JPS631356B2 - - Google Patents

Info

Publication number
JPS631356B2
JPS631356B2 JP1250180A JP1250180A JPS631356B2 JP S631356 B2 JPS631356 B2 JP S631356B2 JP 1250180 A JP1250180 A JP 1250180A JP 1250180 A JP1250180 A JP 1250180A JP S631356 B2 JPS631356 B2 JP S631356B2
Authority
JP
Japan
Prior art keywords
phosphor
mol
phosphors
hours
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1250180A
Other languages
Japanese (ja)
Other versions
JPS56110780A (en
Inventor
Hiroyuki Kasano
Koichi Megumi
Akira Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1250180A priority Critical patent/JPS56110780A/en
Priority to EP80304489A priority patent/EP0030853B1/en
Priority to DE8080304489T priority patent/DE3069191D1/en
Publication of JPS56110780A publication Critical patent/JPS56110780A/en
Publication of JPS631356B2 publication Critical patent/JPS631356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、けい光体に関する。とくにカラー陰
極線管に用いるけい光体に関する。 希土類又は遷移金属により付活されたアルカリ
土類金属硫化物けい光体とくにCaS、SrS系のけ
い光体は、電子線刺激に対して高効率で発光する
ことが知られている。とくにEu2+付活又はEu2+
及びCe3+共付活けい光体は、赤色発光けい光体
でありその主発光波長は650〜653nm(CaS系)又
は609〜612nm(SrS系)にある。一方Ce3+付活け
い光体は、緑色発光けい光体でありその主発光波
長は520〜523nm(CaS系)又は503〜506nm(SrS
系)にある。また(Ca・Sr)S系けい光体では
その主発光波長は、CaS系のそれとSrS系のそれ
との中間にくることが知られている。 これらのけい光体のうちEu2+、Ce3+付活又は
Eu2+付活けい光体は、それ自体の色が橙〜桃、
赤色であるため、いわゆる顔料を付着させないで
カラー陰極線管に用いても、顔料を付着させた他
の赤色発光けい光体と同じ効果を持つという特色
がある。 上記けい光体の輝度を向上させるために、Cl、
Br、Iなどのハロゲン元素をドープすることは
特公昭47−38747号明細書などに開示されている。
これらのハロゲン元素は、共付活剤(コ・アクチ
ベーター)といわれ、それ自体が発光するのでな
く付活剤であるEu2+やCe3+の発光を強調する役
割をもつ。なおCe3+は、それ自体が発光するが、
Eu2+と共に用いられるときはEu2+の発光を増加
させる役割をもち、増感剤(センシタイザー)と
いわれる。 同様に上記けい光体の輝度向上の目的のために
Pを上記アルカリ土類金属硫化物けい光体にドー
ブさせる試みも前記特公昭47−38747号明細書に
開示されている。 しかしながらこれらの輝度向上の効果はなお十
分でない。 本発明の目的は、発光輝度のより優れたけい光
体を提供することにある。 本発明のけい光体は、CaS:Ln、SrS:Ln又
は(Ca・Sr)S:Ln(ただしLnは、Eu、Ce、
Mn、Cu及びAgからなる群から選ばれた少なく
とも一種の元素を表わす)で表わされるけい光体
に、Baを50〜10000ppm添加してなることを特徴
とする。尚、上記けい光体のBaの一部をMgによ
り置換しても良い。 さらに本発明のけい光体は、上記けい光体に
F、Cl、Br、Iなどのハロゲン元素の存在下に
おいて100〜10000ppmのりん(P)を添加したこ
とを特徴とする。 本発明のけい光体においてEu2+又はCe3+の量
は、アルカリ土類金属硫化物1モル当り10-5
10-2グラム原子であることが好ましい。この量未
満では付活剤としての作用が少なく、またこの量
を越えると発光輝度が減少する。Baの量は、前
述の範囲であり、この範囲未満であつてもこの範
囲を越えても発光強度の増加が認められない。ハ
ロゲン元素の量は、アルカリ土類金属硫化物1モ
ル当り10-5〜10-1グラム原子であることが好まし
い。またPの量は、前述の如く100〜10000ppmで
あることが好ましい。いずれもこの量未満であつ
ても、この量を越えても発光強度の増加が認めら
れないためである。 本発明のけい光体は、 (1) アルカリ土類金属硫化物又は (1′) 硫黄若しくは硫黄化合物と共に加熱して硫
化物となり得るアルカリ土類金属化合物及び硫
黄若しくは硫黄化合物及び (2) Eu、Ce、Mn、Cu及び/又はAg化合物さら
に必要に応じて (3) りん又はりん化合物及び (4) ハロゲン単体又はハロゲン化合物 を加熱して得ることができる。上記アルカリ土類
金属は、けい光体の組成より明らかなように、
Ca及び/又はSrと前記所望の量に該当する量の
Ba又はBa及びMgとからなる。 上記の(3)及び(4)の化合物としてPCl3を用いる
と一種類の化合物でたりる。ハロゲン化合物とし
てハロゲン化アンモニウムを用いるときは、ハロ
ゲン化アンモニウムの一部はフラツクスとして作
用し、かつ一部のハロゲン元素がけい光体中に含
まれる傾向にあるので好ましい。 前記加熱温度は、1000〜1400℃の範囲が好まし
い。 以下本発明を実施例を用いて説明する。 実施例 1〜5 CaCO3とSrCO3をそれぞれ等モル秤量し、この
混合物1モルに対してEuを0.15モル%、Ceを
0.015モル%それぞれ酸化物の形で添加し、さら
に表1の量のBaCO3を混合した試料を1300℃に
10時間保ち酸化物とする。この酸化物をH2Sふん
囲気中で1200℃に3時間保ち赤橙色に着色した
Ca0.5-x/2Sr0.5-x/2BaxS:Eu、Ceなるけい光体を
得た。 比較のためBaを全く加えないで同様にけい光
体を製造した。 各けい光体を10kVの電子線(電流密度1×
10-6A)で励起したときに観測される発光の相対
エネルギー効率(Baのないものを基準として)
を室温で測定した結果及び各けい光体に実際含ま
れるBa濃度を併せて表1に示した。表にみられ
るようにBaの顕著な増感効果が認められる。な
お、各けい光体の発光スペクトルは、同じであつ
て、第1図に示したように643nmに単一ピークを
示す。
FIELD OF THE INVENTION The present invention relates to phosphors. In particular, it relates to phosphors used in color cathode ray tubes. It is known that alkaline earth metal sulfide phosphors activated by rare earth or transition metals, particularly CaS and SrS-based phosphors, emit light with high efficiency when stimulated by electron beams. Especially Eu 2+ activation or Eu 2+
and Ce 3+ -coactivated phosphor is a red-emitting phosphor whose main emission wavelength is 650 to 653 nm (CaS system) or 609 to 612 nm (SrS system). On the other hand, the Ce 3+ activated phosphor is a green-emitting phosphor whose main emission wavelength is 520-523 nm (CaS system) or 503-506 nm (SrS system).
system). It is also known that the main emission wavelength of (Ca.Sr)S-based phosphors is between that of CaS-based and SrS-based phosphors. Among these phosphors, Eu 2+ , Ce 3+ activated or
The Eu 2+ -activated fluorophore itself has an orange to peach color.
Because it is red, it has the characteristic that even if it is used in a color cathode ray tube without so-called pigments attached, it has the same effect as other red-emitting phosphors with pigments attached. In order to improve the brightness of the above phosphor, Cl,
Doping with halogen elements such as Br and I is disclosed in Japanese Patent Publication No. 38747/1983.
These halogen elements are called co-activators, and rather than emitting light themselves, they play a role in emphasizing the light emission of the activators Eu 2+ and Ce 3+ . Although Ce 3+ itself emits light,
When used together with Eu 2+ , it has the role of increasing the luminescence of Eu 2+ and is called a sensitizer. Similarly, an attempt to dope the alkaline earth metal sulfide phosphor with P for the purpose of improving the brightness of the phosphor is also disclosed in Japanese Patent Publication No. 38747/1983. However, these effects of improving brightness are still not sufficient. An object of the present invention is to provide a phosphor with improved luminance. The phosphor of the present invention is CaS:Ln, SrS:Ln or (Ca.Sr)S:Ln (Ln is Eu, Ce,
It is characterized by having 50 to 10,000 ppm of Ba added to a phosphor represented by Mn, Cu, and Ag (representing at least one element selected from the group consisting of Mn, Cu, and Ag). Incidentally, a part of Ba in the above-mentioned phosphor may be replaced with Mg. Furthermore, the phosphor of the present invention is characterized in that 100 to 10,000 ppm of phosphorus (P) is added to the phosphor in the presence of a halogen element such as F, Cl, Br, or I. In the phosphor of the present invention, the amount of Eu 2+ or Ce 3+ is 10 -5 to 1 mole of alkaline earth metal sulfide.
Preferably it is 10 −2 gram atoms. If the amount is less than this amount, the effect as an activator will be low, and if it exceeds this amount, the luminance of light emission will decrease. The amount of Ba is within the above-mentioned range, and no increase in luminescence intensity is observed whether it is below this range or exceeds this range. The amount of halogen element is preferably from 10 -5 to 10 -1 gram atoms per mole of alkaline earth metal sulfide. Further, the amount of P is preferably 100 to 10,000 ppm as described above. This is because no increase in luminescence intensity is observed even if the amount is less than this amount or exceeds this amount. The phosphor of the present invention comprises (1) an alkaline earth metal sulfide, or (1') an alkaline earth metal compound and sulfur or a sulfur compound that can be heated together with sulfur or a sulfur compound to form a sulfide, and (2) Eu, It can be obtained by heating Ce, Mn, Cu and/or Ag compounds, and if necessary, (3) phosphorus or phosphorus compounds and (4) halogen alone or halogen compounds. As is clear from the composition of the phosphor, the above alkaline earth metals are
Ca and/or Sr and an amount corresponding to the desired amount
Consists of Ba or Ba and Mg. When PCl 3 is used as the compound in (3) and (4) above, one type of compound is obtained. When ammonium halide is used as the halogen compound, a portion of the ammonium halide acts as a flux, and a portion of the halogen element tends to be included in the phosphor, which is preferable. The heating temperature is preferably in the range of 1000 to 1400°C. The present invention will be explained below using examples. Examples 1 to 5 Equimolar amounts of CaCO 3 and SrCO 3 were weighed, and 0.15 mol % of Eu and 0.15 mol % of Ce were added to 1 mol of this mixture.
A sample in which 0.015 mol% of each was added in the form of oxide and further mixed with BaCO 3 in the amount shown in Table 1 was heated to 1300℃.
Keep for 10 hours to form oxide. This oxide was kept at 1200℃ for 3 hours in an H 2 S atmosphere and colored reddish-orange.
Ca 0.5-x/2 Sr 0.5-x/2 Ba x S: Eu, Ce phosphors were obtained. For comparison, a phosphor was similarly produced without adding any Ba. Each phosphor is connected to a 10 kV electron beam (current density 1
Relative energy efficiency of emission observed when excited at 10 -6 A) (relative to that without Ba)
The results of measurements at room temperature and the Ba concentrations actually contained in each phosphor are shown in Table 1. As seen in the table, a significant sensitizing effect of Ba is observed. The emission spectra of each phosphor are the same and exhibit a single peak at 643 nm, as shown in FIG.

【表】 実施例 6〜10 CaCO31モルに対しEu2O30.08モル%、
CeO20.01モル%及び表2に記載の量のBaCO3
それぞれ混合し、1300℃に10時間保ち、得られた
酸化物をH2SとH2の混合ふん囲気で1200℃に4
時間保持し、桃赤色に着色したCa1-xBaxS:Eu、
Ceなるけい光体を得た。この構造はX線によつ
て確かめられた。また比較のためBaを混合しな
い試料を用いて同様にけい光体を合成した。 各けい光体を室温で10kV(電流密度1×
10-6A)の電子線を用いて励起し、その発光スペ
クトル、発光強度を測定した。各けい光体ともそ
の発光スペクトルは同じで、第2図に示す通り
652nmに単一ピークを有する赤色発光を示す。
Ba濃度、相対エネルギー効率(Baを含まないも
のを基準とする)は、表2の通りである。
[Table] Examples 6 to 10 0.08 mol% of Eu 2 O 3 per 1 mol of CaCO 3 ,
CeO 2 0.01 mol % and BaCO 3 in the amounts listed in Table 2 were mixed and kept at 1300°C for 10 hours, and the resulting oxide was heated to 1200°C in a mixed atmosphere of H 2 S and H 2 for 4 hours.
Ca 1-x Ba x S: Eu, which was kept for a time and colored pink-red.
A phosphor called Ce was obtained. This structure was confirmed by X-rays. For comparison, a phosphor was synthesized in the same manner using a sample that did not contain Ba. Each phosphor was powered at 10kV (current density 1×) at room temperature.
It was excited using an electron beam of 10 -6 A), and its emission spectrum and intensity were measured. The emission spectrum of each phosphor is the same, as shown in Figure 2.
It exhibits red emission with a single peak at 652 nm.
The Ba concentration and relative energy efficiency (based on those not containing Ba) are shown in Table 2.

【表】 実施例 11〜15 実施例6〜10のCaCO3に代えてSrCO3を用い、
同様の処理を行なつてそれぞれ橙色に着色した
Sr1-xBaxS:Eu、Ceなるけい光体を得た。結果
を表3に示す。各けい光体の発光スペクトルは、
第3図に示す如く613nmに単一ピークを示す橙色
発光である。
[Table] Examples 11 to 15 Using SrCO 3 in place of CaCO 3 in Examples 6 to 10,
Each was colored orange by the same process.
A phosphor of Sr 1-x Ba x S: Eu, Ce was obtained. The results are shown in Table 3. The emission spectrum of each phosphor is
As shown in FIG. 3, this is orange light emission with a single peak at 613 nm.

【表】 実施例 16〜22 CaCO31モルに対してCeO20.15モル%及び表4
記載の量のBaCO3にそれぞれ混合し、1400℃に
5時間保持し、得られた酸化物H2Sふん囲気に
1200℃に3時間保ち、Ca1-xBaxS:Ceなるけい
光体を得た。この構造は、X線回折によつて確か
められた。また比較のためBaCO3を混合しない
試料を用いて同様の処理を行なつてけい光体を得
た。これらの各けい光体の発光スペクトルは、第
4図に示す如くであり、520nmに主発光ピーク、
580nmに肩を持つ緑色発光を示した。
[Table] Examples 16-22 0.15 mol% of CeO 2 per 1 mol of CaCO 3 and Table 4
Each was mixed with the stated amount of BaCO 3 and kept at 1400°C for 5 hours, and the resulting oxide was mixed with H 2 S atmosphere.
The mixture was kept at 1200° C. for 3 hours to obtain a phosphor called Ca 1-x Ba x S:Ce. This structure was confirmed by X-ray diffraction. For comparison, a phosphor was obtained by performing the same treatment using a sample without BaCO 3 mixed therein. The emission spectra of each of these phosphors are as shown in Figure 4, with a main emission peak at 520 nm,
It exhibited green luminescence with a shoulder at 580 nm.

【表】 実施例 23〜30 CaCO3に0.1モル%のEu2O3、0.01モル%の
CeO2及び表5記載の量のBaCO3をそれぞれ混合
し、1300℃で4時間空気中で焼成し、得られた酸
化物をH2Sふん囲気で1200℃、2時間硫化し、さ
らにPCl35モル%を含むAr0.5気圧、H2S0.5気圧
の混合ガス中で1200℃に30分加熱し、桃色に着色
したCa1-xBaxS:Eu、Ce、P、Clなるけい光体
が得られた。比較のためBaCO3を加えることな
く、かつ空気中の焼成時間を5時間としてBaを
含まないけい光体を得た。これらのけい光体を2
×10-6Torr真空下で10kV、1×10-6Aの電子線
を照射し相対エネルギー効率(Baを含まないも
のを基準とする)を測定した結果を表5に示す。
なお各試料の発光スペクトルは、P及びClを含ま
ないけい光体のそれとほとんど同じであつた。
[Table] Examples 23-30 0.1 mol% Eu 2 O 3 and 0.01 mol% CaCO 3
CeO 2 and BaCO 3 in the amounts listed in Table 5 were mixed and calcined in air at 1300°C for 4 hours. The resulting oxide was sulfided at 1200°C for 2 hours in an H 2 S atmosphere, and then PCl 3 Ca 1-x Ba x S: Eu, Ce, P, Cl was heated to 1200°C for 30 minutes in a mixed gas containing 5 mol% of Ar 0.5 atm and H 2 S 0.5 atm. A light body was obtained. For comparison, a Ba-free phosphor was obtained without adding BaCO 3 and firing in air for 5 hours. These phosphors are 2
Table 5 shows the results of measuring the relative energy efficiency (based on Ba-free) by irradiating the sample with an electron beam of 10 kV and 1 x 10 -6 A under ×10 -6 Torr vacuum.
Note that the emission spectrum of each sample was almost the same as that of the phosphor containing no P or Cl.

【表】【table】

【表】 実施例 31〜33 実施例27と同様の原料にさらにMgCO3を0.066
モル%、0.132モル%及び0.264モル%それぞれ加
えて同様の処理を行なつてCa1-x-yBaxMgyS:
Eu、Ce、P、Clなるけい光体を合成した。これ
らのけい光体の相対エネルギー効率は、表6の通
りである。実施例27などで示したけい光体のよう
にCa格子点をBaイオンによつて置換したときBa
イオンのイオン半径(1.43Å)がCaイオンのそれ
(1.06Å)より大きいため、置換によつて格子歪
が生ずるが、それをCaイオンより小さいイオン
半径をもつMgイオン(0.78Å)により補償しよ
うとするものである。すなわち実施例32は、計算
上Baイオンの混入によつて生ずる格子歪を丁度
打消すような割合でMgイオンを混入したもので
あり、Mgイオンの量がこれよりも多いもの又は
少ないものに比較してエネルギー効率が高い。
Mgの量があまり多いものは、Baのみを加えたも
のよりエネルギー効率が低下する。なお発光スペ
クトルは、653nmに単一のピークを示し、Mg、
P、Clを含まないもののそれとほとんど同じであ
つた。
[Table] Examples 31 to 33 The same raw materials as in Example 27 were further added with 0.066 MgCO 3
By adding mol%, 0.132 mol% and 0.264 mol% respectively and performing the same treatment, Ca 1-xy Ba x Mg y S:
We synthesized phosphors of Eu, Ce, P, and Cl. The relative energy efficiencies of these phosphors are shown in Table 6. When Ca lattice points are replaced by Ba ions as in the phosphor shown in Example 27, Ba
Since the ionic radius of the ion (1.43 Å) is larger than that of the Ca ion (1.06 Å), lattice distortion will occur due to substitution, but this will be compensated for by the Mg ion (0.78 Å), which has a smaller ionic radius than the Ca ion. That is. In other words, in Example 32, Mg ions were mixed in at a rate that calculated to exactly cancel out the lattice distortion caused by the mixing of Ba ions, and compared to those with a larger or smaller amount of Mg ions. and high energy efficiency.
If the amount of Mg is too high, the energy efficiency will be lower than if only Ba is added. The emission spectrum shows a single peak at 653 nm, and Mg,
The results were almost the same as those not containing P and Cl.

【表】 実施例 34 SrCO3に0.1モル%のEu2O3、0.01モル%のCeO2
及び0.1モル%のBaCO3をを混合し、硫化の温度
を1000℃に、またPCl3の濃度3モル%としたほ
か実施例23〜30と同様に処理した。得られたけい
光体を粉砕し、再度Ar0.5気圧、H2S0.5気圧の混
合ガス中に1050℃に2時間保持した。このけい光
体は、Sr1-xBaxS:Eu、Ce、P、Clなる式で表
わされ、その相対エネルギー効率は、比較のため
BaCO3を混合せずに同様の処理をして得たもの
に比較して12.5%向上した。また発光スペクトル
は、612nmに単一ピークを示し、P、Clを含まな
いものとほとんど同じであつた。 実施例 35 実施例34の場合のEu2O3を混合せずにCeO2
0.15モル%として同様の処理を行ない、Sr1-xBax
S:Ce、P、Clなるけい光体を得た。このけい
光体の相対エネルギー効率は、比較のため
BaCO3を混合せずに同様の処理をして得たもの
に比較して22%向上した。また発光スペクトルは
第5図に示すごとく506、560nmの複合ピークで
あり、Baを加えないものと同じであつた。 実施例 36 CaCO350モル%、SrCO350モル%の混合物に
CeO20.15モル%、BaCO30.1モル%混合し、空気
中で1300℃に4時間保ち、得られた酸化物をH2S
ふん囲気中で1150℃に2時間保ち硫化し、
Ca0.5-x/2Sr0.5-x/2BaxS:Ceなるけい光体を得た。
このけい光体を真空中で10kV、1×10-6Aの電
子線で照射すると514nmに主ピーク、578nmに副
ピークを有する発光スペクトルが得られ、その相
対エネルギー効率は、比較のためBaを加えるこ
となく製造したものより14%向上した。 実施例 37 Eu2+を0.01%含む水溶液を6gのCaCO3に混合
し、混合物中のEu2+の濃度がCaCO3に対して0.1
モル%となるようにした。この混合物を空気中で
1400℃に4時間保持し、3.4gのEu添加CaO焼成
物を得た。この酸化物を粉砕後2等分し、その一
方を石英ボートに充填して石英反応管中に入れ、
1150℃としH2Sガスを毎分100c.c.の割合で流して
3時間硫化した。この試料をaとする。一方残り
の焼成物1.7gを同様に硫化したが、この際最初の
2時間はH2Sのみ、つぎの30分はPCl3を10-3モル
%含むArを流し、最後の30分は再びH2Sのみを
流して硫化物を得た(試料bとする)。 これらとは別にBaCO3を0.1モル%含むCaCO3
を用いて上記と同様にEuを混合し、試料bの場
合と同様の処理を行なつてCa1-xBaxS:Eu、P、
Clなるけい光体を得た(試料cとする)。試料b
及びcに含まれるP濃度は200ppm、試料cに含
まれるBa濃度は200ppmであつた。各試料を5×
10-6Torr真空下で10kVの電子線で励起したとき
得られる発光スペクトルは、652nmに単一ピーク
を有し全く同じであるが相対エネルギー効率は、
試料aを1として、試料bは、1.18、試料cは、
1.34であつた。 実施例 38〜43 CaCO32g及びSrCO32.95gに炭酸塩に対して
Eu2O3を0.05モル%、CeO2を0.01モル%混合し、
さらに表7記載の量のBaCO3を混合した混合物
をそれぞれ準備した。なお比較のためBaCO3
混合しないものも準備した。これらをそれぞれ空
気中で1300℃に4時間焼成し、ついでこの焼成物
を石英ボート中に充填し、各々石英反応管中にお
き、1200℃に加熱しH2Sガスを流す。1.5時間後、
PCl3を0.01モル%含むArをH2Sガスと等流量30分
流し、さらにH2Sガスのみを30分流す。かくて
Ca0.5-x/2Sr0.5-x/2BaxS:Eu、Ce、P、Clなるけ
い光体及び比較のためBaを含まないけい光体を
得た。これらのけい光体の電子線励起による発光
スペクトルは、いずれも640nmに単一のピークを
有し全く同じであるが、その発光強度を相対エネ
ルギー効率で比較すると表7の通りであり、Ba
添加の著しい効果が認められた。
[Table] Example 34 SrCO 3 with 0.1 mol% Eu 2 O 3 and 0.01 mol% CeO 2
and 0.1 mol % of BaCO 3 were mixed, the sulfiding temperature was set to 1000° C., and the concentration of PCl 3 was set to 3 mol %, and the same treatment as in Examples 23 to 30 was carried out. The obtained phosphor was crushed and held again at 1050° C. for 2 hours in a mixed gas of Ar 0.5 atm and H 2 S 0.5 atm. This phosphor is expressed by the formula Sr 1-x Ba x S: Eu, Ce, P, Cl, and its relative energy efficiency is shown for comparison.
This was improved by 12.5% compared to that obtained by the same treatment without mixing BaCO 3 . The emission spectrum showed a single peak at 612 nm, and was almost the same as that without P and Cl. Example 35 CeO 2 without mixing Eu 2 O 3 in Example 34
Similar treatment was carried out with 0.15 mol% Sr 1-x Ba x
S: Ce, P, Cl phosphors were obtained. For comparison, the relative energy efficiency of this phosphor is
This was an improvement of 22% compared to that obtained by the same treatment without mixing BaCO 3 . Furthermore, the emission spectrum had a composite peak at 506 and 560 nm as shown in Figure 5, and was the same as that without Ba added. Example 36 In a mixture of 50 mol% CaCO3 and 50 mol% SrCO3
CeO 2 0.15 mol% and BaCO 3 0.1 mol% were mixed, kept at 1300°C in air for 4 hours, and the resulting oxide was heated with H 2 S.
Sulfurized by keeping it at 1150℃ for 2 hours in an atmosphere of feces,
A phosphor of Ca 0.5-x/2 Sr 0.5-x/2 Ba x S:Ce was obtained.
When this phosphor is irradiated with an electron beam of 10 kV and 1 × 10 -6 A in vacuum, an emission spectrum with a main peak at 514 nm and a sub-peak at 578 nm is obtained, and its relative energy efficiency is compared with that of Ba for comparison. This was a 14% improvement over the product made without the addition. Example 37 An aqueous solution containing 0.01% Eu 2+ was mixed with 6 g of CaCO 3 so that the concentration of Eu 2+ in the mixture was 0.1 relative to CaCO 3
It was made to be mol%. This mixture in the air
It was maintained at 1400°C for 4 hours to obtain 3.4g of Eu-added CaO calcined product. After crushing this oxide, divide it into two equal parts, fill one half into a quartz boat, and put it into a quartz reaction tube.
The temperature was 1150°C and H 2 S gas was flowed at a rate of 100 c.c. per minute to sulfurize for 3 hours. This sample is designated as a. On the other hand, 1.7 g of the remaining fired material was sulfided in the same way, but only H 2 S was flowed for the first 2 hours, Ar containing 10 -3 mol% of PCl 3 was flowed for the next 30 minutes, and again for the last 30 minutes. A sulfide was obtained by flowing only H 2 S (referred to as sample b). Apart from these, CaCO 3 containing 0.1 mol% BaCO 3
Mix Eu in the same manner as above using
A phosphor called Cl was obtained (referred to as sample c). sample b
The P concentration contained in sample c and sample c was 200 ppm, and the Ba concentration contained in sample c was 200 ppm. 5x each sample
The emission spectra obtained when excited with a 10 kV electron beam under a 10 -6 Torr vacuum are exactly the same with a single peak at 652 nm, but the relative energy efficiency is
Sample a is 1, sample b is 1.18, sample c is
It was 1.34. Examples 38-43 2g of CaCO3 and 2.95g of SrCO3 for carbonate
Mix 0.05 mol% of Eu2O3 and 0.01 mol% of CeO2 ,
Furthermore, mixtures containing BaCO 3 in amounts shown in Table 7 were prepared. For comparison, a sample without BaCO 3 was also prepared. Each of these was fired in air at 1300°C for 4 hours, and then the fired products were filled into a quartz boat, each placed in a quartz reaction tube, heated to 1200°C, and H 2 S gas was passed through. After 1.5 hours,
Ar containing 0.01 mol% of PCl 3 was flowed at the same flow rate as H 2 S gas for 30 minutes, and then only H 2 S gas was flowed for 30 minutes. Thus
Ca 0.5-x/2 Sr 0.5-x/2 Ba x S: Eu, Ce, P, Cl phosphors and a phosphor containing no Ba were obtained for comparison. The emission spectra of these phosphors upon electron beam excitation are exactly the same, with a single peak at 640 nm, but when comparing their emission intensities in terms of relative energy efficiency, Table 7 shows that Ba
A significant effect of the addition was observed.

【表】 以上の各実施例は、Ca、Srなどの炭酸塩を原
料としたが硫酸塩、硝酸塩、硫化物などを用いる
ことも可能である。 また、これらけい光体の付活剤としてEu、Ce
以外にMn、Cu、Agなどを用いた場合もBa又は
BaとMgによる増感作用が認められた。 即ち、その実例を例示すれば下記の通りであ
る。 尚、表8でηEは相対エネルギー効率を示し、
各々Baのないものを基準とした発光エネルギー
効率である。
[Table] In each of the above examples, carbonates such as Ca and Sr were used as raw materials, but sulfates, nitrates, sulfides, etc. can also be used. In addition, Eu and Ce are used as activators for these phosphors.
In addition, when Mn, Cu, Ag, etc. are used, Ba or
Sensitizing effects by Ba and Mg were observed. That is, examples are as follows. In addition, in Table 8, η E indicates relative energy efficiency,
Each is the luminous energy efficiency based on the one without Ba.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図及び第5図
は、本発明の一実施例の発光スペクトルを示す図
である。
FIG. 1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5 are diagrams showing emission spectra of one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 一般式M1-xBaxS;Ln(ただし、MはCa及び
Srからなる群から選ばれた少なくとも一種の元
素、LnはEu、Ce、Mn、Cu及びAgからなる群か
ら選ばれた少なくとも一種の元素を表わす;5×
10-5x0.01)で表わされるけい光体。 2 上記一般式で表わされるけい光体のBaの一
部をMgにより置換してなる特許請求の範囲第1
項記載のけい光体。 3 上記一般式で表わされるけい光体にさらにハ
ロゲン元素の存在下にリン(P)を100〜
10000ppm添加してなる特許請求の範囲第1項又
は第2項記載のけい光体。
[Claims] 1 General formula M 1-x Ba x S; Ln (where M is Ca and
At least one element selected from the group consisting of Sr; Ln represents at least one element selected from the group consisting of Eu, Ce, Mn, Cu, and Ag; 5×
10 -5 x 0.01). 2. Claim 1 obtained by replacing a part of Ba in the phosphor represented by the above general formula with Mg.
The phosphor described in Section 1. 3. Phosphorus (P) is further added to the phosphor represented by the above general formula in the presence of a halogen element.
The phosphor according to claim 1 or 2, wherein 10,000 ppm is added.
JP1250180A 1979-12-12 1980-02-06 Fluorescent substance Granted JPS56110780A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1250180A JPS56110780A (en) 1980-02-06 1980-02-06 Fluorescent substance
EP80304489A EP0030853B1 (en) 1979-12-12 1980-12-12 Phosphor and method of manufacturing the phosphor
DE8080304489T DE3069191D1 (en) 1979-12-12 1980-12-12 Phosphor and method of manufacturing the phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1250180A JPS56110780A (en) 1980-02-06 1980-02-06 Fluorescent substance

Publications (2)

Publication Number Publication Date
JPS56110780A JPS56110780A (en) 1981-09-02
JPS631356B2 true JPS631356B2 (en) 1988-01-12

Family

ID=11807107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1250180A Granted JPS56110780A (en) 1979-12-12 1980-02-06 Fluorescent substance

Country Status (1)

Country Link
JP (1) JPS56110780A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585812A (en) * 2001-11-14 2005-02-23 沙诺夫公司 Red photoluminescent phosphors
JP2007031549A (en) * 2005-07-26 2007-02-08 National Univ Corp Shizuoka Univ Red phosphor, method for producing red phosphor, and el element

Also Published As

Publication number Publication date
JPS56110780A (en) 1981-09-02

Similar Documents

Publication Publication Date Title
US4382207A (en) Luminescent material and discharge lamp containing the same
JP2697688B2 (en) Long afterglow phosphor
EP2100943A1 (en) ABOS:M-based phosphors and light sources containing these phosphors
KR101258397B1 (en) Copper-Alkaline-Earth-Silicate mixed crystal phosphors
Sommerdijk et al. Behavior of phosphors with aluminate host lattices
KR880001523B1 (en) Phosphors and process for producing same
JPH0625356B2 (en) Light emitting screen and low pressure mercury vapor discharge lamp provided with the same
US4353808A (en) Phosphors and process for producing the same
US3981819A (en) Luminescent sulfides of monovalent and trivalent cations
US3970582A (en) Alpha barium zinc cadmium sulfide phosphors and method
US3702828A (en) Europium-activated barium and strontium,calcium aluminum fluoride phosphors
JPH0578659A (en) Fluorescent substance and fluorescent lamp
JPS6118952B2 (en)
US4246630A (en) Ultraviolet emitting Ce alkaline earth aluminate lamp phosphors and lamps utilizing same
US20050173675A1 (en) Method of manufacturing a luminescent material
JPS631356B2 (en)
US5112524A (en) Unactivated yttrium tantalate phosphor
KR102631178B1 (en) Blue light-emitting phosphor, light-emitting element, light-emitting device, and white light-emitting device
EP0030853B1 (en) Phosphor and method of manufacturing the phosphor
US3630945A (en) Divalent europium activated alkaline earth aluminum fluoride luminescent materials and process
JP2854635B2 (en) Phosphor and cathode ray tube using the same
US3856697A (en) Luminescent alkali metal gallate
JP2863160B1 (en) Phosphorescent phosphor
KR100364494B1 (en) A red fluorescent body based on gadolinium oxide and methods of preparing the same
KR850001787B1 (en) Halophosphate fluorescent substants