JPS63134306A - Pneumatic tire and manufacture thereof - Google Patents

Pneumatic tire and manufacture thereof

Info

Publication number
JPS63134306A
JPS63134306A JP61280668A JP28066886A JPS63134306A JP S63134306 A JPS63134306 A JP S63134306A JP 61280668 A JP61280668 A JP 61280668A JP 28066886 A JP28066886 A JP 28066886A JP S63134306 A JPS63134306 A JP S63134306A
Authority
JP
Japan
Prior art keywords
tire
tread
internal pressure
center line
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61280668A
Other languages
Japanese (ja)
Inventor
Toshio Hirakawa
平川 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP61280668A priority Critical patent/JPS63134306A/en
Publication of JPS63134306A publication Critical patent/JPS63134306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tyre Moulding (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE:To keep the grounded pressure of a tread part uniform by dividing the tread radius in the region ranging from the center line in the peripheral direction of a tire to the shoulder part into plural parts and specifying the relation between each region and the distance of the tread surface ranging from the center line in the peripheral direction of the tire to the crossing point of each region. CONSTITUTION:The tread radius in the region ranging from the center line (m) in the peripheral direction of a tire to the shoulder part 6 is divided into R1 and R2, and the following relations are satisfied for R1 and R2. In this case, R1=RX(1.5-3.0). R2=RX(0.5X1.0). In the above, R is the tire shape in the case when the tire is charged with a regular internal pressure after vulcanization, i. e., the tread radius of the product shape 4. The distance P of the tread surface ranging from the center line (m) in the peripheral direction of the tire to the crossing point between R1 and R2 shall be satisfy the following relation: P<(w/2)X(3/5). In this case, (w) is the tread development width of the tire in the case when the tire is charged with 5% of the regular internal pressure. Therefore, the grounded pressure distribution at the tread part can be kept uniform independently of the variation of the using condition.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、舗装工事に使用するタイヤローラー用の空気
入りタイヤおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pneumatic tire for tire rollers used in paving work and a method for manufacturing the same.

〔従来技術〕[Prior art]

従来、舗装工事に使用される路面を踏み固める展圧機械
として、タイヤ式タイヤローラーが主に用いられてきた
。しかし、近年、舗装施工法の変化に伴い、振動ローラ
ー、ロードローラー(鉄輪)もまたタイヤローラーと共
に使用されるようになった。
Conventionally, tire-type tire rollers have been mainly used as compaction machines for compacting road surfaces used in paving works. However, in recent years, with changes in pavement construction methods, vibrating rollers and road rollers (iron wheels) have also come to be used together with tire rollers.

これら展圧機械の展圧特性では、第5図に示すようにロ
ーラー1で路面2を舗装施工した場合に、地中の深部で
高密度を得るためには振動ローラーおよびロードローラ
ーが有利であり、タイヤローラーは地中の浅部で高密度
を得るのに適している。第5図から判るように、地中で
100%の密度を得るには、ローラー1がタイヤローラ
ーでは深さ5cm程度、ローラー1がロードローラーで
は深さ8cm程度、ローラー1が振動ローラーでは深さ
13cm程度である。
In terms of the rolling force characteristics of these rolling machines, when paving a road surface 2 with rollers 1 as shown in Figure 5, vibrating rollers and road rollers are advantageous in order to obtain high density deep underground. , Tire rollers are suitable for obtaining high density in shallow underground areas. As can be seen from Figure 5, in order to obtain 100% density underground, roller 1 must be approximately 5 cm deep if it is a tire roller, approximately 8 cm if roller 1 is a road roller, and approximately 8 cm deep if roller 1 is a vibrating roller. It is about 13cm.

したがって、第一次展圧としては振動ローラーおよびロ
ードローラーを用いて深部で高密度を得ると共に路面2
の平坦性を築き、第二次展圧にてタイヤローラーを使用
して浅部で高密度を得て路面2を仕上げて行く。こうし
た作業が最近の舗装施工法となっている。
Therefore, as the primary rolling pressure, vibrating rollers and road rollers are used to obtain high density in the deep part, and at the same time
The road surface 2 is finished by building up flatness and obtaining high density in shallow areas using tire rollers in the second rolling pressure. This type of work has become the latest pavement construction method.

また、最近の舗装施工法では、タイヤローラーの負荷荷
重が増加してきている。なお、従来、第一次および第二
次展圧ともタイヤローラーでの展圧作業が主流であった
ときには、深部で高密度を得るために舗装材を段階的に
投入し、その都度タイヤローラーを使用して仕上げたり
、さらに、路面の平坦性を築くためタイヤローラーに使
用される空気入りバイアスタイヤの形状を工夫してタイ
ヤ踏面部の接地圧分布を均一にするなどしていた。
Furthermore, in recent pavement construction methods, the load applied to tire rollers has been increasing. In the past, when the primary and secondary spreading pressures were mainly carried out using tire rollers, paving materials were introduced in stages in order to achieve high density in the deep areas, and tire rollers were used each time. In addition, in order to improve the flatness of the road surface, the shape of the pneumatic bias tires used in tire rollers was devised to ensure a uniform distribution of ground pressure on the tire tread.

ところで、空気入りバイアスタイヤは、第6図に示すよ
うに、金型で加硫されたときの形状(金型形状)3から
正規内圧を充填したときの形状(製品形状)4となる場
合に大きな寸法変化を生じる。すなわち、外径、幅、ト
レッドラジアス等が大きく寸法変化する。
By the way, as shown in Figure 6, a pneumatic bias tire changes from the shape (mold shape) 3 when it is vulcanized in a mold to the shape (product shape) 4 when it is filled with the normal internal pressure. Causes large dimensional changes. That is, the outer diameter, width, tread radius, etc. change significantly.

この原因は金型のキャビティの高さ、幅又はタイヤ構造
により異なるものの、クラウンセンタ一部が両ショルダ
ー部に比して飛び出す形となるのが一般的である。そこ
で、第7図に示すように、金型形状3のクラウンセンタ
一部5に凹部を設けるいわゆるコンケイププロファイル
が提案されている。これは、製品形状4になるときにク
ラウンセンタ一部5がショルダー部6に比して飛び出す
ことを考慮して、予め金型形状3に凹部5を形成し、製
品形状4となったときに一律でかつ大きなトレッドラジ
アスを設定することによりタイヤ踏面部の接地圧が均一
となるようにしたものである。
Although the cause of this varies depending on the height and width of the mold cavity or the tire structure, it is common that a portion of the crown center protrudes compared to both shoulder portions. Therefore, as shown in FIG. 7, a so-called concape profile in which a concave portion is provided in the crown center portion 5 of the mold shape 3 has been proposed. This is done by forming a recess 5 in the mold shape 3 in advance in consideration of the fact that the crown center part 5 will protrude compared to the shoulder part 6 when the product shape 4 is achieved. By setting a uniform and large tread radius, the ground contact pressure on the tire tread is made uniform.

しかし、コンケイププロファイルにより製造されたタイ
ヤローラー用タイヤは、従来におけるように比較的軽い
荷重下で使用される場合にはその性能を十分に発揮する
ことができるが、近年の如く高荷重下で使用されると第
8図(A)の接地形状図10に示すようにクラウンセン
タ一部5の接地圧がショルダー部6に比して大幅に低下
するいわゆるバックル現象が生じてしまう。このように
バックル現象が生じた場合には、第8図(B)に示すよ
うにタイヤ11の踏面12に接する路面2において、ク
ラウンセンタ一部よりもショルダー部が凹むという波打
ち現象が生じ、路面を平坦にするというタイヤローラー
の本来の機能が損なわれることになる。なお、第8図(
B)のグラフはタイヤ踏面部のクラウンセンタ一部から
ショルダー部における接地圧分布を測定したものであり
、上記波打ち現象を起こしているタイヤの接地圧分布は
クラウンセンタ一部からショルダー部にかけて均一にな
っていないことが判る。
However, tire roller tires manufactured with a concape profile can fully demonstrate their performance when used under relatively light loads as in the past, but when used under high loads as in recent years. When used, a so-called buckling phenomenon occurs in which the ground contact pressure of the crown center portion 5 is significantly lower than that of the shoulder portion 6, as shown in the ground contact profile diagram 10 of FIG. 8(A). When the buckling phenomenon occurs in this way, on the road surface 2 in contact with the tread surface 12 of the tire 11, a waving phenomenon occurs in which the shoulder portion is depressed more than a part of the crown center, as shown in FIG. 8(B), and the road surface The original function of the tire roller, which is to flatten the surface, will be impaired. In addition, Figure 8 (
Graph B) is a measurement of the ground pressure distribution from the crown center part of the tire tread to the shoulder part.The ground pressure distribution of the tire that is causing the above-mentioned waving phenomenon is uniform from the crown center part to the shoulder part. It turns out that it is not.

第9図(A)〜(D)にコンケイブプロフアイルにより
製造されたタイヤローラー用タイヤ(900−20−1
0PR)の種々の接地形状図を示す。第9図(A)は負
荷荷重945kgの場合の接地形状図を、第9図(B)
は負荷荷重1500kgの場合の接地形状図を、第9図
(C)は負荷荷重1720kgの場合の接地形状図を、
第9図(D)は負荷荷重2165kgの場合の接地形状
図をそれぞれ表わす。これら第9図(A)〜(D)から
、荷重の増加につれて接地形状が不均一となる様子が判
る。
Figures 9(A) to (D) show tire roller tires (900-20-1) manufactured by concave profile.
0PR) are shown. Figure 9 (A) shows the ground contact profile diagram when the applied load is 945 kg, and Figure 9 (B)
is the ground contact profile diagram when the applied load is 1500 kg, and Figure 9 (C) is the ground contact profile diagram when the applied load is 1720 kg.
FIG. 9(D) shows the ground contact profile diagram when the applied load is 2165 kg. From these FIGS. 9(A) to 9(D), it can be seen that the ground contact shape becomes non-uniform as the load increases.

〔発明の目的〕[Purpose of the invention]

本発明は、路面を舗装するに際し、空気圧、荷重等の使
用条件の変化に係わりなく踏面部の接地圧分布を均一に
保持し得る空気入りタイヤおよびその製造方法を提供す
ることを目的とする。
An object of the present invention is to provide a pneumatic tire that can maintain a uniform ground pressure distribution on the tread surface regardless of changes in usage conditions such as air pressure and load when paving a road surface, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

この目的を達成するために、本発明は、正規内圧の5%
の内圧を充填してリムに固定したときのタイヤ形状にお
いて、タイヤ周方向中心線からショルダー部に至る領域
のトレッドラジアスをR1とR2とに分け、タイヤ周方
向中心線からこれらR,とR2との交点までのトレッド
表面の距離Pと、R+、Rzとに、下記の関係を満足さ
せたことを特徴とする空気入りタイヤを要旨とする。
To achieve this objective, the present invention provides 5% of the normal internal pressure.
In the shape of the tire when it is filled with the internal pressure of The gist is a pneumatic tire characterized by satisfying the following relationship between the distance P of the tread surface to the intersection of R+ and Rz.

また、本発明は、タイヤを金型内で加硫成形するに際し
、タイヤ形状に相当するキャビティを有し、このキャビ
ティの周方向中心線からショルダー部に至る領域のトレ
ッドラジアスをR,とR2とに分け、前記周方向中心線
からこれらR,とR2との交点までのトレッド表面の距
離Pと、R,、R2とに、下記の関係を満足させた金型
を用いることを特徴とする空気入りタイヤの製造方法を
要旨とする。ここで、Wは正規内圧の5%の内圧を充填
したときのタイヤのトレッド展開幅を、Rは加硫後のタ
イヤに正規内圧を充填したときのタイヤのトレッドラジ
アスを表わす。
Furthermore, when the tire is vulcanized and molded in a mold, the present invention has a cavity corresponding to the shape of the tire, and the tread radius of the region from the circumferential center line of this cavity to the shoulder portion is defined as R and R2. The air is characterized by using a mold that satisfies the following relationship between the distance P of the tread surface from the circumferential center line to the intersection of these R, and R2, and R, , R2. The gist is the method for manufacturing tires. Here, W represents the tread width of the tire when filled with an internal pressure of 5% of the normal internal pressure, and R represents the tread radius of the tire when the vulcanized tire is filled with the normal internal pressure.

P< (w/2)X (315) R+  =Rx  (1,5〜3.0)R2=RX  
(0,5〜1.0) 以下、図を参照して本発明の構成につき詳しく説明する
P< (w/2)X (315) R+ =Rx (1,5~3.0)R2=RX
(0,5-1.0) Hereinafter, the configuration of the present invention will be explained in detail with reference to the drawings.

第1図は正規内圧の5%の内圧を充填してリムに固定し
たときのタイヤ形状(以下、5%内圧形状という)を示
す断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing the shape of a tire when it is filled with an internal pressure of 5% of the normal internal pressure and fixed to a rim (hereinafter referred to as 5% internal pressure shape).

5%内圧形状は、前述した金型形状3に形状および寸法
において実質的に等しい。
The 5% internal pressure shape is substantially equal in shape and size to mold shape 3 described above.

第1図において、タイヤ周方向中心線mからショルダー
部6に至る領域のトレッドラジアスをR8とR2とに分
け、これらR1,Rzとに、下記の関係を満足させてい
る。
In FIG. 1, the tread radius in the area from the tire circumferential center line m to the shoulder portion 6 is divided into R8 and R2, and these R1 and Rz satisfy the following relationship.

R+ =RX (1,5〜3.0) R2=Rx (0,5〜1.0) ここで、Rは加硫後に正規内圧を充填したときの第2図
に示すタイヤ形状、すなわち製品形状4におけるトレッ
ドラジアスである。
R+ = RX (1,5~3.0) R2=Rx (0,5~1.0) Here, R is the tire shape shown in Figure 2 when filled with the normal internal pressure after vulcanization, that is, the product shape. This is the tread radius at 4.

R,がRXl、5未満の場合にはクラウンセンタ一部の
接地圧がショルダー部に比して大となり、逆にR1がR
X3.Oを越えるとバックル現象が生じてしまう。R2
がRXo、5未満、R2がRXl、0超の場合も同様で
ある。
If R, is less than RXl,5, the ground pressure in a part of the crown center will be larger than in the shoulder part, and conversely, if R1 is less than R
X3. If it exceeds 0, a buckling phenomenon will occur. R2
The same applies when R2 is RXo, less than 5, and R2 is RXl, greater than 0.

また、第1図において、タイヤ周方向中心線mからこれ
らR1とR2との交点までのトレッド表面の距離Pに、
下記の関係を満足させている。
In addition, in FIG. 1, the distance P of the tread surface from the tire circumferential center line m to the intersection of these R1 and R2 is
The following relationships are satisfied.

P < (w / 2 ) X (3/ 5 )ここで
Wは正規内圧の5%の内圧を充填したときのタイヤのト
レッド展開幅である。Pをこのように規定したのは、P
≧(W/2)X (315)では空気入りバイアスタイ
ヤにおいて金型から製品形状にいたる形状変化に追随で
きず、製品にて一律なトレッドラジアスが得られないこ
とにより、結果として踏面部の接地圧が均一性を欠くこ
とになるからである。
P < (w/2) X (3/5) where W is the tread width of the tire when filled with an internal pressure of 5% of the normal internal pressure. The reason for defining P in this way is that P
≧ (W/2) This is because the pressure will lack uniformity.

このようにしてなる本発明の空気入りタイヤは、高荷重
下で使用された場合、第3図(A)の接地形状図10に
示すようにクラウンセンタ一部5の接地圧とショルダー
部6の接地圧が実質的に等しくなる。したがって、舗装
工事に際しては接地圧分布が均一となり、第3図(B)
に示すようにタイヤ11の踏面12と路面2とが均一に
接する゛ので波打ち現象が生じることはない。
When the pneumatic tire of the present invention thus constructed is used under a high load, the ground contact pressure of the crown center part 5 and the shoulder part 6 increase as shown in the ground contact profile diagram 10 of FIG. The ground pressure becomes substantially equal. Therefore, during pavement construction, the ground pressure distribution becomes uniform, as shown in Figure 3 (B).
As shown in the figure, since the tread surface 12 of the tire 11 and the road surface 2 are in uniform contact with each other, no waving phenomenon occurs.

さらに、第3図(B)のグラフはタイヤ踏面部のクラウ
ンセンタ一部からショルダー部における接地圧分布を測
定したものであり、クラウンセンタ一部からショルダー
部にかけて非常によく均一化されていることが判る。
Furthermore, the graph in Figure 3 (B) is a measurement of the ground pressure distribution from the crown center part to the shoulder part of the tire tread, and it shows that it is very uniform from the crown center part to the shoulder part. I understand.

第4図(A)〜(D)に本発明のタイヤ(900−20
−10PR)の種々の接地形状図を示す。第4図(A)
は負荷荷重945kgの場合の接地形状図を、第4図(
B)は負荷荷重1500kgの場合の接地形状図を、第
4図(C)は負荷荷重1720kgの場合の接地形状図
を、第4図(D)は負荷荷重2165kgの場合の接地
形状図をそれぞれ表わす。これら第4図(A)〜(D)
から、荷重が増加しても接地形状が不均一とはならない
ことが判る。
Fig. 4 (A) to (D) show the tire of the present invention (900-20
-10PR) various ground contact profile diagrams are shown. Figure 4 (A)
Figure 4 (
B) is the ground contact profile diagram when the applied load is 1500 kg, Figure 4 (C) is the ground contact profile diagram when the applied load is 1720 kg, and Figure 4 (D) is the ground contact profile diagram when the applied load is 2165 kg. represent These Figures 4 (A) to (D)
From this, it can be seen that even if the load increases, the ground contact shape does not become uneven.

上述した本発明のタイヤは、タイヤ形状に相当するキャ
ビティを有し、このキャビティの周方向中心線からショ
ルダー部に至る領域のトレッドラジアスをR,とR2と
に分け、前記周方向中心線からこれらR8とR2との交
点までのトレッド表面の距離Pと、R1+R2とに、第
1図および第2図において述べた前述の関係を満足させ
た金型を用いて加硫成形することにより製造できる。
The tire of the present invention described above has a cavity corresponding to the tire shape, and the tread radius of the region from the circumferential center line of the cavity to the shoulder portion is divided into R and R2, and the tread radius of the region from the circumferential center line to the shoulder portion is divided into R and R2. It can be manufactured by vulcanization molding using a mold in which the distance P of the tread surface to the intersection of R8 and R2 and R1 + R2 satisfy the above-mentioned relationship described in FIGS. 1 and 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正規内圧の5%の内圧を充填してリムに固定し
たときのタイヤ形状を示す断面説明図、第2図は正規内
圧を充填したときのタイヤ形状を示す断面説明図、第3
図(A)は本発明のタイヤの踏面部の接地形状を示す説
明図、第3図(B)は舗装工事に際しての接地圧分布の
様子と接地圧測定値を示す説明図、第4図(A)〜(D
)は本発明のタイヤ(900−20−10PR)の種々
荷重下における接地形状を示す説明図である。 第5図は展圧機械で舗装工事を行う様子を示す説明図、
第6図は金型で加硫されたときのタイヤ形状と正規内圧
を充填したときのタイヤ形状を示す断面説明図、第7図
はコンケイププロファイルを示す説明図、第8図(A)
はコンケイププロファイルにより製造されたタイヤの踏
面部の接地形状を示す説明図、第8図(B)はコンケイ
ププロファイルにより製造されたタイヤで舗装工事する
に際しての接地圧分布の様子と接地圧測定値を示す説明
図、第9図(A)〜(D)はコンケイププロファイルに
より製造されたタイヤ(900−20−10PR)の種
々荷重下における接地形状を示す説明図である。 1・・・ローラー、2・・・路面、3・・・金型形状、
4・・・製品形状、5・・・クラウンセンタ一部、6・
・・ショルダー部、10・・・接地形状図、11・・・
タイヤ、12・・・踏面。
Figure 1 is an explanatory cross-sectional view showing the shape of the tire when it is filled with an internal pressure of 5% of the normal internal pressure and fixed to the rim, Figure 2 is an explanatory cross-sectional view showing the shape of the tire when it is filled with the normal internal pressure, and Figure 3
Figure (A) is an explanatory diagram showing the ground contact shape of the tread portion of the tire of the present invention, Figure 3 (B) is an explanatory diagram showing the ground contact pressure distribution and ground pressure measurement values during paving work, and Figure 4 ( A) ~ (D
) is an explanatory diagram showing the ground contact shape of the tire (900-20-10PR) of the present invention under various loads. Figure 5 is an explanatory diagram showing how paving work is performed using a rolling pressure machine;
Figure 6 is a cross-sectional explanatory diagram showing the tire shape when vulcanized in a mold and the tire shape when filled with the normal internal pressure, Figure 7 is an explanatory diagram showing the concape profile, and Figure 8 (A)
is an explanatory diagram showing the contact shape of the tread of a tire manufactured with a concape profile, and Figure 8 (B) shows the ground pressure distribution and ground pressure measurement when performing paving work with a tire manufactured with a concape profile. FIGS. 9A to 9D are explanatory diagrams showing the values, and FIGS. 9A to 9D are explanatory diagrams showing the ground contact shape under various loads of a tire (900-20-10PR) manufactured with a concave profile. 1... Roller, 2... Road surface, 3... Mold shape,
4...Product shape, 5...Part of crown center, 6.
...Shoulder part, 10...Grounding shape diagram, 11...
Tire, 12...tread.

Claims (1)

【特許請求の範囲】 1、正規内圧の5%の内圧を充填してリムに固定したと
きのタイヤ形状において、タイヤ周方向中心線からショ
ルダー部に至る領域のトレッドラジアスをR_1とR_
2とに分け、タイヤ周方向中心線からこれらR_1とR
_2との交点までのトレッド表面の距離Pと、R_1、
R_2とに、下記の関係を満足させたことを特徴とする
空気入りタイヤ。 P<(w/2)×(3/5) R_1=R×(1.5〜3.0) R_2=R×(0.5〜1.0) ここで、wは正規内圧の5%の内圧を充填 したときのタイヤのトレッド展開幅を、Rは正規内圧を
充填したときのタイヤのトレッドラジアスを表わす。 2、タイヤを金型内で加硫成形するに際し、タイヤ形状
に相当するキャビティを有し、このキャビティの周方向
中心線からショルダー部に至る領域のトレッドラジアス
をR_1とR_2とに分け、前記周方向中心線からこれ
らR_1とR_2との交点までのトレッド表面の距離P
と、R_1、R_2とに、下記の関係を満足させた金型
を用いることを特徴とする空気入りタイヤの製造方法。 P<(w/2)×(3/5) R_1=R×(1.5〜3.0) R_2=R×(0.5〜1.0) ここで、wは正規内圧の5%の内圧を充填 したときのタイヤのトレッド展開幅を、Rは加硫後のタ
イヤに正規内圧を充填したときのタイヤのトレッドラジ
アスを表わす。
[Claims] 1. In the tire shape when the tire is filled with an internal pressure of 5% of the normal internal pressure and fixed to the rim, the tread radius in the area from the tire circumferential center line to the shoulder part is R_1 and R_
2, and these R_1 and R from the tire circumferential center line.
The distance P of the tread surface to the intersection with _2 and R_1,
A pneumatic tire characterized by satisfying the following relationship with R_2. P<(w/2)×(3/5) R_1=R×(1.5-3.0) R_2=R×(0.5-1.0) Here, w is 5% of the normal internal pressure. R represents the tread width of the tire when filled with internal pressure, and R represents the tread radius of the tire when filled with normal internal pressure. 2. When vulcanizing a tire in a mold, it has a cavity corresponding to the shape of the tire, and the tread radius of the area from the circumferential center line of this cavity to the shoulder part is divided into R_1 and R_2, and Distance P of the tread surface from the direction center line to the intersection of these R_1 and R_2
A method for manufacturing a pneumatic tire, comprising using a mold that satisfies the following relationship for R_1 and R_2. P<(w/2)×(3/5) R_1=R×(1.5-3.0) R_2=R×(0.5-1.0) Here, w is 5% of the normal internal pressure. R represents the tread width of the tire when filled with internal pressure, and R represents the tread radius of the tire when the vulcanized tire is filled with the normal internal pressure.
JP61280668A 1986-11-27 1986-11-27 Pneumatic tire and manufacture thereof Pending JPS63134306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280668A JPS63134306A (en) 1986-11-27 1986-11-27 Pneumatic tire and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280668A JPS63134306A (en) 1986-11-27 1986-11-27 Pneumatic tire and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63134306A true JPS63134306A (en) 1988-06-06

Family

ID=17628268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280668A Pending JPS63134306A (en) 1986-11-27 1986-11-27 Pneumatic tire and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63134306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112218A (en) * 2011-11-29 2013-06-10 Sumitomo Rubber Ind Ltd Heavy duty tire
JP2018192658A (en) * 2017-05-15 2018-12-06 住友ゴム工業株式会社 Pneumatic bias tire, and method for manufacturing the same
JP2022048323A (en) * 2017-02-08 2022-03-25 住友ゴム工業株式会社 Tire for heavy load

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112218A (en) * 2011-11-29 2013-06-10 Sumitomo Rubber Ind Ltd Heavy duty tire
JP2022048323A (en) * 2017-02-08 2022-03-25 住友ゴム工業株式会社 Tire for heavy load
JP2018192658A (en) * 2017-05-15 2018-12-06 住友ゴム工業株式会社 Pneumatic bias tire, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP1186401B1 (en) Method of manufacturing a rubber component for a pneumatic tyre, tyre comprising at least one of such a component, and method of manufacturing a tyre using at least one of such a component
RU98123825A (en) METHOD FOR MANUFACTURING TIRES FOR VEHICLE WHEELS
ES464125A1 (en) Process for manufacturing tires
JPS63134306A (en) Pneumatic tire and manufacture thereof
AU623272B2 (en) Method of molding a tire and mold for the carrying out of said method
JP4333975B2 (en) Pneumatic tire and manufacturing method thereof
JPS5970554A (en) Formation of tread pattern for tire
JPH061114A (en) Automotive tire
JPH0516617A (en) Pneumatic tire for passenger car
JPH09225945A (en) Tire mold
JPH03193507A (en) Pneumatic tire having elongated durable years for construction vehicle
JPH07125506A (en) Hollow pneumatic-type solid tire and manufacture thereof
US3556891A (en) Pneumatic tire method of fabrication and intermediate article
JPH0365404A (en) Radial tire for heavy load
JP3210421B2 (en) Manufacturing method of pneumatic radial tire
JPH0453735A (en) Manufacture of pneumatic tire
BG61716B1 (en) Pneumatic tyre for agricultural purposes
JPS61228941A (en) Manufacture of pneumatic radial tire
JPH05177742A (en) Split mold for regenerated tire and manufacture of regenerated tire
JPH0338407A (en) Precure tread
JPH0228002A (en) Pneumatic radial tire for heavy load to be used for running on unleveled ground
US4769203A (en) Method of manufacturing pneumatic tires by vulcanization building
JPS6127706A (en) Pneumatic tire
JPS62292507A (en) Pneumatic radial-ply tire
KR0125392Y1 (en) Tire inner liner