JPS63134031A - Hollow yarn type composite membrane - Google Patents
Hollow yarn type composite membraneInfo
- Publication number
- JPS63134031A JPS63134031A JP27881486A JP27881486A JPS63134031A JP S63134031 A JPS63134031 A JP S63134031A JP 27881486 A JP27881486 A JP 27881486A JP 27881486 A JP27881486 A JP 27881486A JP S63134031 A JPS63134031 A JP S63134031A
- Authority
- JP
- Japan
- Prior art keywords
- polymethylpentene
- composite membrane
- layer
- hollow fiber
- hollow yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 34
- 239000002131 composite material Substances 0.000 title claims abstract description 7
- 238000000926 separation method Methods 0.000 claims abstract description 22
- 229920000306 polymethylpentene Polymers 0.000 claims abstract description 19
- 239000011116 polymethylpentene Substances 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 9
- -1 polysiloxane Polymers 0.000 claims abstract description 9
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 7
- 239000012510 hollow fiber Substances 0.000 claims description 31
- 239000010410 layer Substances 0.000 abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 10
- 239000001301 oxygen Substances 0.000 abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 abstract description 10
- 239000011148 porous material Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 7
- 229920000642 polymer Polymers 0.000 abstract description 6
- 239000002904 solvent Substances 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract description 4
- 239000002346 layers by function Substances 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 abstract description 2
- 229920002678 cellulose Polymers 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229920002492 poly(sulfone) Polymers 0.000 description 6
- 238000012695 Interfacial polymerization Methods 0.000 description 5
- 238000007664 blowing Methods 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 150000003377 silicon compounds Chemical class 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000005375 organosiloxane group Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- RLSBUOCUZRYZOS-UHFFFAOYSA-N (C-acetyloxy-N-hydroxycarbonimidoyl) acetate Chemical compound C(C)(=O)OC(=NO)OC(C)=O RLSBUOCUZRYZOS-UHFFFAOYSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- AVGQTJUPLKNPQP-UHFFFAOYSA-N 1,1,1-trichloropropane Chemical compound CCC(Cl)(Cl)Cl AVGQTJUPLKNPQP-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000002344 aminooxy group Chemical group [H]N([H])O[*] 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の属する技術分野)
本発明は気体分Il!に関する。更に詳しくはポリメチ
ルペンテンが多孔性中空糸の内面又は外面上にコーティ
ングされた気体分離膜に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a gas component Il! Regarding. More specifically, the present invention relates to a gas separation membrane in which polymethylpentene is coated on the inner or outer surface of a porous hollow fiber.
(従来の技術)
気体分離用薄膜の製法としては、現在まで、例えば米国
特許第4,192,842号明細書に提案されている。(Prior Art) A method for manufacturing a thin film for gas separation has been proposed up to now, for example, in US Pat. No. 4,192,842.
代表的製法として、これまで水面展開法、さらに界面重
合法、また多孔質体の上にポリマー溶液をコーティング
するコーティング法等が知られている。また形状として
は平膜型及び平膜型よりも単位体積当りの膜面積が大き
い中空糸型等が知られている。水面展開法と呼ばれてい
る方法の中には、例えばポリメチルペンテン等の気体分
離用素材を水面上に均一に展開し、ポリスルホン等の平
膜支持体上にのせる方法等が知られており、界面重合法
などの、化学反応によって製膜する方法と比較し、2成
分を界面で合わせる有機合成的な操作がさ1要ないとい
う点で、比較的簡便に気体分離膜を作ることが可能であ
るが、水面展開であるので形状が平膜型に限られてしま
い、形状を改良する上で、多少難点がある。Typical manufacturing methods that have been known include a water surface spreading method, an interfacial polymerization method, and a coating method in which a porous body is coated with a polymer solution. As for the shape, a flat membrane type and a hollow fiber type, which has a larger membrane area per unit volume than the flat membrane type, are known. Among the methods known as the water surface spreading method, there is a method in which a gas separation material such as polymethylpentene is uniformly spread on the water surface and placed on a flat membrane support such as polysulfone. Compared to methods such as interfacial polymerization that form membranes through chemical reactions, this method is relatively easy to create gas separation membranes in that it does not require any organic synthesis operations to combine two components at an interface. Although it is possible, since it is developed on the water surface, the shape is limited to a flat membrane type, and there are some difficulties in improving the shape.
また界面重合法は、例えば支持体にアミン等を含浸させ
、イソシアネート等を界面で合わせることによってポリ
ウレアよりなる高気体透過性、かつ高気体選択性を持つ
気体分離膜を作る方法等がよく知られている。この方法
によると中空糸型の形状にも製膜することが可能である
が、化学反応を界面でとり行なわなければならず、従っ
て、反応物を界面で合わせなければならないという点で
製膜操作が比較的複雑となる傾向にある。またコーティ
ング法は有機溶媒に気体分離用素材を溶解させ、それを
支持体上に広げ溶媒を除去させる方法であり、操作も簡
便であるが、均一に薄くコーティングする事が難しい。In addition, interfacial polymerization is a well-known method in which a gas separation membrane made of polyurea with high gas permeability and high gas selectivity is made by impregnating a support with an amine or the like and combining it with an isocyanate or the like at the interface. ing. According to this method, it is possible to form a membrane in the shape of a hollow fiber, but the chemical reaction must be carried out at the interface, and therefore the membrane forming operation is difficult in that the reactants must be combined at the interface. tend to be relatively complex. Furthermore, the coating method is a method in which a gas separation material is dissolved in an organic solvent, spread on a support, and the solvent is removed.Although the operation is simple, it is difficult to uniformly and thinly coat the material.
現在までのところ中空糸型で選択性、透過性ともに高い
気体分離膜を作るには至っていない。To date, it has not been possible to create a hollow fiber type gas separation membrane with high selectivity and permeability.
(本発明が解決しようとする課題)
気体分離膜の形状から言えば、単位体積当りの膜面積の
大きい中空糸型分11膜の方が平膜型よりも、同じ特性
を持つ膜であればより軽量に、またよりコンパクトに作
成することが可能である。従って形状としては中空糸型
の分離膜がより望ましい。しかし、現在のところ中空糸
型の分離膜は、界面重合法等の方法によって中空糸の内
側に膜を作成しているという段階であり、高気体透過性
かつ高気体選択性能を持つ、分離膜が得られているもの
のより望まれることはコーティング方法等の、界面重合
法等に比較して、より簡便な操作で、しかも、中空糸の
内側のみでなく外側にも気体分離用素材を均一に薄く、
支持体上にコーティングさせることのでき得る方法が発
明されることである。(Problem to be solved by the present invention) In terms of the shape of the gas separation membrane, a hollow fiber type membrane with a larger membrane area per unit volume is better than a flat membrane type, provided that it has the same characteristics. It can be made lighter and more compact. Therefore, a hollow fiber type separation membrane is more desirable in terms of shape. However, at present, hollow fiber separation membranes are at the stage where membranes are created inside the hollow fibers using methods such as interfacial polymerization. Although this has been achieved, what is more desirable is a coating method that is easier to operate than interfacial polymerization methods, and that allows the gas separation material to be uniformly applied not only to the inside of the hollow fiber but also to the outside. thin,
A method is to be invented which allows coating onto a support.
かかる状況に鑑み、中空糸のコーティング方法について
鋭意検討した結果、本発明に到達した。In view of this situation, the present invention was arrived at as a result of intensive study on a method for coating hollow fibers.
(発明の構成)
すなわち本発明は多孔質中空糸の内面又は外面上にポリ
メチルペンテン層があり更にその上にポリシロキサン層
を形成せしめた中空糸状複合膜である。(Structure of the Invention) That is, the present invention is a hollow fiber composite membrane in which a polymethylpentene layer is formed on the inner or outer surface of a porous hollow fiber, and a polysiloxane layer is further formed on the polymethylpentene layer.
本発明において多孔質膜は1ul1分I11機能層を支
持する層であり、それ自体選択分離能を有さない層であ
る。多孔質支持体にはガラス質多孔材、焼結金属、セラ
ミックス、セルロースエステル、ポリスチレン、ポリビ
ニルブチラール、ポリ塩化ビニル、ポリエステル、ポリ
アクリロニトリル、ポリアミド等があるが、ポリスルホ
ンはこれら支持体の中で特にすぐれた性能を有するもの
である。In the present invention, the porous membrane is a layer that supports the 1 ul 1 minute I11 functional layer and does not itself have selective separation ability. Porous supports include glassy porous materials, sintered metals, ceramics, cellulose esters, polystyrene, polyvinyl butyral, polyvinyl chloride, polyesters, polyacrylonitrile, polyamides, etc., but polysulfone is particularly excellent among these supports. It has excellent performance.
孔の大きさは一般に約50〜10000人好ましくは1
00〜1000人の間にあるものが好ましいがこれに限
られるものではなく、最終の膜の用途に応じ、孔の大き
さを50〜10000人の間で変えることができる。ま
た膜厚は5μ7yL〜5M好ましくは10t1m〜1馴
が用いられるが、これに限られるものではない。The pore size is generally about 50 to 10,000, preferably 1
The pore size is preferably between 0 and 1,000 pores, but is not limited to this, and depending on the final membrane application, the pore size can vary between 50 and 10,000 pores. Further, the film thickness is preferably 5μ7yL to 5M, preferably 10t1m to 1μL, but is not limited thereto.
支持体は対称構造でも非対称構造でも使用できるが、非
対称構造のものがより望ましい。The support can be of either symmetrical or asymmetrical construction, but asymmetrical construction is more preferred.
また中空糸型支持体の形状は限定されるものではないが
、通常は内径が500〜1000μmのものを使用する
。Further, the shape of the hollow fiber type support is not limited, but one having an inner diameter of 500 to 1000 μm is usually used.
極薄分離機能層を構成する気体分離膜素材すなわちコー
テイング材としてはポリメチルペンテンを主とする高分
子である。The gas separation membrane material, or coating material, constituting the ultra-thin separation functional layer is a polymer mainly composed of polymethylpentene.
構造としてはポリ−4−メチルペンテン−1゜ポリ−3
−メチルペンテンである。The structure is poly-4-methylpentene-1゜poly-3
-Methylpentene.
またその一部例えば40モル%以下、好ましくは20モ
ル%以下、特に好ましくは10モル%以下をα−オレフ
ィンやジエンモノマーに替えた共重合体も好適に用いら
れる。α−オレフィンとしてはへキセノ。オクテン、デ
セン、ドデセンなど、ジエンモノマーとしてはブタジェ
ン、イソプレンなどをあげることができる。ポリメチル
ペンテンの溶媒としては、炭化水素又はハロゲン化炭化
水素、好ましくは沸点50〜200℃、更に好ましくは
沸点70〜160℃の炭化水素又はハロゲン化炭化水素
が用いられる。溶媒の具体例としてはシクロヘキセン、
シクロヘキサン、メチルシクロヘキサン、エチルシクロ
ヘキサン、トルエン、キシレン、ベンゼン、クメン等の
炭化水素、トリクロロエタン。Also preferably used are copolymers in which a portion of the monomer, for example, 40 mol % or less, preferably 20 mol % or less, particularly preferably 10 mol % or less, is replaced with α-olefin or diene monomer. Hexeno is an α-olefin. Diene monomers such as octene, decene, and dodecene include butadiene and isoprene. As a solvent for polymethylpentene, a hydrocarbon or halogenated hydrocarbon, preferably a boiling point of 50 to 200°C, more preferably a boiling point of 70 to 160°C, is used. Specific examples of solvents include cyclohexene,
Hydrocarbons such as cyclohexane, methylcyclohexane, ethylcyclohexane, toluene, xylene, benzene, cumene, trichloroethane.
テトラクロロエタン、トリクロロエチレン、トリクロロ
プロパン、クロロベンゼン、ジクロロベンゼン等のハロ
ゲン化炭化水素が好適なものとして挙げられる。また厚
みとしては0.01〜10μm好ましくは0.03〜5
μmのものが良い。ポリマー溶液の塗布法としては、デ
ィッピング、スプレーコーティング、送液法等種々の方
法が適用できる。Suitable examples include halogenated hydrocarbons such as tetrachloroethane, trichloroethylene, trichloropropane, chlorobenzene, and dichlorobenzene. The thickness is 0.01 to 10 μm, preferably 0.03 to 5 μm.
A μm one is better. Various methods can be used to apply the polymer solution, such as dipping, spray coating, and liquid feeding.
非ポリマーの濃度は30〜0.01重量%好まし・くは
10〜0.1重量%であ。シリコン化合物としては、ポ
リメチルペンテンはど高気体選択性能でなくとも、適切
な透過性能を有する化合物であれば良く、ざらに製膜操
作上発生すると思われるきわめてわずかな部分的欠陥を
修復する硬化性化合物であれば良い。さらに硬化俊にお
いては、分離膜としての耐久性の点から、機械的強度が
あり、容易に流出したり移動したりしないものが好まし
く高重合になりやすいものあるいは架橋構造をとるもの
が好ましい。具体的には硬化型オルガノシロキサンが好
適に用いられるかかる硬化型オルガノシロキサンは末端
又は側鎖にハロゲン原子、水酸基、アルコキシ基、ハイ
ドロジエン基及び/又はビニル■
基を有し主鎖構造として+5i−0−)nを有するR′
化合物である。(R及びR′は炭素原子数1〜8の有様
基であり、メチル、エチル、プロピル、フェニル、ナフ
チルが好ましく、nは3〜10QO,好ましくは10〜
500の整数である。)さらに架橋剤として2以上の官
能基を有するシラン化合物又はシロキサン化合物が加え
られる。官能基の具体例としではアセトキシ、ケトオキ
シム、シラザンア1ミド、アミノキシ、ハイドロジエン
、ビニル、アルコキシ等がある。さらに硬化反応におい
て微陽の触媒、例えば錫系、チタン系、亜鉛系、白金系
などの金属アルコキサイドの存在が効果的である。The concentration of non-polymer is preferably 30-0.01% by weight, preferably 10-0.1% by weight. As a silicon compound, even if polymethylpentene does not have a high gas selectivity, it is sufficient as long as it has appropriate permeability, and it can be cured to repair extremely slight partial defects that may occur during the film forming process. Any chemical compound may be used. Furthermore, in terms of hardening speed, from the viewpoint of durability as a separation membrane, it is preferable to use one that has mechanical strength and does not easily flow out or move, and preferably one that easily undergoes high polymerization or one that has a crosslinked structure. Specifically, a curable organosiloxane is preferably used. Such a curable organosiloxane has a halogen atom, a hydroxyl group, an alkoxy group, a hydrogen group, and/or a vinyl group at the terminal or side chain, and has a main chain structure of +5i- 0-)n. (R and R' are various groups having 1 to 8 carbon atoms, preferably methyl, ethyl, propyl, phenyl, or naphthyl, and n is 3 to 10QO, preferably 10 to
It is an integer of 500. ) Furthermore, a silane compound or siloxane compound having two or more functional groups is added as a crosslinking agent. Specific examples of the functional group include acetoxy, ketoxime, silazane amide, aminoxy, hydrogen, vinyl, and alkoxy. Further, in the curing reaction, the presence of a microcatalyst such as a metal alkoxide such as a tin-based, titanium-based, zinc-based, or platinum-based metal alkoxide is effective.
シリコン化合物を溶かす溶媒は、分離膜を溶解させない
炭化水素類やアルコール類、具体例としてはヘキサン、
オクタン、ヘプタン、シクロヘキサン、ベンゼン、トル
エン、キシレン、メタノール。Solvents that dissolve silicon compounds include hydrocarbons and alcohols that do not dissolve the separation membrane; specific examples include hexane,
Octane, heptane, cyclohexane, benzene, toluene, xylene, methanol.
エタノール、n−プロパツール、ブタノール(n−、イ
ソ−、ターシャリ−)がある。さらに濃度は溶解度の範
囲内で任意に使用できる。このポリシロキサン層はポリ
メチルペンテン層の欠陥をうめる効果ばかりでなく、汚
れの付着防止、殿械的強度のアップ、耐熱性向上などの
積極的な効果をもたらす。These include ethanol, n-propertool, and butanol (n-, iso-, tertiary). Further, the concentration can be arbitrarily used within the range of solubility. This polysiloxane layer not only has the effect of filling defects in the polymethylpentene layer, but also has positive effects such as preventing the adhesion of dirt, increasing mechanical strength, and improving heat resistance.
ポリメチルペンテンで多孔質支持体の表面の孔の部分は
大部分うもれているので、ポリシロキサン層はわずかの
但で上述の効果をもたらし、透過性の低下はほとんどな
い。Since most of the pores on the surface of the porous support are filled with polymethylpentene, the polysiloxane layer provides the above-mentioned effect with a small amount, and there is almost no decrease in permeability.
この様な本発明の膜の製造例の一つをのべると多孔質中
空糸の内側に有機溶媒に溶解したポリメチルペンテンを
ポンプ等で一定の速度で流し、その後窒素ガスを中空糸
内側に一定速度で流し有機溶媒を除去しその後、中空糸
内側有機溶媒に溶解したシリコン化合物を中空糸内側に
流し、しかる後再び窒素ガスを中空糸内側に流し有機溶
媒を除去することがあげられる。もちろんこれに限定さ
れるものではなく、ポリメチルペンテン溶液、シリコン
化合物溶液を逐次浸漬することで多孔質中空糸の外側に
も膜形成ができる。One example of manufacturing the membrane of the present invention is to flow polymethylpentene dissolved in an organic solvent inside a porous hollow fiber at a constant rate using a pump or the like, and then to flow nitrogen gas inside the hollow fiber at a constant rate. An example of this method is to flow at a high speed to remove the organic solvent, then flow the silicon compound dissolved in the organic solvent inside the hollow fiber to the inside of the hollow fiber, and then flow nitrogen gas to the inside of the hollow fiber again to remove the organic solvent. Of course, the method is not limited to this, and a film can also be formed on the outside of the porous hollow fibers by sequentially immersing them in a polymethylpentene solution and a silicon compound solution.
(効果)
本発明の膜は主にガス分離に用いられる。特に大気から
の酸素富化空気(例えば、酸素含量的30〜45%)の
製造に好んで用いることができる。(Effects) The membrane of the present invention is mainly used for gas separation. In particular, it can be preferably used for producing oxygen-enriched air (eg, 30 to 45% oxygen content) from the atmosphere.
以下実施例を示し詳細に説明を行なうが本発明は実施例
によって何ら限定されるものではない。The present invention will be described in detail below with reference to Examples, but the present invention is not limited to the Examples in any way.
実施例1
ポリメチルペンテン0.5重量部をシクロヘキサン99
.5重量部に溶解させた。この溶液を、よく乾燥したポ
リスルホン中空糸の内側にポンプで流した。流速は2m
/分、温度は室温で行なった。その10.5.Q/分の
流速で1分間N2をブローし乾燥した。その後硬化型シ
リコン0.5重量部をヘキサン99.5重量部に溶解し
た溶液を中空糸の内側に短時間流通させ、0.5fi/
分の流速で1分間N2をブローし乾燥した。Example 1 0.5 parts by weight of polymethylpentene was added to 99% of cyclohexane.
.. It was dissolved in 5 parts by weight. This solution was pumped inside a well-dried polysulfone hollow fiber. The flow velocity is 2m
/min, and the temperature was room temperature. Part 10.5. It was dried by blowing with N2 for 1 minute at a flow rate of Q/min. Thereafter, a solution prepared by dissolving 0.5 parts by weight of curable silicone in 99.5 parts by weight of hexane was passed through the inside of the hollow fiber for a short period of time.
It was dried by blowing with N2 for 1 minute at a flow rate of 1 minute.
この中空糸の酸素透過速度は2.0〜2.5x 1O−
5cc(STP)/cj−sec−aahTニアV)、
M 素?fh 過速度対窒素透過速度の比(選択性)は
4.2〜4.4であった。The oxygen permeation rate of this hollow fiber is 2.0 to 2.5x 1O-
5cc (STP)/cj-sec-aahT near V),
M Basic? The ratio of fh overrate to nitrogen permeation rate (selectivity) was 4.2-4.4.
実施例2
ポリメチルペンテン0.5重1部をシクロヘキサ299
.5重量部に溶解させた。この溶液をエチレングリコー
ルを含浸したポリスルホン中空糸の内側にポンプで流し
た。流速は2te/分、温度は空温で行なった。その後
0,5.u/分の流速で1分間N2をブローし、水洗し
乾燥した。その後硬化型シリコン0.5重量部をヘキサ
ン99.5重量部に溶解した溶液を中空糸の内側に短時
間流通させ、0.5磨/分の流速で1分間N2をブロー
し乾燥した。Example 2 0.5 parts by weight of polymethylpentene and 299 parts of cyclohexane
.. It was dissolved in 5 parts by weight. This solution was pumped inside polysulfone hollow fibers impregnated with ethylene glycol. The flow rate was 2te/min, and the temperature was air temperature. Then 0,5. It was blown with N2 for 1 minute at a flow rate of u/min, washed with water and dried. Thereafter, a solution prepared by dissolving 0.5 parts by weight of hardened silicon in 99.5 parts by weight of hexane was passed through the inside of the hollow fiber for a short time, and dried by blowing with N2 for 1 minute at a flow rate of 0.5 polish/min.
この中空糸の酸素透過速度は1.1〜1.5X 10”
CC(STP)/C1−5ec −atrhT:あり
酸素透過速度対窒素透過速度の比(選択性)は3.6〜
4.4であった。The oxygen permeation rate of this hollow fiber is 1.1~1.5X 10"
CC(STP)/C1-5ec-atrhT: Yes Ratio of oxygen permeation rate to nitrogen permeation rate (selectivity) is 3.6~
It was 4.4.
比較例1
ポリメチルペンテン0.5重量部をシクロヘキサン99
.5重量部に溶解させ、この溶液をよく乾燥したポリス
ルホン中空糸の内側にポンプで流した。Comparative Example 1 0.5 parts by weight of polymethylpentene was added to 99% of cyclohexane.
.. This solution was pumped inside a well-dried polysulfone hollow fiber.
流速は2−/分、温度は室温で行なった。その後0.5
.Q/分の流速で1分間N2をブローし乾燥した。この
中空糸の気体透過量は実施例1の10〜20倍であり、
又酸素濃度は21.2%であり、酸素富化空気を得るこ
とはできなかった。The flow rate was 2-/min and the temperature was room temperature. then 0.5
.. It was dried by blowing with N2 for 1 minute at a flow rate of Q/min. The amount of gas permeation through this hollow fiber is 10 to 20 times that of Example 1,
Furthermore, the oxygen concentration was 21.2%, making it impossible to obtain oxygen-enriched air.
比較例2
ポリメチルペンテン0.5重量部をシクロヘキサン99
.5重量部に溶解させ、この溶液を、エチレングリコー
ルで含浸されたポリスルホン中空糸の内側にポンプで流
した。流速は2d/分、温度は室温で行なった。その後
0.5J1/分の流速で1分間N2をブローし乾燥した
。この中空糸の気体透過母は実施例2の10〜20倍で
あり、又酸素濃度は21.2%であり、酸素富化空気を
得ることはできなかった。Comparative Example 2 0.5 parts by weight of polymethylpentene was added to 99% of cyclohexane.
.. This solution was pumped inside polysulfone hollow fibers impregnated with ethylene glycol. The flow rate was 2 d/min and the temperature was room temperature. Thereafter, it was dried by blowing with N2 for 1 minute at a flow rate of 0.5 J1/min. The gas permeability of the hollow fibers was 10 to 20 times that of Example 2, and the oxygen concentration was 21.2%, making it impossible to obtain oxygen-enriched air.
Claims (1)
成されたポリメチルペンテンから主としてなる極薄分離
機能層とからなる選択透過性複合膜の当該分離機能層上
にさらにポリシロキサン層を形成せしめた構成からなる
ことを特徴とする中空糸状複合膜。A permselective composite membrane consisting of a hollow fiber support layer and an ultra-thin separation function layer mainly made of polymethylpentene formed on the support layer by a solution coating method, further comprising a polysiloxane layer on the separation function layer. A hollow fiber-like composite membrane characterized in that it consists of a structure formed by forming a hollow fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27881486A JPS63134031A (en) | 1986-11-25 | 1986-11-25 | Hollow yarn type composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27881486A JPS63134031A (en) | 1986-11-25 | 1986-11-25 | Hollow yarn type composite membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63134031A true JPS63134031A (en) | 1988-06-06 |
Family
ID=17602530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27881486A Pending JPS63134031A (en) | 1986-11-25 | 1986-11-25 | Hollow yarn type composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63134031A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5073175A (en) * | 1988-08-09 | 1991-12-17 | Air Products And Chemicals, Inc. | Fluorooxidized polymeric membranes for gas separation and process for preparing them |
-
1986
- 1986-11-25 JP JP27881486A patent/JPS63134031A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5073175A (en) * | 1988-08-09 | 1991-12-17 | Air Products And Chemicals, Inc. | Fluorooxidized polymeric membranes for gas separation and process for preparing them |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0094050B1 (en) | Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture | |
US5733663A (en) | Composite membrane and process for its production | |
JPH0558770B2 (en) | ||
KR20120120989A (en) | Method for producing porous silicon molded bodies | |
JPS62723B2 (en) | ||
JPH0417084B2 (en) | ||
JPS5973005A (en) | Multi-component membrane for separating gas | |
JPH07114937B2 (en) | Separation membrane | |
US4919694A (en) | Selective gas permeation membranes and method of manufacturing them | |
JPH0824830B2 (en) | Separation membrane | |
JPS63134031A (en) | Hollow yarn type composite membrane | |
US4980235A (en) | Process for preparing non-porous membrane layers | |
JPH0224574B2 (en) | ||
JPS62294420A (en) | Method of forming fluid separating film | |
JPS62227409A (en) | Method for repairing permselective composite membrane | |
JPS61111121A (en) | Composite membrane for separating gas | |
JPH0419891B2 (en) | ||
JP4883683B2 (en) | Organopolysiloxane for gas separation membrane | |
JPH07116485A (en) | Manufacture of gas separation membrane | |
JPS6336286B2 (en) | ||
JPH0479689B2 (en) | ||
JPH0322206B2 (en) | ||
JPH0378128B2 (en) | ||
JPH06277438A (en) | Gas separation membrane and production thereof | |
JPH0693990B2 (en) | Composite membrane for gas separation |