アルミニウムまたはアルミニウム合金からなる被溶
接物に対して、出力調整が可能な交流アーク溶接用電源
を用い、正逆両極性の切替周期Tおよび逆極性電流の値
I_R_Pを一定とし、正極性電流の値I_S_Pおよ
び逆極性電流の期間T_R_Pを可変としてTIG溶接
する交流TIG溶接方法。
[Claims] 1. For a workpiece made of aluminum or aluminum alloy, an AC arc welding power source with adjustable output is used, and the value I_R_P of the reverse polarity current and the period T_S_P of the positive polarity current are constant. , period of reverse polarity current T_R_
TIG with variable P and positive current value I_S_P
AC TIG welding method for welding. 2. The AC TIG welding method according to claim 1, wherein the reverse polarity current value I_R_P is set to the maximum output current value of the AC arc welding power source used. 3. For workpieces made of aluminum or aluminum alloy, use an AC arc welding power source with adjustable output, keep the forward and reverse polarity switching period T and the value of the reverse polarity current I_R_P constant, and set the positive polarity current An AC TIG welding method in which TIG welding is performed by varying the value I_S_P and the period T_R_P of the reverse polarity current.
JP15813686A 1986-07-05 1986-07-05 AC TIG welding method Expired - Lifetime JPH0790366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15813686A JPH0790366B2 (en) 1986-07-05 1986-07-05 AC TIG welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15813686A JPH0790366B2 (en) 1986-07-05 1986-07-05 AC TIG welding method

Publications (2)

Publication Number Publication Date
JPS6313677A true JPS6313677A (en) 1988-01-20
JPH0790366B2 JPH0790366B2 (en) 1995-10-04

Family

ID=15665058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15813686A Expired - Lifetime JPH0790366B2 (en) 1986-07-05 1986-07-05 AC TIG welding method

Country Status (1)

Country Link
JP (1) JPH0790366B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297966U (en) * 1989-01-20 1990-08-03
DE4023419A1 (en) * 1990-07-23 1992-02-06 Hitachi Seiko Kk Tig welding control - adjusts frequency of welding current to electrode to set penetration depth
EP0570901A2 (en) * 1992-05-18 1993-11-24 The Lincoln Electric Company Control system for alternating current tig welder
WO2005044501A1 (en) * 2003-11-07 2005-05-19 Otc Daihen Europe Gmbh Method for controlling the welding parameter during aluminium welding by means of a welding path with a change in direction, in addition to a welding path produced according to said method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297966U (en) * 1989-01-20 1990-08-03
DE4023419A1 (en) * 1990-07-23 1992-02-06 Hitachi Seiko Kk Tig welding control - adjusts frequency of welding current to electrode to set penetration depth
DE4023419C5 (en) * 1990-07-23 2004-01-15 Hitachi Seiko, Ltd., Ebina Method and device for controlling an AC TIG welding process
EP0570901A2 (en) * 1992-05-18 1993-11-24 The Lincoln Electric Company Control system for alternating current tig welder
EP0570901A3 (en) * 1992-05-18 1994-04-13 Lincoln Electric Co
WO2005044501A1 (en) * 2003-11-07 2005-05-19 Otc Daihen Europe Gmbh Method for controlling the welding parameter during aluminium welding by means of a welding path with a change in direction, in addition to a welding path produced according to said method

Also Published As

Publication number Publication date
JPH0790366B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
GB2101427A (en) Short circuit transfer arc welding machine
JPS6313677A (en) Ac tig welding method
JPS649114B2 (en)
RU2028203C1 (en) Welding current or power control device for welding set
Chae et al. A novel mixed current and voltage control scheme for inverter arc welding machines
JP3231649B2 (en) Consumable electrode type DC arc welding machine
JPS6245025B2 (en)
JPS603906B2 (en) Flash butt welding method and equipment
JPS62259674A (en) Pulse arc welding method
JP2711965B2 (en) Plasma arc welding machine
JP2686183B2 (en) AC TIG welding machine
JP2539871Y2 (en) Power supply for arc machining
JPS6145977Y2 (en)
JP2512911B2 (en) Arc welding machine
JPH02187270A (en) Consumable electrode arc welding output controller
JP2584140B2 (en) AC TIG welding machine
JPS6233024B2 (en)
JPH0241394B2 (en)
JPS6331827Y2 (en)
JPS6254584A (en) Control method for resistance spot welder
Grist et al. Power sources for welding
JP2705208B2 (en) Pulse arc welding machine
JPS6232028B2 (en)
JPH0237974A (en) Consumable electrode type gas shielded arc welding method
JPS58176072A (en) Arc welding machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term