JPS63134818A - Heat supply generation plant - Google Patents

Heat supply generation plant

Info

Publication number
JPS63134818A
JPS63134818A JP27875086A JP27875086A JPS63134818A JP S63134818 A JPS63134818 A JP S63134818A JP 27875086 A JP27875086 A JP 27875086A JP 27875086 A JP27875086 A JP 27875086A JP S63134818 A JPS63134818 A JP S63134818A
Authority
JP
Japan
Prior art keywords
gas turbine
gas
exhaust
air
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27875086A
Other languages
Japanese (ja)
Other versions
JPH066908B2 (en
Inventor
Masatoshi Kudome
正敏 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27875086A priority Critical patent/JPH066908B2/en
Publication of JPS63134818A publication Critical patent/JPS63134818A/en
Publication of JPH066908B2 publication Critical patent/JPH066908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To attempt reduction of heat loss by supplying drain in exhaust gas to an exhaust heat recovering device and an intermediate air cooler, and after that, by supplying it to a combustor. CONSTITUTION:An exhaust heat recovering device 12 and an exhaust gas condenser 14 are provided in an exhaust system of a gas turbine 10. The recovered drain is supplied to the exhaust gas recovering device 12 and an intermediate air cooler 3, and after that, supplied to a combustor 6 through a spray line 8. Heat loss from exhaust gas can thus be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガスタービン又はガスエンジンを有する発電
設備又は熱併給発電設備に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to power generation equipment or cogeneration power generation equipment having a gas turbine or gas engine.

従来の技術 従来技術の概念を第4図に示す。低圧空気圧縮機11高
圧空気圧縮機5及び発電機9は、ガスタービン燃焼器6
から供給される燃焼ガスによって駆動されるガスタービ
ン10と同軸に接続されており、ガスタービン10を動
力源として運転される。
Prior Art The concept of the prior art is shown in FIG. The low pressure air compressor 11, the high pressure air compressor 5 and the generator 9 are connected to the gas turbine combustor 6.
It is connected coaxially with a gas turbine 10 that is driven by combustion gas supplied from the engine, and is operated using the gas turbine 10 as a power source.

ガスタービン燃焼器6において燃料を燃焼させるために
必要な空気は、低圧空気圧縮機1から吸入されて圧縮さ
れ、出口空気ダクト2を通って中間空気冷却器3に送ら
れる。ここで冷却された圧縮空気は出口空気ダクト4を
通って高圧空気圧縮機5に送られ、所定の圧力まで圧縮
されてガスタービン燃焼器6に供給される。ガスタービ
ン燃焼器6に供給された圧縮空気は、燃料ライン7から
供給される燃料を燃焼させて燃焼ガスを生成し、ガスタ
ービン10を駆動させてから排気ダクト11を経て煙突
16から大気に放出される。
The air required to burn the fuel in the gas turbine combustor 6 is drawn in from the low-pressure air compressor 1, compressed, and sent through the outlet air duct 2 to the intermediate air cooler 3. The compressed air cooled here is sent to a high-pressure air compressor 5 through an outlet air duct 4, compressed to a predetermined pressure, and supplied to a gas turbine combustor 6. The compressed air supplied to the gas turbine combustor 6 burns the fuel supplied from the fuel line 7 to generate combustion gas, which drives the gas turbine 10 and is then released into the atmosphere from the chimney 16 through the exhaust duct 11. be done.

このような発電設備において、スプレィライン8を設け
てガスタービン燃焼器6に水を注入する方法は従来より
実施されているが、その目的はガスタービン燃焼器で発
生するNOXの抑制及びガスタービンの出力増加にあっ
た。しかも注水は系外から供給され、燃焼ガスと共に熱
回収されないまま煙突から大気に放出されている。なお
複合発電設備においては、図示を省略した排熱回収ボイ
ラに供給されて蒸気タービンを駆動する。
In such power generation equipment, a method of injecting water into the gas turbine combustor 6 by providing a spray line 8 has been practiced conventionally, but the purpose of this method is to suppress NOx generated in the gas turbine combustor and to improve the gas turbine. There was an increase in output. Moreover, the water is supplied from outside the system and is emitted into the atmosphere from the chimney together with the combustion gases without any heat recovery. In the combined power generation facility, the heat is supplied to an exhaust heat recovery boiler (not shown) to drive a steam turbine.

また中間空気冷却器3において、第4図に示すように冷
却水を導入循環して冷却する場合はその伝熱量か熱損失
となり、図示を省略した注水による直接冷却の場合は高
圧空気圧縮機5の通過流体量が増大する。
In addition, in the intermediate air cooler 3, when cooling is performed by introducing and circulating cooling water as shown in FIG. The amount of fluid passing through increases.

発明が解決しようとする問題点 前述の従来例によれば、下記の問題点があった。The problem that the invention seeks to solve According to the conventional example described above, there were the following problems.

(1)  系外からの給水をガスタービン燃焼器に注入
口、燃焼ガスと共に、大気に放出されることから、注水
量相当の補給水を必要とするため補給水量が膨大となる
。従って、このような運転は不可能となるか、運転コス
トの増大を招く。
(1) Since the water supplied from outside the system is injected into the gas turbine combustor and released into the atmosphere together with the combustion gas, make-up water equivalent to the amount of water injection is required, resulting in a huge amount of make-up water. Therefore, such operation becomes impossible or increases operating costs.

(2)ガスタービン排気を直接大気へ放出する場合には
、排気熱損失が大きいためガスタービン発電設備の効率
は著しく低い。
(2) When the gas turbine exhaust gas is directly discharged into the atmosphere, the efficiency of the gas turbine power generation equipment is extremely low due to large exhaust heat loss.

(3)複合発電方式を採用し、排熱回収ボイラでガスタ
ービン排気保有熱を回収して蒸気タービン発電を行う場
合でも、蒸気タービンサイクルの効率が30%以下と低
いため発電プラントの総合効率はせいぜい45%程度が
限度である。
(3) Even when a combined power generation system is adopted and steam turbine power generation is performed by recovering the heat retained in the gas turbine exhaust gas with an exhaust heat recovery boiler, the overall efficiency of the power generation plant is low because the efficiency of the steam turbine cycle is low at less than 30%. The limit is about 45% at most.

(4)中間空気冷却器の交換熱量は冷却水に棄てられる
ためガスタービン効率が低下する。また、中間空気冷却
器に直接水を注入して冷却する場合には、高圧空気圧縮
機を通過する流体量が増加するため圧縮機所要動力が増
加して効率低下となる。なお、燃料投入量を増加しても
出力はほとんど増加しない。
(4) The heat exchanged by the intermediate air cooler is discarded into the cooling water, resulting in a decrease in gas turbine efficiency. Furthermore, when water is directly injected into the intermediate air cooler for cooling, the amount of fluid passing through the high-pressure air compressor increases, which increases the compressor's required power and reduces efficiency. Note that even if the amount of fuel input is increased, the output hardly increases.

(5)空気比(理論空気量に対する実際の燃焼空気量の
比率)が通常3〜4と大きいので圧縮機所要動力が大き
く、また排気損失も大きい。従って、効率が低く出力も
少ない。
(5) Since the air ratio (the ratio of the actual amount of combustion air to the theoretical amount of air) is usually as large as 3 to 4, the power required for the compressor is large and the exhaust loss is also large. Therefore, the efficiency is low and the output is low.

(6)空気比が大きいためNOxの発生量が多く、脱硝
装置等の設置が必要となり建設費が増大する。
(6) Since the air ratio is large, a large amount of NOx is generated, and it is necessary to install a denitrification device, etc., which increases construction costs.

問題点を解決するための手段 本発明は、前述の問題点を解決するもので、ガスタービ
ン燃焼器の燃焼ガス出口温度を制御する蒸気又は水を供
給するスプレィラインを具備し、前記ガスタービン燃焼
器に供給する燃焼用空気の空気比を安定燃焼が確保でき
る最低限まで低減するようにするガスタービン熱併給発
電設備において、ガスタービンの排気側に直列に設置さ
れる排気熱回収装置及び排ガス凝縮器と、前記排ガス凝
縮器で凝縮した排ガス中のドレンを回収するドレンタン
クと、低圧空気圧縮機で圧縮された燃焼用空気を冷却す
る中間空気冷却器とを具備し、前記ドレンタンクに回収
したドレンを前記排気熱回収装置及び前記中間空気冷却
器へ前記ガスタービン燃焼器の燃焼ガス出口温度及び前
記中間空気冷却器の出口空気温度がそれぞれ所定の温度
となるように供給して熱回収を行い、この時発生する蒸
気または高温水を前記スプレィラインを介して前記ガス
タービン燃焼器に供給する構成としたことを特徴とする
、熱併給発電設備である。
Means for Solving the Problems The present invention solves the above-mentioned problems, and includes a spray line for supplying steam or water for controlling the combustion gas outlet temperature of the gas turbine combustor. In gas turbine combined heat and power generation equipment that reduces the air ratio of combustion air supplied to the combustion chamber to the minimum level that ensures stable combustion, an exhaust heat recovery device and exhaust gas condensation device are installed in series on the exhaust side of the gas turbine. a drain tank for collecting drain in the exhaust gas condensed by the exhaust gas condenser, and an intermediate air cooler for cooling the combustion air compressed by the low-pressure air compressor, and the exhaust gas is collected in the drain tank. Heat recovery is performed by supplying condensate to the exhaust heat recovery device and the intermediate air cooler so that the combustion gas outlet temperature of the gas turbine combustor and the outlet air temperature of the intermediate air cooler reach predetermined temperatures, respectively. This cogeneration power generation equipment is characterized in that the steam or high-temperature water generated at this time is supplied to the gas turbine combustor via the spray line.

作用 前述の手段によれば、排ガス凝縮器で凝縮したドレンは
、排気熱回収装置及び中間空気冷却器への給水として供
給されて熱回収を行い、そこで発生した蒸気又は高温水
をガスタービン燃焼器の燃焼ガス出口温度制御やガスタ
ービン駆動流体として利用できる。またこの蒸気又は高
温水は再び排ガス凝縮器でドレンとして回収されるだけ
でなく、余剰の給水、蒸気又は高温水を他の系に供給す
ることも可能となり、熱損失の僅少な熱併合発電設備と
なる。
According to the above-mentioned means, the condensate condensed in the exhaust gas condenser is supplied as water supply to the exhaust heat recovery device and the intermediate air cooler for heat recovery, and the steam or high-temperature water generated there is transferred to the gas turbine combustor. It can be used to control combustion gas outlet temperature and as a gas turbine driving fluid. In addition, this steam or high-temperature water is not only recovered as drain in the exhaust gas condenser, but also surplus feed water, steam, or high-temperature water can be supplied to other systems, creating a heat-combined power generation facility with minimal heat loss. becomes.

実施例 第1図に本発明の第1実施例を示して説明する。Example A first embodiment of the present invention is shown in FIG. 1 and will be described.

低圧空気圧縮機!、高圧空気圧縮機5及び発電機9はガ
スタービン10と同軸に接続されており、ガスタービン
10を動力源として運転される。ガスタービンlOの一
部を構成するガスタービン燃焼器6に燃料ライン7から
供給される燃料(LNG等)の燃焼用空気は、低圧空気
圧縮機1に吸入されて圧縮され、出口空気ダクト2を通
って中間空気冷却器3に送られる。ここで冷却された燃
焼用空気は、出口空気ダクト4を通って高圧空気圧縮機
5に送られ、所定の圧力まで圧縮されてガスタービン燃
焼器6に供給される。なお、空気比は安定燃焼が確保で
きる最低限とし、通常2以下となる。燃焼によって生成
された燃焼ガスは、スプレィライン8から供給される水
又は蒸気によって温度制御されてガスタービン10に送
られる。ガスタービン10を駆動した燃焼ガスは、排気
ダクト11を経て熱回収装置11に到り、給水加熱によ
り保有熱が回収される。さらに出口ガスダクト13を経
て排ガス凝縮器14に送られ、含有水分をドレン化して
回収後出口ダクト15を経て煙突16より大気に放出さ
れる。
Low pressure air compressor! , the high-pressure air compressor 5 and the generator 9 are connected coaxially to the gas turbine 10 and are operated using the gas turbine 10 as a power source. Combustion air for fuel (LNG, etc.) is supplied from a fuel line 7 to a gas turbine combustor 6 that constitutes a part of the gas turbine 1O, and is sucked into the low-pressure air compressor 1 and compressed. The air is then sent to the intermediate air cooler 3. The combustion air cooled here is sent to the high-pressure air compressor 5 through the outlet air duct 4, compressed to a predetermined pressure, and supplied to the gas turbine combustor 6. Note that the air ratio is the minimum that can ensure stable combustion, and is usually 2 or less. Combustion gas generated by combustion is temperature-controlled by water or steam supplied from the spray line 8 and sent to the gas turbine 10. The combustion gas that has driven the gas turbine 10 passes through the exhaust duct 11 and reaches the heat recovery device 11, where the retained heat is recovered by heating the feed water. Further, the exhaust gas is sent to the exhaust gas condenser 14 via the outlet gas duct 13, where the moisture contained therein is converted into drain, and after recovery, it is released into the atmosphere from the chimney 16 via the outlet duct 15.

排ガス凝縮器14では、冷却水ポンプ30で供給される
冷却水または図示を省略した空気によって燃焼ガスが冷
却され、水分(湿分)はドレン化してドレンタンク17
に回収される。ドレンタンク17への補給水が必要な場
合には補給水ライン33より供給することができ、補給
水量制御弁32によって制御される。また、ドレンタン
ク17に沈澱したスラッジ等の不純物は、ブローライン
19より排出される。
In the exhaust gas condenser 14, the combustion gas is cooled by cooling water supplied by the cooling water pump 30 or air (not shown), and water (moisture) is converted into drain and sent to the drain tank 17.
will be collected. When makeup water to the drain tank 17 is required, it can be supplied from the makeup water line 33 and is controlled by the makeup water amount control valve 32. Further, impurities such as sludge that have settled in the drain tank 17 are discharged from the blow line 19.

ドレンタンク17に回収されたドレンは給水ポンプ20
に昇圧され、燃焼器出口温度制御弁22に制御されてか
ら排気熱回収装置12及び中間空気冷却器3へ供給され
る。排気熱回収装置12へ供給される給水量は、中間空
気冷却器3の出口温度が所定温度になるように、温度コ
ントローラ26に連動する給水制御弁25によって制御
される。すなわち、中間空気冷却器3へ給水ライン27
を経て供給される給水量は、中間空気冷却器3の出口に
おける燃焼用空気温度が所定温度となるように制御され
る。
The drain collected in the drain tank 17 is sent to the water supply pump 20
After being controlled by the combustor outlet temperature control valve 22, it is supplied to the exhaust heat recovery device 12 and the intermediate air cooler 3. The amount of water supplied to the exhaust heat recovery device 12 is controlled by a water supply control valve 25 linked to a temperature controller 26 so that the outlet temperature of the intermediate air cooler 3 becomes a predetermined temperature. That is, the water supply line 27 to the intermediate air cooler 3
The amount of water supplied through the intermediary air cooler 3 is controlled so that the temperature of the combustion air at the outlet of the intermediate air cooler 3 is a predetermined temperature.

排気熱回収装置12及び中間空気冷却器3において熱交
換によって生成された蒸気又は高温水は、各々排気熱回
収装置出口給水管29及び中間冷却器出口給水管28を
経て混合され、スプレィライン8を通ってガスタービン
燃焼器6に送られる分と、補助蒸気として制御弁34を
設けた補助蒸気ライン35を通って系外に供給される分
とに分かれる。
The steam or high-temperature water generated by heat exchange in the exhaust heat recovery device 12 and the intermediate air cooler 3 is mixed through the exhaust heat recovery device outlet water supply pipe 29 and the intercooler outlet water supply pipe 28, respectively, and then sent through the spray line 8. The steam is divided into a portion that is sent to the gas turbine combustor 6, and a portion that is supplied outside the system as auxiliary steam through an auxiliary steam line 35 provided with a control valve 34.

なお、ガスタービン燃焼器6に送られた蒸気又は高温水
は、ガスタービン燃焼器6に投入されて燃焼ガスの温度
制御を行ない、燃焼ガスと共にガスタービン10の駆動
流体ともなる。この時の燃焼器する湿分(全発生ガス量
の約10wt%)との合計約31ht%の湿分が含まれ
ており、40℃程度まで冷却すれば概略下記のようにほ
とんど凝縮する。従って、遣水プラントとしての機能も
有している。
Note that the steam or high-temperature water sent to the gas turbine combustor 6 is input into the gas turbine combustor 6 to control the temperature of the combustion gas, and also serves as a driving fluid for the gas turbine 10 together with the combustion gas. At this time, the moisture contained in the combustor (approximately 10 wt% of the total amount of gas generated) contains a total of approximately 31 ht% moisture, and when cooled to about 40° C., most of it condenses as shown below. Therefore, it also functions as a water supply plant.

湿分30wt%は乾ガス1kg当り約0.44に9の湿
分を含有することに相当し、40℃における飽和湿分は
乾ガス1にg当り約0.05&9である。従って、その
差である0、39kg、すなわち2’ht%(30wt
%xo、39kg/ 0.4舊2’ht%)がドレンと
して回収され、燃焼ガス中に投入された20wt%との
差である7wt%が余分に生成されたことになる。
A moisture content of 30 wt % corresponds to a moisture content of about 0.44 to 9 parts per kg of dry gas, and the saturated moisture content at 40° C. is about 0.05 and 9 parts per gram of dry gas. Therefore, the difference is 0.39 kg, or 2'ht% (30wt
%xo, 39 kg/0.4 x 2'ht%) was recovered as drain, and an extra 7 wt% was produced, which is the difference from the 20 wt% input into the combustion gas.

このようにして造水された湿分は、前述したように補助
蒸気ライン35から系外に供給することもできる。さら
に、他の系への供給量が造水分だけでは不足の場合、必
要に応じてドレンタンク17に排ガス凝縮器を経て補給
水を補給して供給量の増加をはかることも可能である。
The moisture produced in this way can also be supplied outside the system from the auxiliary steam line 35, as described above. Furthermore, if the amount of water supplied to other systems is insufficient by water generation alone, it is also possible to increase the amount of water supplied by replenishing the drain tank 17 with make-up water via the exhaust gas condenser as necessary.

第2図は蒸気又は温水の熱併給を必要としない場合、す
なわち制御弁34及び補助蒸気ライン35が不要な場合
を示す第2実施例である。この場合、ドレンタンク17
への補給水も不要となり、第1図に示した補給水量制御
弁32、補給水ライン33は削除されている。
FIG. 2 shows a second embodiment in which cogeneration of steam or hot water is not required, that is, the control valve 34 and the auxiliary steam line 35 are not required. In this case, drain tank 17
There is also no need to supply makeup water to the tank, and the makeup water amount control valve 32 and makeup water line 33 shown in FIG. 1 have been deleted.

第3図は中間空気冷却器3′に直接水を注入して冷却す
る場合を示した第3実施例である。
FIG. 3 shows a third embodiment in which water is directly injected into the intermediate air cooler 3' for cooling.

なお、ここで説明した実施例はガスタービンを動力源と
しであるが、ディーゼルエンジン等の内燃機関を動力源
とする熱併給発電設備においても本発明を適用すること
ができる。また、燃焼用として使用した圧縮空気にかえ
て、酸素または酸素富化空気を使用することもできる。
Although the embodiment described here uses a gas turbine as a power source, the present invention can also be applied to a cogeneration power generation facility that uses an internal combustion engine such as a diesel engine as a power source. Furthermore, oxygen or oxygen-enriched air can be used instead of the compressed air used for combustion.

発明の効果 前述の本発明によれば、下記の効果を得ることができる
Effects of the Invention According to the present invention described above, the following effects can be obtained.

(1)空気相低減により空気圧縮機の消費1カが低減す
る。例えば空気比を3から1.5に減らすことにより約
50%の所要動力が低減できる。
(1) Air compressor consumption is reduced by reducing the air phase. For example, by reducing the air ratio from 3 to 1.5, the power requirement can be reduced by about 50%.

(2)空気比低減により排ガス熱損失及び中間空気冷却
熱損失が低減され効率が向上する。例えば空気比を3か
ら1.5に減らすことにより熱損失はほぼ半減する。
(2) By reducing the air ratio, exhaust gas heat loss and intermediate air cooling heat loss are reduced, improving efficiency. For example, by reducing the air ratio from 3 to 1.5, heat loss is approximately halved.

(3)排熱回収装置で熱回収した回収ドレンをガスター
ビン燃焼器に投入することにより、優れた温度制御によ
る高い安全性と低Noに性能を得ることができる。
(3) By injecting the recovered condensate recovered by the exhaust heat recovery device into the gas turbine combustor, high safety and low No. 2 performance can be achieved through excellent temperature control.

(4)ガスタービン出口に設置する回収ドレン給水方式
の排気熱回収装置を設置して排気熱の回収を行なうめで
排気熱の損失が著しく低下する。
(4) Since exhaust heat is recovered by installing an exhaust heat recovery device of a recovery drain water supply type installed at the gas turbine outlet, the loss of exhaust heat is significantly reduced.

(5)補給水不要の運転が可能なだけでなく、遣水機能
によって生じた余剰分を他系に供給することも可能であ
る。しかも、熱損失の僅少な熱併給発電設備を提供でき
る。
(5) Not only is it possible to operate without makeup water, but it is also possible to supply surplus water generated by the water supply function to other systems. Furthermore, it is possible to provide a cogeneration power generation facility with minimal heat loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す図、第2図は本発明
の第2実施例を示す図、第3図は本発明の第3実施例を
示す図、第4図は従来例を示す図である。 ■・・低圧空気圧縮機、3.3′ ・・中間空気冷却器
、5・・高圧空気圧縮器、6・・ガスタービン燃焼器、
8・・スプレィライン、9・・発電機、10・・ガスタ
ービン、12・・排気熱回収装置、(ほか1名)
Fig. 1 shows a first embodiment of the present invention, Fig. 2 shows a second embodiment of the invention, Fig. 3 shows a third embodiment of the invention, and Fig. 4 shows a conventional It is a figure which shows an example. ■...Low pressure air compressor, 3.3'...Intermediate air cooler, 5...High pressure air compressor, 6...Gas turbine combustor,
8. Spray line, 9. Generator, 10. Gas turbine, 12. Exhaust heat recovery device, (1 other person)

Claims (1)

【特許請求の範囲】[Claims] ガスタービン燃焼器の燃焼ガス出口温度を制御する蒸気
又は水を供給するスプレイラインを具備し、前記ガスタ
ービン燃焼器に供給する燃焼用空気の空気比を安定燃焼
が確保できる最低限まで低減するようにするガスタービ
ン熱併給発電設備において、ガスタービンの排気側に直
列に設置される排気熱回収装置及び排ガス凝縮器と、前
記排ガス凝縮器で凝縮した排ガス中のドレンを回収する
ドレンタンクと、低圧空気圧縮機で圧縮された燃焼用空
気を冷却する中間空気冷却器とを具備し、前記ドレンタ
ンクに回収したドレンを前記排気熱回収装置及び前記中
間空気冷却器へ前記ガスタービン燃焼器の燃焼ガス出口
温度及び前記中間空気冷却器の出口空気温度がそれぞれ
所定の温度となるように供給して熱回収を行い、この時
発生する蒸気または高温水を前記スプレイラインを介し
て前記ガスタービン燃焼器に供給する構成としたことを
特徴とする、熱併給発電設備。
A spray line is provided for supplying steam or water to control the combustion gas outlet temperature of the gas turbine combustor, and the air ratio of combustion air supplied to the gas turbine combustor is reduced to the minimum level that can ensure stable combustion. In a gas turbine cogeneration power generation facility, an exhaust heat recovery device and an exhaust gas condenser are installed in series on the exhaust side of the gas turbine, a drain tank collects condensate in the exhaust gas condensed by the exhaust gas condenser, and a low pressure and an intermediate air cooler that cools the combustion air compressed by the air compressor, and the drain collected in the drain tank is sent to the exhaust heat recovery device and the intermediate air cooler to transfer the combustion gas of the gas turbine combustor. Heat is recovered by supplying the air so that the outlet temperature and the outlet air temperature of the intermediate air cooler reach predetermined temperatures, respectively, and the steam or high-temperature water generated at this time is supplied to the gas turbine combustor via the spray line. A combined heat and power generation facility characterized by having a configuration in which the power is supplied.
JP27875086A 1986-11-25 1986-11-25 Cogeneration facility Expired - Lifetime JPH066908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27875086A JPH066908B2 (en) 1986-11-25 1986-11-25 Cogeneration facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27875086A JPH066908B2 (en) 1986-11-25 1986-11-25 Cogeneration facility

Publications (2)

Publication Number Publication Date
JPS63134818A true JPS63134818A (en) 1988-06-07
JPH066908B2 JPH066908B2 (en) 1994-01-26

Family

ID=17601675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27875086A Expired - Lifetime JPH066908B2 (en) 1986-11-25 1986-11-25 Cogeneration facility

Country Status (1)

Country Link
JP (1) JPH066908B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041428A (en) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd Power generation facilities
JP2000204909A (en) * 1999-01-11 2000-07-25 Osaka Gas Co Ltd Lng cryogenic power generation system
JP2005337261A (en) * 2004-05-28 2005-12-08 General Electric Co <Ge> Method and apparatus for operating gas turbine engine
JP2016070127A (en) * 2014-09-29 2016-05-09 川崎重工業株式会社 gas turbine
JP2021134712A (en) * 2020-02-26 2021-09-13 三菱重工業株式会社 Gas turbine plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041428A (en) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd Power generation facilities
JP2000204909A (en) * 1999-01-11 2000-07-25 Osaka Gas Co Ltd Lng cryogenic power generation system
JP2005337261A (en) * 2004-05-28 2005-12-08 General Electric Co <Ge> Method and apparatus for operating gas turbine engine
JP2016070127A (en) * 2014-09-29 2016-05-09 川崎重工業株式会社 gas turbine
JP2021134712A (en) * 2020-02-26 2021-09-13 三菱重工業株式会社 Gas turbine plant

Also Published As

Publication number Publication date
JPH066908B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US5609029A (en) Thermal power engine and its operating method
CN101203660B (en) Steam generation plant and method for operation and retrofitting of a steam generation plant
JP4727949B2 (en) Method for generating energy in an energy generation facility having a gas turbine and energy generation facility for implementing the method
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
CN104533621A (en) Dual-fuel steam injection direct-inverse gas turbine combined cycle
JPH0586898A (en) Halfopen cycle operation type natural gas steam turbine system
CN104533623B (en) A kind of partial oxidation steam injection forward and reverse Gas Turbine Combined-cycle
SU1258330A3 (en) Method of energy conversion in power plant and power plant
EP2351915A1 (en) Combined cycle power plant and method of operating such power plant
JPH04228832A (en) Gas turbine and operation method therefor
CN101720381A (en) Arrangement with a steam turbine and a condenser
SU1521284A3 (en) Power plant
JPS6329091B2 (en)
JPS63134818A (en) Heat supply generation plant
JPH08210151A (en) Power plant
JPS61201831A (en) Power generation method
JP3683521B2 (en) Cogeneration system operation method
JPH04358708A (en) Gasified compound power generation plant
JPH05248262A (en) Gas turbo group
JP2002242700A (en) Ultra-turbine
JP4399686B2 (en) Partially regenerative two-fluid gas turbine with reduced pressure loss
JPS6332110A (en) Hydrogen and oxygen fired steam turbine plant
JPS62135619A (en) Heat supply power generating device using gas turbine
JPH0275731A (en) Turbine plant
JPH0688502A (en) Power generating plant

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term