JPS63134555A - Manufacture of ferrite composite body - Google Patents

Manufacture of ferrite composite body

Info

Publication number
JPS63134555A
JPS63134555A JP61281361A JP28136186A JPS63134555A JP S63134555 A JPS63134555 A JP S63134555A JP 61281361 A JP61281361 A JP 61281361A JP 28136186 A JP28136186 A JP 28136186A JP S63134555 A JPS63134555 A JP S63134555A
Authority
JP
Japan
Prior art keywords
composite
ferrite
less
weight
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61281361A
Other languages
Japanese (ja)
Inventor
高田 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61281361A priority Critical patent/JPS63134555A/en
Publication of JPS63134555A publication Critical patent/JPS63134555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 L11立旦里11 本発明は、フェライト複合体の製造法に関する。[Detailed description of the invention] L11 Tadan-ri 11 The present invention relates to a method for manufacturing a ferrite composite.

従来の技術とその21題点 従来のフェライト複合体の製造法としては、(1)フェ
ライト粒子とバインダーである有機樹脂とを混合し、シ
ート状に加工するか又はフェライト粒子と熱硬化性樹脂
とを混合し、ブロック状の成形体とし、ツユライト複合
体を製造する方法(特開昭58−71698号)、(2
)マグネタイトとバインダーであるガラス粉末とを混合
し、この混合物に更に窒化物を加えて成形し、この成形
物を空気中にて1000℃以下で熱処理する方法(特開
昭58− 167473号)、 (3)バインダーを使用せず、電気炉にてフェライト成
形体を窒素ガスを主体とする調整雰囲気下1150℃で
処理する方法(「マグネトごラミックス」、技報堂出版
)、 等を挙げることができる。しかしながら、上記(1)〜
(3)の方法にはいずれも以下の如き欠点があり好まし
くない。
Conventional techniques and their 21 problems Conventional methods for manufacturing ferrite composites include (1) mixing ferrite particles and an organic resin as a binder and processing the mixture into a sheet, or mixing ferrite particles and a thermosetting resin; A method for producing a tuyurite composite by mixing and forming a block-shaped molded body (Japanese Unexamined Patent Application Publication No. 58-71698), (2
) A method in which magnetite and glass powder as a binder are mixed, nitride is further added to this mixture, molded, and the molded product is heat-treated in air at 1000°C or less (Japanese Patent Application Laid-Open No. 167473/1982); (3) A method in which a ferrite molded body is treated in an electric furnace at 1150°C in a controlled atmosphere mainly composed of nitrogen gas ("Magnetogoramix", Gihodo Publishing) without using a binder. . However, (1) above
All methods (3) have the following disadvantages and are not preferred.

即ち(1)の方法で得られるフェライト複合体は、バイ
ンダーとして有機樹脂を使用しているため、耐熱性が低
く、経年劣化しやすい。また耐候性、耐損傷性等も充分
ではない。(2)の方法では、高価な窒化物を使用する
ため、製造コストが茗しく高騰する。また(3)の方法
では、特殊な電気炉及び高価な不活性ガスが必要となり
、やはり製造コストが高くなる。
That is, since the ferrite composite obtained by the method (1) uses an organic resin as a binder, it has low heat resistance and is easily deteriorated over time. Also, weather resistance, damage resistance, etc. are not sufficient. In the method (2), since expensive nitride is used, the manufacturing cost increases considerably. Furthermore, method (3) requires a special electric furnace and expensive inert gas, which also increases manufacturing costs.

問題点を解決するための手段 本発明者は従来技術の問題点に鑑みて鋭意研究を重ねた
結果、特定粒度のフェライト粒子とガラス粉末とを特定
温度域で焼成するという極めて簡便な方法で、耐熱性、
耐候性及び強度に優れ、且つ磁気特性の良好なフェライ
ト複合体を、安価に製造できることを見出し、本発明を
完成した。
Means for Solving the Problems As a result of extensive research in view of the problems of the prior art, the present inventor has developed an extremely simple method in which ferrite particles of a specific particle size and glass powder are fired at a specific temperature range. Heat-resistant,
The present invention was completed based on the discovery that a ferrite composite having excellent weather resistance and strength as well as good magnetic properties can be manufactured at low cost.

即ち本発明は、(a)粒径1mm以下であり、且つ粒径
10μm以下の微粉含量30重凹%未満であるフェライ
ト粒子70〜951胆%と(b)粒径0.2mm以下の
ガラス粉末5〜30重量%とからなる複合体原料及びバ
インダーを含む坏土を、炭化水素系燃料を使用して還元
性雰囲気中にて800〜1100℃で焼成することを特
徴とするフェライト複合体の製造法に係る。
That is, the present invention provides (a) ferrite particles having a particle size of 1 mm or less and a fine powder content of 70 to 951% with a particle size of 10 μm or less and less than 30%, and (b) glass powder having a particle size of 0.2 mm or less. Production of a ferrite composite characterized by firing a clay containing a composite raw material consisting of 5 to 30% by weight and a binder at 800 to 1100°C in a reducing atmosphere using a hydrocarbon fuel. Pertaining to law.

本発明では複合体原料として、フェライト粒子及びガラ
ス粉末を使用する。
In the present invention, ferrite particles and glass powder are used as composite raw materials.

フェライト粒子としては、マグネタイト系のもの、マン
ガン−亜鉛系のもの等を使用する。その粒径は、1mm
以下程度であり、且つ粒径10μm以下程度の微粉含量
が30重量%未満程度であるものを使用する。粒径が1
mmを越えると、得られるフェライト複合体の曲げ強度
が低下する。
As the ferrite particles, magnetite-based ones, manganese-zinc-based ones, etc. are used. The particle size is 1mm
or less, and the content of fine powder with a particle size of about 10 μm or less is about less than 30% by weight. Particle size is 1
If it exceeds mm, the bending strength of the obtained ferrite composite will decrease.

また粒径10μmの微粉含量が30重量%以上になると
、焼成工程中の昇温時には空気過剰であるため、フェラ
イトの酸化が起こりやすくなり、1りられるフェライト
複合体の磁気特性が悪化する。
Furthermore, when the content of fine powder with a particle size of 10 μm exceeds 30% by weight, oxidation of the ferrite tends to occur due to excess air when the temperature is increased during the firing process, and the magnetic properties of the resulting ferrite composite deteriorate.

フェライト粒子の粉砕方法としては、通常この分野で行
なわれている方法がいずれも採用できる。
As a method for pulverizing ferrite particles, any method commonly used in this field can be employed.

フェライト粒子の配合量は、複合体原料全量の70〜9
5重量%程度とする。70重量%未満では、ガラス聞過
剰によって、焼成後の焼成体に発泡現象が認められ、磁
気特性も低下して製品化できない。一方95重量%を越
えると、焼成後の焼成体に、冷却時の酸化による変色が
認められ、且つ磁気特性が悪く製品化できない。
The blending amount of ferrite particles is 70 to 9 of the total amount of composite raw materials.
The content should be approximately 5% by weight. If it is less than 70% by weight, the excess glass content will cause foaming phenomenon in the fired product after firing, and the magnetic properties will also deteriorate, making it impossible to commercialize the product. On the other hand, if it exceeds 95% by weight, discoloration due to oxidation during cooling will be observed in the fired body after firing, and the magnetic properties will be poor, making it impossible to commercialize the product.

ガラスとしては、通常のものがいずれも使用でき、例え
ば一般の板ガラス、容器ガラス等のソーダ石灰ガラス、
ホウ珪酸ガラス、アルミノ珪酸ガラス等を挙げることが
できる。本発明では、上記ガラスを通常粒径0.2mm
以下程度、好ましくは0.043mm (325メツシ
ユ)以下程度に微粉砕して使用する。粒径が0.2mm
を越えると、焼成時にフェライト粒子の表面をガラスで
被覆することができず、フェライト粒子が酸化され易く
なり好ましくない。ガラスの粉砕方法は特に制限されず
、通常の方法がいずれも採用できる。
As the glass, any ordinary glass can be used, such as ordinary plate glass, soda lime glass such as container glass,
Examples include borosilicate glass and aluminosilicate glass. In the present invention, the above glass usually has a particle size of 0.2 mm.
It is used after being pulverized to a size of 0.043 mm (325 mesh) or less, preferably 0.043 mm (325 mesh) or less. Particle size is 0.2mm
If it exceeds this value, the surface of the ferrite particles cannot be coated with glass during firing, and the ferrite particles are likely to be oxidized, which is undesirable. The method for pulverizing glass is not particularly limited, and any conventional method can be used.

ガラス粉末の配合量は、複合体原料全量の5〜30重恐
%程度とする。5重量%未満では、充分な強度及び耐候
性が得られず、且つ焼成工程の冷却時にフェライトの一
部が酸化されるため好ましくない。一方30重量%を越
えると、所望の磁気特性が得られない。
The amount of glass powder blended is approximately 5 to 30% by weight of the total amount of composite raw materials. If it is less than 5% by weight, sufficient strength and weather resistance cannot be obtained, and part of the ferrite is oxidized during cooling in the firing process, which is not preferable. On the other hand, if it exceeds 30% by weight, desired magnetic properties cannot be obtained.

バインダーとしては、通常セラミックスの製造に使用さ
れるものがいずれも使用でき、例えばポリビニルアルコ
ール、デンプン等の有機バインダー、ベントナイト、タ
ルク等の無機バインダー等を挙げることができる。バイ
ンダーの配合量は特に制限されず、適宜選択すればよい
が、通常複合体原料100mm部に対して、有機バイン
ダーは0.05〜3重量部程度及び無機バインダーは1
〜10重同部程度とする。
As the binder, any binder that is normally used in the production of ceramics can be used, such as organic binders such as polyvinyl alcohol and starch, and inorganic binders such as bentonite and talc. The blending amount of the binder is not particularly limited and may be selected as appropriate, but usually the organic binder is about 0.05 to 3 parts by weight and the inorganic binder is about 1 part by weight per 100 mm parts of the composite raw material.
It should be about 10 times the same part.

以下本発明方法について詳細に説明する。The method of the present invention will be explained in detail below.

まず上記フェライト粒子とガラス粉末との所定量を、ミ
キサー等の通常の混線機に投入して混合し、複合体原料
とする。更にこの複合体原料に、適当量のバインダーを
加え、充分混練する。得られる坏土を、必要に応じて、
通常の成形機を使用して成形し、所望の形状とする。成
形圧力は特に制限されないが、通常200〜2000 
kof/Ci程度とすればよい。
First, a predetermined amount of the above-mentioned ferrite particles and glass powder are put into a common mixer such as a mixer and mixed to obtain a composite raw material. Furthermore, an appropriate amount of binder is added to this composite raw material and thoroughly kneaded. The obtained clay is used as necessary.
It is molded into the desired shape using a conventional molding machine. Molding pressure is not particularly limited, but is usually 200 to 2000
It may be about kof/Ci.

次いで坏土又は得られる成形体を、通常の炭化水素系燃
料を使用し、還元性雰囲気中にて焼成する。焼成温度は
、800〜1100℃程度とする。
The clay or the resulting molded body is then fired in a reducing atmosphere using a conventional hydrocarbon fuel. The firing temperature is approximately 800 to 1100°C.

800℃未満では、所定の強度及び耐候性が得られず、
一方1100℃を越えると、変形、発泡等の障害を生ず
る。また焼成時間は、通常30分以上、好ましくは8〜
20時間程度とすればよい。
At temperatures below 800°C, the desired strength and weather resistance cannot be obtained;
On the other hand, if the temperature exceeds 1100°C, problems such as deformation and foaming will occur. The firing time is usually 30 minutes or more, preferably 8 to 8 minutes.
It may take about 20 hours.

焼成時には、酸素センサーを使用し、雰囲気の酸素濃度
が2%以下程度となるように調節する。炭化水素系燃料
としては、通常のものがいずれも使用でき、例えばメタ
ン、プロパン、ブタン、都市ガス等のガス燃料、灯油、
重油等の液体燃料等を挙げることができる。
During firing, an oxygen sensor is used to adjust the oxygen concentration of the atmosphere to about 2% or less. Any conventional hydrocarbon fuel can be used, such as methane, propane, butane, gas fuel such as city gas, kerosene,
Examples include liquid fuels such as heavy oil.

焼成終了後、冷却を行なう。本発明方法によれば、フェ
ライト粒子の表面はガラスで被覆されており、フェライ
ト粒子が大気中の酸素によって酸化されることはない。
After the firing is completed, cooling is performed. According to the method of the present invention, the surfaces of the ferrite particles are coated with glass, and the ferrite particles are not oxidized by oxygen in the atmosphere.

従って本発明では、この分野の通常の冷却方法をいずれ
も採用でき、例えば急速冷却法、自然放冷法等を挙げる
ことができる。
Therefore, in the present invention, any conventional cooling method in this field can be employed, such as a rapid cooling method, a natural cooling method, and the like.

斯くして本発明フェライト複合体を1qることができる
In this way, 1q of the ferrite composite of the present invention can be obtained.

本発明フェライト複合体は、磁気遮蔽体、放射線遮蔽体
、電波吸収体、磁気標識体等のこの分野の通常の用途に
使用できる。
The ferrite composite of the present invention can be used in common applications in this field, such as magnetic shields, radiation shields, radio wave absorbers, and magnetic labels.

発明の効果 本発明方法は、以下の如き優れた効果を奏する。Effect of the invention The method of the present invention has the following excellent effects.

(1)本発明方法によれば、フェライト複合体の製造を
簡略化でき、且つ従来使用されていた高価な窒化物及び
不活性ガスを使用する必要がないので、コストを著しく
低減化できる。
(1) According to the method of the present invention, the production of a ferrite composite can be simplified, and there is no need to use expensive nitrides and inert gases that have been used in the past, so costs can be significantly reduced.

(2)本発明方法によって得られるフェライト複合体は
、高強度を有し、耐熱性及び耐候性に侵れている。また
その磁気特性も充分に満足できるものである。
(2) The ferrite composite obtained by the method of the present invention has high strength and excellent heat resistance and weather resistance. Moreover, its magnetic properties are also fully satisfactory.

え−亙−1 以下に実施例及び比較例を挙げ、本発明をより一層明瞭
なものとする。
E-1-1 Examples and comparative examples are given below to make the present invention even clearer.

実施例1 第1表に示す配合割合(重量%)で粒径1.0mm以下
にふるい分けしたフェライト粒子(10μm以下の微粉
含ω約20%)と、湿式ボールミルにて微粉砕した粒径
0.043mm以下の板ガラス粉末とをミキサーにて充
分に混合して複合体原料とした。この複合体原料100
重量部に、第1表に示す配合割合(重量部)でバインダ
ーを添加して充分混練し、坏土とした。
Example 1 Ferrite particles (containing about 20% of fine particles of 10 μm or less) were sieved to a particle size of 1.0 mm or less using the blending ratios (wt%) shown in Table 1, and ferrite particles with a particle size of 0.0 mm that were finely ground in a wet ball mill. A composite raw material was prepared by thoroughly mixing the powder with plate glass powder having a size of 0.043 mm or less using a mixer. This composite raw material 100
A binder was added to the mixture in the proportions (parts by weight) shown in Table 1 and sufficiently kneaded to obtain a clay.

得られた坏土を油圧プレスにて成形圧力1000 ko
f/ai テ成形し、100X100XI Ommの形
状の成形体とした。この成形体を、燃料としてプロパン
を使用する焼成炉にて、酸素センサーを使用して酸素濃
度が2%以下になるように制御しながら、150℃/ 
hrr昇温し、900℃で3時間保持して焼成した。焼
成後、24時間自然放冷し、本発明フェライト複合体を
得た。
The obtained clay was molded using a hydraulic press at a pressure of 1000 ko.
It was molded using f/ai technology to obtain a molded body having a shape of 100×100×I Omm. This molded body is heated to 150°C in a firing furnace that uses propane as fuel, while controlling the oxygen concentration to 2% or less using an oxygen sensor.
The temperature was raised to 900° C. for 3 hours and fired. After firing, it was allowed to cool naturally for 24 hours to obtain a ferrite composite of the present invention.

得られたフェライト複合体につき、X線回折装置により
構成鉱物を同定したところ、マグネタイト(Fe304
)のみから構成されていた。この複合体を各種の性能試
験に供した。結果を第1表に示寸。
When the constituent minerals of the obtained ferrite complex were identified using an X-ray diffraction device, it was found that it was magnetite (Fe304
) consisted only of This composite was subjected to various performance tests. The results are shown in Table 1.

実施例2 第1表に示す原料を使用し、焼成温度を1060℃とす
る以外は、実施例1と同様にして本発明フェライト複合
体を得た。得られた複合体を実施例1と同様の性能試験
に供した。結果を第1表に示す。
Example 2 A ferrite composite of the present invention was obtained in the same manner as in Example 1, except that the raw materials shown in Table 1 were used and the firing temperature was 1060°C. The obtained composite was subjected to the same performance test as in Example 1. The results are shown in Table 1.

実施例3 第1表に示す原料を使用し、焼成温度を860℃とする
以外は、実施例1と同様にして本発明フエライト複合体
を得た。得られた複合体を実施例1と同様の性能試験に
供した。結果を第1表に示す。
Example 3 A ferrite composite of the present invention was obtained in the same manner as in Example 1, except that the raw materials shown in Table 1 were used and the firing temperature was 860°C. The obtained composite was subjected to the same performance test as in Example 1. The results are shown in Table 1.

比較例1 第1表に示す原料を使用しくフェライト粒子としては、
トロンメルにて粉砕した粒径43μm以下の微粉30重
量%及び粒径1mm以下のもの70重四%を使用、ガラ
ス粉末は使用しない)、焼成温度を本発明規定外の12
50℃とする以外は、実施例1と同様にしてフェライト
複合体を得た。得られた複合体につき、X線回析装置に
より構成鉱物を同定したところ、マグネタイトは僅かし
か存在せず、大部分は酸化されて磁気特性を有していな
いヘマタイト(Fe203 )であった。
Comparative Example 1 The raw materials shown in Table 1 were used as ferrite particles.
30% by weight of fine powder with a particle size of 43 μm or less crushed with a trommel and 70% by weight of particles with a particle size of 1mm or less (no glass powder used), and the firing temperature was set at 12% by weight outside the specifications of the present invention.
A ferrite composite was obtained in the same manner as in Example 1 except that the temperature was 50°C. When the constituent minerals of the obtained composite were identified using an X-ray diffraction apparatus, it was found that only a small amount of magnetite was present, and the majority was hematite (Fe203), which had been oxidized and had no magnetic properties.

この複合体を実施例1と同様の性能試験に供した。This composite was subjected to the same performance test as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

比較例2 第1表に示す原料を使用しくフェライト粒子としては、
粒径1.0〜3.0mmの粗粒20重量%及び粒径1m
m以下のもの75重量%を使用)、坏土を製造する際に
ベントナイトと共に適量の水を加え、更に焼成温度を1
060℃とする以外は、実施例1と同様にしてフェライ
ト複合体を得た。
Comparative Example 2 The raw materials shown in Table 1 were used as ferrite particles.
20% by weight of coarse particles with a particle size of 1.0 to 3.0 mm and a particle size of 1 m
(Using 75% by weight of clay of less than
A ferrite composite was obtained in the same manner as in Example 1 except that the temperature was 060°C.

得られた複合体は、その表面が粗い外観を呈し、商品価
値のないものであった。この複合体を実施例1と同様の
性能試験に供した。結果を第1表に示す。
The obtained composite had a rough appearance on the surface and had no commercial value. This composite was subjected to the same performance test as in Example 1. The results are shown in Table 1.

比較例3 フェライト粒子として、粒径43μm以下の微粉80重
量%及び粒径1mm以下のもの15重1%を使用する以
外は、比較例2.と同様にしてフェライト複合体を得た
。得られた複合体は、酸化されて変色しており、磁気特
性の得られないヘマタイトが大部分であった。この複合
体を実施例1と同様の性能試験に供した。結果を第1表
に示す。
Comparative Example 3 Comparative Example 2 was performed except that 80% by weight of fine powder with a particle size of 43 μm or less and 15% by weight of ferrite particles with a particle size of 1 mm or less were used as ferrite particles. A ferrite composite was obtained in the same manner. The resulting composite was oxidized and discolored, and was mostly composed of hematite with no magnetic properties. This composite was subjected to the same performance test as in Example 1. The results are shown in Table 1.

比較例4及び5 ガラス粉末の配合料を本発明に規定した範囲外とし、第
1表に示す原料及び焼成条件を用いて、複合体を得た。
Comparative Examples 4 and 5 Composites were obtained using the raw materials and firing conditions shown in Table 1, with the glass powder composition outside the range specified in the present invention.

得られた複合体を実施例1と同様の性能試験に供した。The obtained composite was subjected to the same performance test as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

〔性能試験方法〕[Performance test method]

1)吸水率 JIS  R2205−74に準じた。 1) Water absorption rate According to JIS R2205-74.

2)嵩比重 JIS  R2205−74に準じた。2) Bulk specific gravity According to JIS R2205-74.

3)曲げ強さ JIS  R2213−78に準じた。3) Bending strength According to JIS R2213-78.

4)耐候性 JIS  A3209−1975に規定の「凍結融解試
験方法」に準じ、−20℃で10回繰返して行なった。
4) Weather resistance The test was repeated 10 times at -20°C according to the "freeze-thaw test method" specified in JIS A3209-1975.

5)飽和磁化 振動磁化測定装置により測定した。5) Saturation magnetization Measured using a vibration magnetization measuring device.

第1表から、本発明品(実施例1〜3)の諸性能は、フ
ェライト複合体が良好に使用されるための基準〔吸水率
:5%未満、曲げ強さ:150k(Jr/c1j以上、
外観:良好、 耐候性(凍結融解試験):良好(変化なし)、飽和磁化
(σ) : 60 emu/g以上〕に適合し、優れた
性能を有することが判る。一方比較品(比較例1〜5)
は、5項目あるいずれかの基準を満足できず、本発明品
よりも劣っている。
From Table 1, the various performances of the products of the present invention (Examples 1 to 3) are the standards for the successful use of ferrite composites [water absorption: less than 5%, bending strength: 150k (Jr/c1j or more)] ,
Appearance: good, weather resistance (freeze-thaw test): good (no change), saturation magnetization (σ): 60 emu/g or more], indicating that it has excellent performance. On the other hand, comparative products (Comparative Examples 1 to 5)
cannot satisfy any of the five criteria and is inferior to the product of the present invention.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】[Claims] (1)(a)粒径1mm以下であり、且つ粒径10μm
以下の微粉含量30重量%未満であるフェライト粒子7
0〜95重量%と(b)粒径 0.2mm以下のガラス粉末5〜30重量%とからなる
複合体原料を含む坏土を、炭化水素系燃料を使用して還
元性雰囲気中にて800〜1100℃で焼成することを
特徴とするフェライト複合体の製造法。
(1) (a) The particle size is 1 mm or less, and the particle size is 10 μm.
Ferrite particles with the following fine powder content of less than 30% by weight 7
A clay containing a composite material consisting of 0 to 95% by weight and (b) 5 to 30% by weight of glass powder with a particle size of 0.2 mm or less was heated to 800% by weight in a reducing atmosphere using hydrocarbon fuel. A method for producing a ferrite composite characterized by firing at a temperature of ~1100°C.
JP61281361A 1986-11-25 1986-11-25 Manufacture of ferrite composite body Pending JPS63134555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281361A JPS63134555A (en) 1986-11-25 1986-11-25 Manufacture of ferrite composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281361A JPS63134555A (en) 1986-11-25 1986-11-25 Manufacture of ferrite composite body

Publications (1)

Publication Number Publication Date
JPS63134555A true JPS63134555A (en) 1988-06-07

Family

ID=17638040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281361A Pending JPS63134555A (en) 1986-11-25 1986-11-25 Manufacture of ferrite composite body

Country Status (1)

Country Link
JP (1) JPS63134555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224933A (en) * 2012-03-19 2013-10-31 Mitsuishi Taika Renga Kk Brick, tile, floor board, ceiling panel, roof material, and manufacturing method for them
EP2889353B1 (en) * 2012-08-27 2021-05-19 Yingui Sun Artificial snow at normal temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224933A (en) * 2012-03-19 2013-10-31 Mitsuishi Taika Renga Kk Brick, tile, floor board, ceiling panel, roof material, and manufacturing method for them
EP2889353B1 (en) * 2012-08-27 2021-05-19 Yingui Sun Artificial snow at normal temperature

Similar Documents

Publication Publication Date Title
US2565861A (en) Magnetic materials
CN102596453B (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for producing dust core
US2776896A (en) Ceramic composition having thermal shock resistance
DE2713955A1 (en) COMPOSITION CONTAINING ZIRCONIUM AND USES IN THE MANUFACTURE OF CERAMIC BODIES
EP0105375A1 (en) Oxide-containing magnetic material capable of being sintered at low temperatures
US4126422A (en) Method of densifying metal oxides
JPS63134555A (en) Manufacture of ferrite composite body
US2328644A (en) Heat insulating material
WAKAMATSU et al. INFLUENCE OF KILN ATMOSPHERE ON COLOUR AND SINTERING PROPERTIES OF RED CLAY CONTAINING IRON
CN114836250A (en) Fluxing agent, preparation method and application thereof, and method for changing ash fusion characteristics of coal
CH128404A (en) Ceramic product and method of making the same.
US4059664A (en) Method of manufacturing ferrimagnetic material for recording, read out and erase heads utilized in magnetic layer devices
US3043777A (en) Methods for preparing improved magnetic bodies
JPH03290352A (en) High-strength ceramics having low thermal expansion and production thereof
JPS59207873A (en) Manufacture of high density silicon carbide sintered body
US3009880A (en) Method for preparing nickel-zinc ferrites
US3138470A (en) Refractory
JPH0374811A (en) Ferrite magnetic material
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPS58217469A (en) Manufacture of silicon nitride-silicon carbide composition
JPS62219903A (en) Manufacture of low loss oxide magnetic material
SU863551A1 (en) Refractory concrete mix
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
US3042617A (en) Magnetic bodies and methods of preparation thereof
JPH02241007A (en) Ferrite magnetic material and its manufacture