JPS6313616B2 - - Google Patents

Info

Publication number
JPS6313616B2
JPS6313616B2 JP9592482A JP9592482A JPS6313616B2 JP S6313616 B2 JPS6313616 B2 JP S6313616B2 JP 9592482 A JP9592482 A JP 9592482A JP 9592482 A JP9592482 A JP 9592482A JP S6313616 B2 JPS6313616 B2 JP S6313616B2
Authority
JP
Japan
Prior art keywords
frequency
transmission
transmitting
response
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9592482A
Other languages
Japanese (ja)
Other versions
JPS58213540A (en
Inventor
Koichi Yoshimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9592482A priority Critical patent/JPS58213540A/en
Publication of JPS58213540A publication Critical patent/JPS58213540A/en
Publication of JPS6313616B2 publication Critical patent/JPS6313616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/208Frequency-division multiple access [FDMA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 本発明は衛星通信方式、特に複数の地球局が周
波数を共有して要求のあつた地球局間の通信に割
当てる要求割当多元接続(DAMA)の簡易な衛
星通信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a satellite communication system, and particularly to a simple satellite communication system of request-assignment multiple access (DAMA) in which a plurality of earth stations share a frequency and allocate it to communication between requested earth stations. .

比較的に通信量の少ない多数の地球局間で衛星
を介して通信を行う有効な方法として、1盤送波
で電話1チヤンネル又は相当の情報を伝送する多
数の搬送波を使用するSCPC(Single Channel
Per Carrier)方式がある。。この方式には、各地
球局間の通話に使用する搬送波の周波数をあらか
じめ固定的に割当てる固定割当方式と、使用周波
数を固定せず要求に応じて制御局が使用されてい
ない周波数を割当てるDAMA方式とがある。前
者は各地球局の端末装置は簡単であるが衛星回線
の運用効率が低く、後者は運用効率は良いが端末
装置特に制御装置が複雑となり、回線の割当・接
続のための情報を交換する制御信号専用チヤンネ
ルが必要で、制御局の障害が系全体の交換機能に
影響するなどの欠点がある。インテルサツトの
SPADE方式は制御局機能を各地球局が所有する
分散制御のDAMA方式で、上述の最後の欠点は
除去されるが制御情報を相互に交換し記憶させる
ことが必要で各地球局に複雑な制御装置を必要と
する欠点がある。
SCPC (Single Channel
There is a per carrier method. . This method consists of a fixed allocation method in which carrier frequencies used for calls between each earth station are fixedly allocated in advance, and a DAMA method in which the frequency used is not fixed and the control station allocates unused frequencies according to requests. There is. The former has simple terminal equipment for each earth station, but the operational efficiency of the satellite line is low, while the latter has good operational efficiency, but the terminal equipment, especially the control equipment, is complex, and the control for exchanging information for line assignment and connection is difficult. It requires a dedicated signal channel, and has drawbacks such as a failure in the control station affecting the switching function of the entire system. Intelsat's
The SPADE method is a distributed control DAMA method in which each earth station owns the control station function, and although it eliminates the last drawback mentioned above, it requires mutual exchange and storage of control information, which requires each earth station to have complex control. It has the disadvantage of requiring equipment.

本発明の目的は上述した従来方式の欠点を除去
し、各地球局に複雑な制御装置を必要とせず、制
御信号専用チヤンネルも不要で回線運用効率も良
い簡単なDAMA接続の衛星通信方式を提供する
ことである。
The purpose of the present invention is to eliminate the drawbacks of the conventional method described above, and to provide a simple DAMA-connected satellite communication method that does not require a complicated control device at each earth station, does not require a channel dedicated to control signals, and has good line operation efficiency. It is to be.

本発明の衛星通信方式は、複数の地球局が互い
に対をなす発信用および応答用の送受信周波数の
少なくとも一組を共用してDAMA方式で四線式
無線回線を構成する衛星通信方式において、前記
複数の地球局がそれぞれ前記発信用および応答用
のいずれの受信周波数でも選択受信できこれと対
をなす応答用または発信用の送信周波数を送信す
る送受信手段とこの送受信手段の周波数を制御す
る制御手段とを備え、前記送受信手段が前記発信
用の受信周波数を受信する状態で待機し自局にあ
てた通信要求を検出すると前記応答用の送信周波
数を送信して回線を構成し自局からの通信要求に
対しては前記発信用の送信周波数を送信し前記応
答用の受信周波数を受信して回線を構成するよう
制御されることによつて構成される。
The satellite communication system of the present invention is a satellite communication system in which a plurality of earth stations share at least one set of transmission and reception frequencies for transmission and response that form a pair with each other to configure a four-wire wireless line in the DAMA system. Transmitting/receiving means for each of the plurality of earth stations to selectively receive any of the receiving frequencies for transmission and response, and transmitting/receiving means for transmitting a corresponding transmission frequency for response or transmission; and control means for controlling the frequency of the transmitting/receiving means. The transmitting/receiving means waits in a state in which it receives the receiving frequency for transmitting, and when it detects a communication request addressed to its own station, it transmits the transmitting frequency for response to configure a line and communicate from its own station. In response to a request, the transmission frequency for transmission is transmitted, and the reception frequency for response is received to configure a line.

次に本発明について図面を参照して詳細に説明
する。第1図は本発明の一実施例におけるSCPC
方式のキヤリア周波数配置図で、aは地球局から
衛星までのアツプリンクすなわち地球局からの送
信周波数を、bは衛星から地球局までのダウンリ
ンクすなわち地球局の受信周波数を示している。
アツプリンクで言えばパイロツト信号pの両側
に等間隔に配置されたそれぞれn個の発信用送信
周波数S1S2S3……So(最初の不付き文字s
は発信用周波数を表し、Sで代表する)と応答用
周波数R1R2R3,……Ro(最初の下付き文字
Rは応答用周波数を表し、Rで代表する)とがあ
り、S1R1S2R2S3R3,……So
Ro
(第2番目以降の下付き数字は対をなす発信用と
応答用周波数の組の番号を表し、123,…
o等で代表する)とが対を成して用いられ往復
の四線式無線回線を構成するようになつている。
ダウンリンクのダツシユ(′)を付した周波数は
それぞれアツプリンクの同じ記号に対応し、衛星
中継器で周波数変換を受けたダウンリンク周波数
すなわち地球局の受信周波数である。
Next, the present invention will be explained in detail with reference to the drawings. Figure 1 shows an SCPC in one embodiment of the present invention.
In the carrier frequency map of the system, a shows the uplink from the earth station to the satellite, that is, the transmission frequency from the earth station, and b shows the downlink from the satellite to the earth station, that is, the reception frequency of the earth station.
In terms of uplink, there are n transmission frequencies S1 , S2 , S3 , respectively , arranged at equal intervals on both sides of the pilot signal p.
represents the transmission frequency, represented by S ), and the response frequencies R1 , R2 , R3 , ... Ro (the first subscript R represents the response frequency, represented by R ), and S1 and R1 , S2 and R2 , S3 and R3 , ... So and
Ro
(The second and subsequent subscript numbers represent the number of the pair of transmission and response frequencies, 1 , 2 , 3 ,...
(represented by o , etc.) are used in pairs to form a round-trip four-wire radio line.
The frequencies marked with a dash (') on the downlink each correspond to the same symbol on the uplink, and are the downlink frequencies that have undergone frequency conversion at the satellite repeater, that is, the reception frequency of the earth station.

第2図は第1図の3組の周波数123を共
用して四つの地球局が通信を行う本発明の第1の
実施例のシステム構成図で、1は衛星、2,3,
4,5はそれぞれ地球局である。各地球局はそれ
ぞれ3台の送受信装置TR1,TR2,TR3を備
え、それぞれ123に対応して発信用および
応答用のいずれの受信周波数でも受信でき、これ
に対応する応答用または発信用の送信周波数を送
信できるようになつている。第2図は1がいずれ
の地球局間にも使用されず「空き」の状態で、2
が地球局2と3で、3が地球局2と4で使用中の
状態を示している。各地球局の送受信装置TR1
はいずれも発信用受信周波数S1′を受信し応答用
送信周波数R1を送信する状態で待機している
(図中破線で示す)。2は地球局3からの要求によ
り回線が接続された状態を示し、地球局2のTR
2は地球局3から送出され衛星で周波数変換され
た発信用受信周波数S2′を受信し、自局あての通
信であることを検出して応答用送信周波数R2
送信し、地球局3との間で四線式の無線回線を構
成している。このとき、地球局4及び5はS2′を
受信し自局あての通信でないことを判別すると、
終話信号が送られて電波が切断されるまでこのチ
ヤンネルの送信を禁止する(図中×印で示す)。
3は地球局2からの要求で回線が設定された場合
で、通信回線設定の要求があると地球局2は「空
き」チヤンネル3を選択し、それまで発信用周波
S3′の受信状態で待機していたTR3の送受信
周波数を変更して発信用の送信周波数S3を送信
する。発信用の受信周波数S3′の受信状態で待機
している他の地球局はこれを受信し、次いで送ら
れてくるあて先識別信号を判読して自局あての通
信であることを検出した地球局4は応答用の送信
周波数R3を送信して回線を構成し、自局あてで
ないことを判別した地球局3及び5は3の使用禁
止する。
FIG. 2 is a system configuration diagram of the first embodiment of the present invention in which four earth stations communicate by sharing the three sets of frequencies 1 , 2 , and 3 shown in FIG. ,
4 and 5 are earth stations, respectively. Each earth station is equipped with three transmitting/receiving devices TR1, TR2, and TR3, and can receive any reception frequency for transmission or response, corresponding to 1 , 2 , or 3, respectively, and the corresponding reception frequency for response or transmission. It is now possible to transmit at the designated transmission frequency. In Figure 2, 1 is not used between any earth stations and is "empty", and 2
indicates that earth stations 2 and 3 are in use, and 3 indicates that earth stations 2 and 4 are in use. TR1 transmitter/receiver for each earth station
Both are on standby in a state in which they receive the transmission reception frequency S1 ' for transmission and transmit the transmission frequency R1 for response (indicated by the broken line in the figure). 2 indicates that the line is connected due to a request from earth station 3, and the TR of earth station 2
2 receives the transmission reception frequency S2 ' transmitted from the earth station 3 and frequency-converted by the satellite, detects that the communication is directed to its own station, transmits the response transmission frequency R2 , and establishes a communication with the earth station 3. A four-wire wireless line is constructed between them. At this time, earth stations 4 and 5 receive S2 ' and determine that the communication is not directed to their own stations.
Transmission of this channel is prohibited until a call termination signal is sent and the radio waves are disconnected (indicated by an x in the diagram).
3 is a case where the line is set up by a request from the earth station 2. When there is a request to set up a communication line, the earth station 2 selects the "empty" channel 3 and waits in the receiving state of the transmission frequency S3 ' until then. Change the transmitting and receiving frequency of TR3 that was previously used and transmit the transmitting frequency S3 for outgoing transmission. Other earth stations waiting to receive the transmission reception frequency S3 ' receive this, and then the earth station deciphers the sent destination identification signal and detects that the communication is directed to its own station. 4 transmits the response transmission frequency R3 to configure a line, and earth stations 3 and 5, which have determined that it is not intended for their own station, prohibit the use of 3 .

第3図は第2図の地球局の一実施例を示すブロ
ツク図で、20は送受共用のアンテナ(ANT)、
21は低雑音増幅器(LNA)、22はLNAの出
力を中間周波に変換するダウンコンバータ(D/
C)、23はD/Cの出力を増幅するAGC付き中
間周波増幅器(IFA)、24はIFAの出力を分岐
する分配器(DIV)、25はパイロツト信号p′を
受信しAFC信号、AGC信号をD/C22,IFA
23にそれぞれ供給するパイロツト受信装置
(PIL REC)、26,27,28はそれぞれ発信
用受信周波数S1′,S2′,S3′及び応答用受信周
波数R1′,R2′,R3′のいずれか一方を選択受信
して電話出力(TP OUT)を復調する受信チヤ
ンネルユニツト(RX CHU)、29,30,31
はそれぞれ電話入力(TP IN)で変調された応
答用送信周波数R1R2R3又は発信用送信周波
S1S2S3のいずれか一方に対応する中間周
波搬送波を送出する送信チヤンネルユニツト
(TX CHU)、32は各TX CHUの出力を合成
する合成器(COMB)、33はその出力を送信周
波数に変換するアツプコンバータ(U/C)、3
4はU/Cの出力を増幅する送信電力増幅器
(HPA)であつて、上述の20〜34で送受信手
段を構成している。35は制御装置(CONT)
であつて、各RX CHU26,27,28から、
発信用受信周波数S1′,S2′,S3′の信号の有無
およびその信号のあて先識別の結果を伝える監視
信号101,102,103を受け、それが自局
向けの場合にはそれぞれTX CHU29,30,
31を制御し応答用送信周波数R1R2R3を送
信させる応答指令信号111,112,113を
送出すると共に、各チヤンネルユニツトの入出力
が接続されている交換機に接続信号104を送出
して電話回線を接続する。交換機からの回線接続
要求信号105を受けると、監視信号101,1
02,103により空き周波数を選択し、発信指
令信号121,122,123を送出して送受信
チヤンネルユニツトの周波数を変更し、S1S2
S3を送信し、R1R2′,R3′を受信すると共に

続信号104により電話回線を接続するように構
成されている。
FIG. 3 is a block diagram showing an embodiment of the earth station shown in FIG.
21 is a low noise amplifier (LNA), 22 is a down converter (D/
C), 23 is an intermediate frequency amplifier (IFA) with AGC that amplifies the output of the D/C, 24 is a distributor (DIV) that branches the output of IFA, and 25 is a receiver that receives the pilot signal p ' and outputs the AFC signal and AGC signal. D/C22, IFA
The pilot receivers (PIL REC) 26, 27, and 28 respectively supply one of the transmission receiving frequencies S1 ', S2 ', S3 ' and the response receiving frequencies R1 ', R2 ', R3 '. Reception channel unit (RX CHU) that selectively receives and demodulates telephone output (TP OUT), 29, 30, 31
is a transmission channel unit (TX CHU) that transmits an intermediate frequency carrier wave corresponding to either response transmission frequencies R1 , R2 , R3 or transmission transmission frequencies S1 , S2 , S3 for transmission modulated by telephone input (TP IN), respectively. ), 32 is a combiner (COMB) that combines the outputs of each TX CHU, 33 is an up converter (U/C) that converts the output into a transmission frequency, 3
4 is a transmission power amplifier (HPA) that amplifies the output of the U/C, and the above-mentioned 20 to 34 constitute a transmitting/receiving means. 35 is the control device (CONT)
And from each RX CHU26, 27, 28,
It receives supervisory signals 101, 102, 103 that convey the presence or absence of signals at transmission receiving frequencies S1 ', S2 ', S3 ' and the result of identifying the destination of the signals, and if the signals are directed to the own station, the TX CHUs 29, 30 respectively. ,
31 and sends response command signals 111, 112, 113 to transmit response transmission frequencies R1 , R2 , R3 , and also sends a connection signal 104 to the exchange to which the input/output of each channel unit is connected. Connect the line. Upon receiving the line connection request signal 105 from the exchange, the supervisory signal 101,1
02, 103 to select an empty frequency, send transmission command signals 121, 122, 123 to change the frequency of the transmitting/receiving channel unit, S1 , S2 ,
It is configured to transmit S3 , receive R1R2 ′, R3 ′, and connect the telephone line using a connection signal 104 .

以上説明したごとく、本実施例によれば各地球
局は比較的簡単な制御装置を備えるのみで他局と
制御情報の交換とすることなく分散制御の
DAMA方式衛星回線を構成することができる。
As explained above, according to this embodiment, each earth station is only equipped with a relatively simple control device and can perform distributed control without exchanging control information with other stations.
A DAMA satellite link can be configured.

上述の第1の実施例では3組の共用周波数に対
して各地球局が3台の送受信装置を有する場合を
説明したが、送受信装置の数が周波数の組数より
少ない場合にも同様なDAMA方式の構成が可能
である。第4図はこのように構成された第2の実
施例のシステム構成図で、第1図の3組の周波数
456を共用する各地球局がそれぞれ1台の
送受信装置を有する場合を示し、1aは衛星、2
a,3a……9aは地球局、2b,3b,……は
送受信装置(TR)、2c,3c……は制御装置
(CE)である。各送受信装置は制御装置の指令に
より各受信周波数S4′,R4′,R5′,R5′,
S6′,
R6′のいずれをも受信でき、対応する送信周波数
R4S4R5S5R6S6を送信できるよう

えばシンセサイザ局部発振器を備えて構成され、
通信を行なつていない場合には発信用受信周波数
S4′,S5′,S6′を順次切換えて循環して受信す
るよう制御されている。図は地球局3aからの要
求で地球局9aとの間に周波数6による回線が構
成されている状態を示し、地球局3a,9aの送
受信装置3b,9bは周波数6に固定され、それ
ぞれS6R6を送信し、R6′,S6′を受信してい
る。他の地球局の送受信装置はそれぞれ周波数を
循環移動させており、S4′,S5′については受信
出力がなくS6′については継続して受信出力を検
出し、45が「空きチヤンネル」で6が使用中
であることを判定している。いま地球局5aに
2aに対する通信要求が発生すると制御装置5c
はその時点に最も近い空きチヤンネル例えば4
選択し(要求発生時点の受信周波数が6又は4
場合は45の場合は5を選択する)、送受信装
置5bの送受信周波数を反転してS4を送信し
R4′の受信状態で待機する。他の地球局は前の循
環時に出力のなかつたS4′でこの電波を受信する
と周波数の移動を一時停止し、一定時間継続して
送られてくるあて先識別信号を判読する。自局あ
ての識別信号を検出した2a局は周波数を4に固
定し応答周波数R4を送信する。地球局5aはこ
の信号を受信するとあて先識別信号の送出を止め
て回線の接続が完了する。一定時間経過しても応
答周波数R4′が受信されないときは相手局話中と
して送信を中止する。2a以外の地球局例えば8
aではあて先識別信号が検出されないので1定時
間後に再び周波数の移動を開始する。次に4を受
信したときは前回の循環時に引続き検波出力が得
られるので6と同様に使用中と判定し周波数の移
動を続ける。このようにして各地球局は要求に応
じて共用周波数の一つを使用し通信回線を構成す
ることができ、各地球局間で制御情報の交換をす
ることなくDAMA方式の衛星通信回線が構成さ
れる。上述の説明では地球局の送受信装置は1台
としたが、2台であつても同様に構成でき、受信
周波数循環の時期をずらすことにより信号捕そく
の時間を短縮できる。又、送受信装置の数は各地
球局同じである必要はない。
In the first embodiment described above, the case where each earth station has three transmitting/receiving devices for three sets of shared frequencies has been described, but a similar DAMA can also be used when the number of transmitting/receiving devices is less than the number of frequency sets. It is possible to configure the method. FIG. 4 is a system configuration diagram of the second embodiment configured as described above, in which the three sets of frequencies shown in FIG.
4 , 5 , and 6 each have one transmitter/receiver, where 1a is the satellite, 2 is the
9a are earth stations, 2b, 3b, . . . are transmitting/receiving devices (TR), and 2c, 3c, . . . are control devices (CE). Each transmitting/receiving device receives each receiving frequency S4 ′, R4 ′, R5 ′, R5 ′,
S6 ′,
R6 ′ can be received and the corresponding transmit frequency
For example, it is configured with a synthesizer local oscillator so that it can transmit R4 , S4 , R5 , S5 , R6 , S6 ,
If no communication is being performed, the receiving frequency for sending
Control is such that S4 ', S5 ', and S6 ' are sequentially switched and received in circulation. The figure shows a state in which a line with a frequency of 6 is configured between the earth station 9a and the earth station 9a in response to a request from the earth station 3a, and the transmitting/receiving devices 3b and 9b of the earth stations 3a and 9a are fixed to the frequency 6 , and S6 and S6 , respectively, are shown. Sending R6 and receiving R6 ′, S6 ′. The transmitting/receiving devices of the other earth stations are moving their frequencies cyclically, and there is no receiving output for S4 ' and S5 ', but the receiving output for S6 ' continues to be detected, and 4 and 5 are "empty channels". It is determined that 6 is in use. Now at earth station 5a
When a communication request to 2a occurs, the control device 5c
selects the vacant channel closest to that point, for example, 4 (if the receiving frequency at the time of request generation is 6 or 4 , select 4 , if it is 5 , select 5 ), invert the transmitting/receiving frequency of the transmitting/receiving device 5b, and select S4. send
Waits in the receiving state of R4 ′. When the other earth stations receive this radio wave on S4 ', which had no output during the previous circulation, they temporarily stop frequency shifting and decipher the destination identification signal that is continuously sent for a certain period of time. Station 2a, which has detected the identification signal addressed to itself, fixes the frequency to 4 and transmits response frequency R4 . When the earth station 5a receives this signal, it stops transmitting the destination identification signal and completes the line connection. If the response frequency R4 ' is not received even after a certain period of time has elapsed, transmission is stopped as the other station is busy. Earth stations other than 2a, e.g. 8
Since no destination identification signal is detected in case a, frequency movement starts again after one fixed period of time. Next time when 4 is received, the detection output is still obtained during the previous circulation, so it is determined that it is in use like 6 and the frequency continues to be shifted. In this way, each earth station can configure a communication line using one of the shared frequencies as required, and a DAMA satellite communication line can be configured without exchanging control information between each earth station. be done. In the above explanation, the earth station has one transmitting/receiving device, but the same configuration can be made even if the earth station has two transmitting/receiving devices, and the time for signal acquisition can be shortened by shifting the timing of reception frequency circulation. Also, the number of transmitting and receiving devices does not need to be the same for each earth station.

以上二つの実施例について詳細に説明したが、
共用する対をなす周波数の組合わせ方法やその
数、地球局の数、各地球局の送受信装置の数や構
成は実施例のものに限らないことはもちろんであ
り、SCPCの周波数配列の一部を用いて本方式に
よる複数のDAMA回線群を編成し、残りを通信
量の多い地球局間に固定的に割当てることによつ
て効率のよい簡易DAMA方式の回線構成をする
ことができる。第5図はこのような簡易DAMA
方式の一実施例の回線構成図で、中核となる中心
局A、A′と、これと結びつきの強い周辺局B、
C、D、E、F、G及びB′、C′、D′、E′、F′を結
ぶ回線構成を示している。通信量の多い実線で結
んだ各局間にはそれぞれSCPC周波数を固定的に
割当て、関係の深い数局から成る本発明による
DAMA方式の簡易PAMAブロツク、、を
編成しそれぞれに数組の周波数を割当て、更に全
局を1ブロツク()として適当数の周波数を割
当てれば、特定の制御局や制御専用チヤンネルを
必要とせず効率的なSCPC回線が経済的に構成で
きる。上述の、、ブロツクに第1の実施例
の方式を採用すれば割当て周波数のすべてをブロ
ツク内の1周辺局と中心局との通信路の補強に利
用することもでき、ブロツクに対して第2の実
施例の方式を採用すれば各地球局の送受信装置数
を節減し、各局間で必要な直通回線を任意に構成
できる効果がある。
The above two embodiments have been explained in detail,
It goes without saying that the method and number of shared paired frequencies, the number of earth stations, and the number and configuration of transmitting and receiving equipment for each earth station are not limited to those in the example, and may be used as part of the frequency array of SCPC. By using this method to organize multiple DAMA line groups based on this method and allocating the rest fixedly between earth stations with a large amount of communication, it is possible to create an efficient simple DAMA line configuration. Figure 5 shows such a simple DAMA
This is a line configuration diagram of one embodiment of the system, and includes central stations A and A', which are the core, and peripheral stations B, which are closely connected to the central stations A and A'.
The line configuration connecting C, D, E, F, G, and B', C', D', E', and F' is shown. According to the present invention, a SCPC frequency is fixedly assigned to each station connected by a solid line with a large amount of communication, and the system consists of several stations that are closely related.
By organizing a simple PAMA block using the DAMA method and assigning several sets of frequencies to each, and further allocating an appropriate number of frequencies to each station as one block (), there is no need for a specific control station or dedicated control channel, resulting in efficient operation. SCPC lines can be constructed economically. If the above-mentioned method of the first embodiment is adopted for the block, all the assigned frequencies can be used to strengthen the communication path between one peripheral station and the central station within the block, and the second If the system of the embodiment is adopted, the number of transmitting/receiving devices at each earth station can be reduced, and the necessary direct lines between each station can be configured as desired.

これまでSCPC方式について説明したが、本発
明の衛星通信方式はSCPC方式に限らず多重電
話・高速データ等を伝送するFM又はPSK変調の
搬送波に適用することも可能で、多重通信回線網
の共通予備として障害の発生した区間で必要に応
じて使用することもできる。又、これまですべて
四線式回線を構成する例について述べたが、四線
式の回線のみでなく同報通信などの一方向通信回
線も構成できるようにすることも可能である。
Although the SCPC method has been explained so far, the satellite communication method of the present invention is not limited to the SCPC method, but can also be applied to carrier waves of FM or PSK modulation that transmit multiplex telephones, high-speed data, etc. It can also be used as a backup in sections where failures occur, if necessary. Further, although an example has been described in which all four-wire lines are configured, it is also possible to configure not only four-wire lines but also one-way communication lines such as broadcast communication.

以上詳細に説明したように、本発明の衛星通信
方式によれば、制御信号専用チヤンネルを必要と
せず、各地球局に簡単な制御装置を設けるのみ
で、分散制御の簡易なDAMA方式の衛星通信回
線が経済的に構成できる効果がある。
As explained in detail above, the satellite communication system of the present invention does not require a channel dedicated to control signals, and only requires a simple control device at each earth station, allowing for simple DAMA-based satellite communication with distributed control. This has the effect that the line can be constructed economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるキヤリア周
波数配置図、第2図は本発明の第1の実施例のシ
ステム構成図、第3図は第2図の地球局の一実施
例のブロツク図、第4図は本発明の第2の実施例
のシステム構成図、第5図は簡易DAMA方式の
一実施例の回線構成図である。 1,1a……衛星、2,3,4,5,2a,3
a〜9a……地球局、2b〜9b……送受信装
置、2c〜9c,35……制御装置、20……ア
ンテナ、21……低雑音増幅器、22……ダウン
コンバータ、23……中間周波増幅器、24……
分配器、25……パイロツト受信装置、26,2
7,28……受信チヤンネルユニツト、29,3
0,31……送信チヤンネルユニツト、32……
合成器、33……アツプコンバータ、34……送
信電力増幅器、A,A′……中心局、B〜G,
B′〜F′……周辺局。
FIG. 1 is a carrier frequency allocation diagram according to an embodiment of the present invention, FIG. 2 is a system configuration diagram of the first embodiment of the present invention, and FIG. 3 is a block diagram of an embodiment of the earth station shown in FIG. , FIG. 4 is a system configuration diagram of a second embodiment of the present invention, and FIG. 5 is a line configuration diagram of an embodiment of the simple DAMA system. 1, 1a...satellite, 2, 3, 4, 5, 2a, 3
a to 9a...Earth station, 2b to 9b...Transmission/reception device, 2c to 9c, 35...Control device, 20...Antenna, 21...Low noise amplifier, 22...Down converter, 23...Intermediate frequency amplifier , 24...
Distributor, 25...Pilot receiver, 26,2
7, 28...Reception channel unit, 29, 3
0, 31... Transmission channel unit, 32...
Combiner, 33... Up converter, 34... Transmission power amplifier, A, A'... Center station, B to G,
B′~F′……peripheral stations.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の地球局が互いに対をなす発信用および
応答用の送受信周波数の少なくとも一組を共用し
て要求割当多元接続方式で四線式無線回線を構成
する衛星通信方式において、前記複数の地球局が
それぞれ前記発信用および応答用のいずれの受信
周波数でも選択受信できこれと対をなす応答用ま
たは発信用の送信周波数を送信する送受信手段と
この送受信手段の周波数を制御する制御手段とを
備え、前記送受信手段が前記発信用の受信周波数
を受信する状態で待機し自局にあてた通信要求を
検出すると前記応答用の送信周波数を送信して回
線を構成し自局からの通信要求に対しては前記発
信用の送信周波数を送信し前記応答用の受信周波
数を受信して回線を構成するよう制御されること
を特徴とする衛星通信方式。
1. In a satellite communication system in which a plurality of earth stations share at least one set of transmitting and receiving frequencies for transmission and response that form a pair with each other to configure a four-wire radio line using a demand allocation multiple access method, the plurality of earth stations each comprises a transmitting/receiving means that can selectively receive any of the receiving frequencies for the transmission and for the response, and transmits a corresponding transmission frequency for the response or the transmission, and a control means for controlling the frequency of the transmitting/receiving means, The transmitter/receiver waits while receiving the transmitting frequency, and when it detects a communication request directed to its own station, it transmits the response transmitting frequency to configure a line, and responds to the communication request from its own station. A satellite communication system characterized in that the satellite communication system is controlled to transmit the transmission frequency for the transmission and receive the reception frequency for the response to configure a line.
JP9592482A 1982-06-04 1982-06-04 Satellite communication system Granted JPS58213540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9592482A JPS58213540A (en) 1982-06-04 1982-06-04 Satellite communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9592482A JPS58213540A (en) 1982-06-04 1982-06-04 Satellite communication system

Publications (2)

Publication Number Publication Date
JPS58213540A JPS58213540A (en) 1983-12-12
JPS6313616B2 true JPS6313616B2 (en) 1988-03-26

Family

ID=14150821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9592482A Granted JPS58213540A (en) 1982-06-04 1982-06-04 Satellite communication system

Country Status (1)

Country Link
JP (1) JPS58213540A (en)

Also Published As

Publication number Publication date
JPS58213540A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
US4578815A (en) Wide area coverage radio communication system and method
EP0843918B1 (en) Spot beam location method and apparatus
US5737684A (en) Dama type satellite communication system using non-overlapped multi-spot beam
JP3586417B2 (en) Satellite communication system and child earth station and parent earth station used in the satellite communication system
JPS6313616B2 (en)
JPS5833731B2 (en) Control signal relay method for mobile communications
KR100205645B1 (en) Two channel assigning method in satellite telecommunication system and device thereof
JP2821410B2 (en) Mobile communication system
JPS6243229A (en) Space communication system
KR100217224B1 (en) Power per call controlling method and device in satellite communication system
KR100205643B1 (en) Two channel adjacent assigning method and thereof device in satellite telecommunication system
JPH0120814B2 (en)
KR100205644B1 (en) Two channel assigning method in satellite telecommunication system and device thereof
JPS6342448B2 (en)
KR100205642B1 (en) Tranmitting and receiving channel assigning method in satellite telecommunication system
JP2954450B2 (en) Satellite communication method
JPS59214342A (en) Tdma satellite communication system
JPH0365060B2 (en)
JPH0946287A (en) Satellite communication system
JPH04185122A (en) Satellite communication system
JPH0787418B2 (en) Control channel configuration method
JPH05191324A (en) Line allocation control system
JPH0879157A (en) Circuit management method for multi-beam mobile satellite communication system
JPS60220630A (en) Remote station of communication equipment
JPH0542187B2 (en)