JPS63136663A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS63136663A
JPS63136663A JP61281730A JP28173086A JPS63136663A JP S63136663 A JPS63136663 A JP S63136663A JP 61281730 A JP61281730 A JP 61281730A JP 28173086 A JP28173086 A JP 28173086A JP S63136663 A JPS63136663 A JP S63136663A
Authority
JP
Japan
Prior art keywords
layer
source
memory
mos element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61281730A
Other languages
Japanese (ja)
Inventor
Yoshikazu Saito
良和 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61281730A priority Critical patent/JPS63136663A/en
Publication of JPS63136663A publication Critical patent/JPS63136663A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form a structure where destruction of information and a latch up can be avoided in a device having nMOS memory by burying a p<+> layer right below a source n<+> layer of an n-channel MOS element. CONSTITUTION:In a bipolar-CMOS memory, a p<+> layer 12 is provided below a source n<+> layer 8 of an n-MOS element. The p<+> layer 12 is formed by implanting B (ions) into the source n<+> layer of the n-MOS element simultaneously with formation of the p<+> layer 11 by performing boron-ion implantation below a drain n<+> layer 10 of memory cells. In such a structure, electrons injected from the source n<+> layer of the n-MOS element into a p<-> substrate 1 depend on a Hall concentration of a pn junction. As a result, arrangements of the p<+> layer 12 make it possible to reduce concentration of injected electrons by increasing the Hall concentration. In other words, when an electric potential of the substrate rises or a potential of n-MOS element source drops, electrons reaching the memory cells injected in the substrate show a decrease and then, destruction of information in the memory cells can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイポーラCMOSメモリ半導体集積回路装置
等における情報破壊防止技術ならびにラッチアップ対策
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to information destruction prevention technology and latch-up countermeasures in bipolar CMOS memory semiconductor integrated circuit devices and the like.

〔従来技術〕[Prior art]

バイポーラCMOSメモリについては、たとえばl5S
CC86/THUR8DAY、 FEBRUARY20
.1986、P212に高密度バイポーラCMOSデバ
イスの断面図が示されている。このデバイスは1対のウ
ェル内のp−MOS及びn−MOSとバイポーラnpn
)ランジスタがアイソレーシッン酸化膜によって分離さ
れて一つの基板表面に形成されたものである。
For bipolar CMOS memory, for example l5S
CC86/THUR8DAY, FEBRUARY20
.. A cross-sectional view of a high-density bipolar CMOS device is shown in 1986, P212. This device consists of p-MOS and n-MOS in a pair of wells and bipolar npn
) The transistors are separated by an isolating oxide film and formed on the surface of one substrate.

本発明者はバイポーラCMOSメモリについて独自に開
発している。以下は、公知された技術ではないが本発明
者により検討された技術であり、その概要は次のとおり
である。
The inventor has independently developed a bipolar CMOS memory. Although the following is not a publicly known technique, it is a technique considered by the present inventor, and its outline is as follows.

第5図はバイポ−ラCMOSメモリの一部、とくに0M
OSとメモリセルを含む部分を示す断面図である。この
うち、バイポーラ(図示されない)や0MOSは半導体
チップにおける周辺ロジック回路を構成し、この周辺回
路に囲まれてメモリセルが形成される。
Figure 5 shows a part of bipolar CMOS memory, especially 0M
FIG. 3 is a cross-sectional view showing a portion including an OS and memory cells. Among these, bipolar (not shown) and OMOS constitute a peripheral logic circuit in a semiconductor chip, and a memory cell is formed surrounded by this peripheral circuit.

同図において、1はp−型Si基板、2はエピタキシャ
ル(n)Si層、3はpウェルである。、4はアイソレ
ーシッ/酸化膜、5はアインレーシ嘗ンp層で各領域を
分離する。6はポリSiゲート、7はpチャネルMOS
素子のソース・ドレインp+層、8はnチャネルMOS
素子のソース・ドレイ+ ンn 層、9は接地電位取出しp 層である。10はメ
モリセルのソース・ドレインn 層である。
In the figure, 1 is a p-type Si substrate, 2 is an epitaxial (n) Si layer, and 3 is a p-well. , 4 is an isolation/oxide film, and 5 is an inlay p layer to separate each region. 6 is a poly-Si gate, 7 is a p-channel MOS
Source/drain p+ layer of element, 8 is n-channel MOS
The source/drain n layer 9 of the element is a p layer for taking out the ground potential. 10 is the source/drain n layer of the memory cell.

メモリセルのドレイ/n 層の直下にはα線対策として
接合容量の増大をねらって高エネルギBイオ/注入によ
るpillが形成される。このような構造により、基板
上に高密度・高速度のデバイスを形成することが可能で
ある。
Immediately below the drain/n layer of the memory cell, a pill is formed by high-energy B ion/implantation to increase the junction capacitance as a countermeasure against alpha rays. Such a structure allows high-density, high-speed devices to be formed on the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図に示すバイポーラCMO&・メモリにおいて、基
板電位が上昇し、又はn M OSのソース(81電位
が下ると寄生トランジスタQ4がオンし、ソース(S)
より電子(e)が注入され、p−基板上を経てメモリセ
ルに電子(e)が到達し、情報破壊が生じる問題があっ
た。
In the bipolar CMO & memory shown in FIG.
There is a problem in that more electrons (e) are injected and reach the memory cell via the p-substrate, resulting in information destruction.

第2の問題として、第6図に示すCMOS・メモリにお
いて、(13基板(n−)電位が下がると、寄生トラン
ジスタQ、がオ/し、R1に電流が流れ、(21R,に
電流が流れることによってQlがオンし、R1に電流が
流れ、(31R,に電流が流れることによってQ、がオ
ンし、R1に電流が流れる。その結果、Ql とQ、が
オンし、ラッチアップが生じる。
The second problem is that in the CMOS memory shown in Figure 6, when the (13 substrate (n-) potential decreases, the parasitic transistor Q, turns on, current flows through R1, and current flows through (21R, As a result, Ql turns on and current flows through R1, and as a result of current flowing through (31R), Q turns on and current flows through R1.As a result, Ql and Q turn on, causing latch-up.

本発明は上記した問題点を解決するためになされたもの
である。したがって本発明の一つの目的はn M OS
・メモリを有するデバイスにおいて情報破壊及びラッチ
アップ防止構造を提供することKある。
The present invention has been made to solve the above-mentioned problems. Therefore, one object of the present invention is to
- To provide a structure to prevent information corruption and latch-up in a device having a memory.

本発明の他の一つの目的はバイポーラCMOSメモリ又
はCMOSメモリにおいてラッチアップ防止構造を提供
することにある。
Another object of the present invention is to provide a latch-up prevention structure in a bipolar CMOS memory or CMOS memory.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述及び添付図面から明らかになろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔問題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、一つの半導体基板の7主表面に少なくともn
チャネルMOS素子を有する周辺回路と、メモ!jMO
S回路とを備えた半導体集積回路装置において、上記n
チャネルMOS素子のソースn+層直下にp 層が埋め
込まれたものである。
That is, at least n on the seven main surfaces of one semiconductor substrate.
Peripheral circuit with channel MOS element and memo! jMO
In the semiconductor integrated circuit device equipped with the S circuit, the n
A p layer is buried directly under the source n+ layer of a channel MOS element.

〔作用〕[Effect]

nチャネルMO3素子のソースn 層とその直下のp 
層とのpn接合によって基板電位上昇時、又はn M 
OS素子のソース電位低下時に、ソースより基板へ注入
される電子の量が減少し、同じ基板のメモリ情報破壊を
防止できる。
The source n layer of an n-channel MO3 device and the p layer immediately below it
When the substrate potential increases due to the pn junction with the layer, or n M
When the source potential of the OS element decreases, the amount of electrons injected from the source to the substrate decreases, making it possible to prevent memory information from being destroyed on the same substrate.

〔実施例〕〔Example〕

第1図は不発明の一実施例を示すものであって、一つの
半導体基体KCMOS回路の一部であるnチャネルMO
SFETとメモリ回路が形成されたバイポーラCMOS
メモリの一部断面図である。
FIG. 1 shows an embodiment of the invention, in which an n-channel MO which is part of one semiconductor substrate KCMOS circuit is shown.
Bipolar CMOS with SFET and memory circuit formed
FIG. 3 is a partial cross-sectional view of the memory.

同図において、前掲第5図と共通する構成部分には同一
の指示記号が用いられる。
In this figure, the same designation symbols are used for components common to those in FIG. 5 above.

本発明によるバイポーラCMOSメモリにおいては、n
”−MOS素子のソースn 層8の下にp+層12を設
けるものである。
In the bipolar CMOS memory according to the invention, n
A p+ layer 12 is provided under the source n layer 8 of the ``-MOS element.

このp 層12はメモリセルのドレインn 層10の下
にp 層11をB(ボロン)イオン打込みにより形成す
る際に同時K n −M OS素子のソースn 層側に
も打込むことによって形成されるものであり、マスクの
一部を変えるのみでプロセス自体が変更されることはな
い。
This p layer 12 is formed by implanting B (boron) ions into the source n layer side of the K n -MOS element at the same time as forming the p layer 11 under the drain n layer 10 of the memory cell by implanting B (boron) ions. The process itself is not changed, only a part of the mask is changed.

このような構造によれば下記の理由により効果が得られ
る。
According to such a structure, effects can be obtained for the following reasons.

n−MOS素子のソースn 層よりp−基体1へ注入さ
れる電子はpn接合のホール濃度によるので、p 層1
2を設けることでホール濃度を高くすることにより注入
電子濃度を減らすことができる。すなわち、基板電位が
上昇したり、nM。
Since the electrons injected from the source n layer of the n-MOS element into the p-substrate 1 depend on the hole concentration of the p-n junction, the p-layer 1
2, the injected electron concentration can be reduced by increasing the hole concentration. That is, the substrate potential increases or nM.

S素子ソースの電位が下がった時に、基板に注入されメ
モリセルへ到達する電子の量が減少し、したがつくメモ
リセルでの情報破壊を防止できる。
When the potential of the S element source decreases, the amount of electrons injected into the substrate and reaching the memory cell decreases, thereby preventing information destruction in the memory cell.

ロジック部nMOS素子のドレイノ下にp 層を形成す
ると耐圧劣化によるブレークダウン、容量増大による信
号遅延が生じる。
If a p layer is formed under the drain node of the logic part nMOS element, breakdown due to breakdown voltage deterioration and signal delay due to increased capacitance will occur.

第2図はメモリのドレイン下にp 層形成のために行う
Bイオン打込みをnMOS素子のソース下に行う場合(
A)と行わない場合とについて゛のID−VD曲線を示
すものである。
Figure 2 shows the case where B ion implantation, which is performed to form a p-layer under the drain of a memory, is performed under the source of an nMOS element (
This figure shows the ID-VD curves for A) and the case where it is not carried out.

Bイオン打込みを行う場合(A)は、Bイオン打込みを
行わない場合の)に比してIP(VF=0.3V)は平
均10%程度低くなることが実験的に示された。
It has been experimentally shown that when B ions are implanted (A), the IP (VF=0.3V) is about 10% lower on average than when B ions are not implanted (A).

第3図はバイポーラCMOSメモリに本発明を適用した
場合の一実施例を示し、ラッチアップ防止効果及び情報
破壊防止効果を説明するための断面図である。
FIG. 3 shows an embodiment in which the present invention is applied to a bipolar CMOS memory, and is a sectional view for explaining the latch-up prevention effect and the information destruction prevention effect.

同図において前掲第5図、第1図と共通する構成部分に
は同一の指示記号が用いである。
In this figure, the same reference symbols are used for components common to those in FIG. 5 and FIG. 1 described above.

13はn 埋込層、14はバイポーラnpn)ランジス
タのベースp 層、15は同エミッタn+層、16は同
コレクタ取出しn 層である。
13 is an n buried layer, 14 is a base p layer of a bipolar npn transistor, 15 is an emitter n+ layer, and 16 is a collector extraction n layer.

このバイポーラCMOSメモリにおいて、バイポーラト
ランジスタの飽和をとりだしたラッチアップ及び情報破
壊は、下記の形態で行われる。
In this bipolar CMOS memory, latch-up and information destruction caused by saturation of the bipolar transistor are performed in the following manner.

(a)  ラッチアップの場合 (1)npn)ランジスタが飽和してQ、がオンすると
、Rt Rsを通してGNDで基板電流が流れる。
(a) In the case of latch-up (1) npn) When the transistor is saturated and Q is turned on, a substrate current flows through Rt and Rs to GND.

(2)  Rsに電流が流れることによってQ、がオン
する。R2に電流が流れる。
(2) When current flows through Rs, Q turns on. Current flows through R2.

(3)  R4に電流が流れることによってQ、がオン
する。R8に電流が流れる。Q、とQ、がオンしてラッ
チアップが生じようとする。
(3) When current flows through R4, Q is turned on. Current flows through R8. Q and Q turn on and latch-up is about to occur.

しかし、本発明ではn M OS素子のソースの下側に
p  #i12を設けることKよりてQ3のVBEを上
げる。したがってラッチアップしK<くなる。
However, in the present invention, the VBE of Q3 is increased by providing p #i12 below the source of the nMOS device. Therefore, latch-up occurs and K<.

(b)  情報破壊の場合 基板電位が上又はnMOSのソース電位が下がると、Q
、がオンし情報破壊を生じるような場合、本発明ではp
 層12を設けることで破壊を防止できる。このような
構造によれば基板に注入される電子によって不良となる
高電源電圧のマージンを向上できる。
(b) In the case of information destruction, if the substrate potential rises or the nMOS source potential falls, Q
, which turns on and causes information destruction, in the present invention, p
By providing the layer 12, destruction can be prevented. With such a structure, it is possible to improve the margin of a high power supply voltage that becomes defective due to electrons injected into the substrate.

第4図はCMOSメモリに本発明を適用した場合の一実
施例を示すラッチアップ防止効果を説明するための断面
図である。
FIG. 4 is a cross-sectional view for explaining the latch-up prevention effect showing an embodiment of the present invention applied to a CMOS memory.

このようなCMOSメモリにおけるラッチアップ現象に
ついては、第6図で既に説明した通りである。
The latch-up phenomenon in such a CMOS memory has already been explained with reference to FIG.

本発明ではnMOS素子のソースの下側にp+層12を
入れることによって寄生トランジスタQ1のvBEを上
げよってラッチアップ防止かできる。
In the present invention, latch-up can be prevented by increasing the vBE of the parasitic transistor Q1 by inserting the p+ layer 12 under the source of the nMOS element.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能である。
Although the invention made by the present inventor has been specifically described above based on examples, the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof.

本発明はバイポーラCMOSメモリあるいはCMOSメ
モリに適用して有効である。
The present invention is effective when applied to bipolar CMOS memory or CMOS memory.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば下記のとおりである
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、n M OSメモリにおいて基板電位上昇時
の情報破壊を防ぎ、ラッチアップ防止ができる。
That is, in the nMOS memory, information destruction can be prevented when the substrate potential increases, and latch-up can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すn M OSメモリの
断面図である。 第2図は不純注入効果を示す電流電圧特性曲線図である
。 第3図は本発明の他の一実施例を示すバイポーラCMO
Sメモリの断面図である。 第4図は本発明のさらに他の実施例を示すCMOSメ七
りの断面図である。 第5図、第6図は従来のCMOSメモリにおけるラッチ
アップ効果を説明するための断面図である。 1・・・p”−8i基板、2・・・エピタキシャルn層
、3・・・pウェル、4・・・アイソレージ1ノ酸化膜
、6・・・Siゲー)、7・・・ソース・ドレインp層
、8・・・ソース・ドレインn 層、9・・・基板電位
取出し+ p 層、lO・・・メモリのドレインnJi、it・・
・メそりのドレイン下p 層、12・・・n M OS
のソース下p 層。 代理人 弁理士  小 川 勝 男 第1図 第  2  図
FIG. 1 is a sectional view of an nMOS memory showing an embodiment of the present invention. FIG. 2 is a current-voltage characteristic curve diagram showing the impurity injection effect. FIG. 3 is a bipolar CMO showing another embodiment of the present invention.
It is a sectional view of S memory. FIG. 4 is a sectional view of a CMOS transistor showing still another embodiment of the present invention. FIGS. 5 and 6 are cross-sectional views for explaining the latch-up effect in conventional CMOS memories. DESCRIPTION OF SYMBOLS 1...p"-8i substrate, 2...Epitaxial n layer, 3...P well, 4...Isolation oxide film, 6...Si game), 7...Source/drain p layer, 8...source/drain n layer, 9...substrate potential extraction +p layer, lO...memory drain nJi, it...
・P layer under mesori drain, 12...n M OS
source of lower p-layer. Agent: Patent Attorney Katsoo Ogawa Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、一つの半導体基板の一主表面に少なくともnチャネ
ルMOS素子を有する回路と、この回路に近接してメモ
リセルとを備えた半導体集積回路であって上記nチャネ
ルMOS素子のソースn^+領域下にp^+層が埋め込
まれていることを特徴とする半導体集積回路装置。 2、上記メモリセルのドレインとなるn^+領域直下に
p^+層が埋め込まれ、上記nチャネルMOS素子のソ
ース領域下のp^+層は上記ドレイン下のp^+層形成
のための不純物と同時に導入されたものである特許請求
の範囲第1項に記載の半導体集積回路装置。
[Scope of Claims] 1. A semiconductor integrated circuit comprising a circuit having at least an n-channel MOS element on one main surface of one semiconductor substrate, and a memory cell adjacent to this circuit, wherein the n-channel MOS element A semiconductor integrated circuit device characterized in that a p^+ layer is embedded under a source n^+ region. 2. A p^+ layer is buried directly under the n^+ region which becomes the drain of the memory cell, and the p^+ layer under the source region of the n-channel MOS element is used for forming the p^+ layer under the drain. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is introduced simultaneously with an impurity.
JP61281730A 1986-11-28 1986-11-28 Semiconductor integrated circuit device Pending JPS63136663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281730A JPS63136663A (en) 1986-11-28 1986-11-28 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281730A JPS63136663A (en) 1986-11-28 1986-11-28 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63136663A true JPS63136663A (en) 1988-06-08

Family

ID=17643181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281730A Pending JPS63136663A (en) 1986-11-28 1986-11-28 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63136663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039458A (en) * 2015-11-04 2017-08-11 德州仪器公司 The construction of hall effect sensor in isolated area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039458A (en) * 2015-11-04 2017-08-11 德州仪器公司 The construction of hall effect sensor in isolated area
CN107039458B (en) * 2015-11-04 2022-12-20 德州仪器公司 Construction of Hall Effect sensors in isolation regions

Similar Documents

Publication Publication Date Title
JP2851753B2 (en) Semiconductor device and manufacturing method thereof
US6054344A (en) OTP (open trigger path) latchup scheme using buried-diode for sub-quarter micron transistors
US7429774B2 (en) Electrostatic discharge (ESD) protection MOS device and ESD circuitry thereof
US6500705B2 (en) Semiconductor memory device and method of manufacturing the same
US6258641B1 (en) OTP (open trigger path) latchup scheme using triple and buried well for sub-quarter micron transistors
US5883414A (en) Electrostatic discharge protection device
JP3244065B2 (en) Semiconductor electrostatic protection element and method of manufacturing the same
JPS6170749A (en) Cmos circuit for reducing trend of latchup
US6063672A (en) NMOS electrostatic discharge protection device and method for CMOS integrated circuit
JPS61196567A (en) Semiconductor device
US5950079A (en) Semiconductor processing methods of forming complementary metal oxide semiconductor memory and other circuitry
US7955923B1 (en) I/O ESD protection device for high performance circuits
KR19990048057A (en) Semiconductor device and manufacturing method
US6413808B1 (en) Semiconductor device and process for production thereof
JPS58170048A (en) Semiconductor device
JPH0783113B2 (en) Semiconductor device
JP4084011B2 (en) Semiconductor device
JPS63136663A (en) Semiconductor integrated circuit device
KR19990074584A (en) Semiconductor device with electrostatic discharge protection circuit
JPH05206387A (en) Semiconductor integrated circuit
KR200158788Y1 (en) Semiconductor device
JPS61196568A (en) Semiconductor device
JPS634672A (en) Semiconductor device
JPS6246571A (en) Semiconductor device
JPH0613562A (en) Manufacture of cmos transistor which enhances junction breakdown voltage