JPS6313367A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6313367A
JPS6313367A JP61157313A JP15731386A JPS6313367A JP S6313367 A JPS6313367 A JP S6313367A JP 61157313 A JP61157313 A JP 61157313A JP 15731386 A JP15731386 A JP 15731386A JP S6313367 A JPS6313367 A JP S6313367A
Authority
JP
Japan
Prior art keywords
region
concentration
type
impurity region
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61157313A
Other languages
Japanese (ja)
Inventor
Koji Otsu
大津 孝二
Hiroyuki Moriya
博之 守屋
Kazuo Nishiyama
西山 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61157313A priority Critical patent/JPS6313367A/en
Publication of JPS6313367A publication Critical patent/JPS6313367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce mutual intervention among cells and a soft-error by forming a base body in three layer structure of low concentration, high concentration and low concentration and shaping a trench type capacitance into a high concentration region in a semiconductor memory device with the trench type capacitance and a switching transistor. CONSTITUTION:A high-concentration impurity region 1 having the same conductivity type and a P type up to depth in depth Xp from the surface is formed onto a P-type semiconductor substrate region 2 as a P-type low-concentration semiconductor region, and a P-type low-concentration impurity region 3 is shaped similarly onto the region 1. Trench type capacitances 10 storing information signals in the shape of charges are formed by digging trenches 11, and are Xt deep. The trenches 11 penetrate the low-concentration impurity region 3, and do not reach up to the semiconductor substarte region 2, and the greater part is surrounded by the high-concentration impurity region 1. N-type impurity regions 21, 22 as source-drain regions are shaped in the low-concentration impurity region 3 in a switching transistor 20, thus realizing desired Vth (threshold voltage).

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、溝型容量とスイッチングトランジスタとを有
するDRAM (グイナミソクRAM)等の半導体メモ
リ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a semiconductor memory device such as a DRAM (DRAM) having a trench type capacitor and a switching transistor.

B9発明の概要 本発明は、溝型容量とスイッチングトランジスタとを有
する半導体メモリ装置において、基体を低濃度、高濃度
、低濃度の三層構造とし溝型容量を高濃度領域中に形成
することにより、セル間の相互干渉やソフトエラーの低
減を図ったものである。
B9 Summary of the Invention The present invention provides a semiconductor memory device having a trench capacitor and a switching transistor, in which the substrate has a three-layer structure of low concentration, high concentration, and low concentration, and the trench capacitor is formed in a high concentration region. , which aims to reduce mutual interference between cells and soft errors.

C1従来の技術 半導体メモリ装置例えばDRAMにおいては、高集積化
等の要求から、溝型容量を有する構造のメモリ装置が研
究・開発されている。
C1 Prior Art In semiconductor memory devices such as DRAMs, memory devices having a trench-type capacitor structure have been researched and developed due to demands for higher integration.

このような半導体メモリ装置は、半導体基板に所定の深
さの溝を掘り、この溝にシリコン酸化層等の誘電体層を
形成し、さらに該誘電体層の上に電極層等杢有して溝型
容量が構成され、さらにワード線等の選択信号に基づき
オン・オフするスイッチングトランジスタが同一基板・
同一セル内に隣接して形成される構造になっている。
Such a semiconductor memory device involves digging a groove to a predetermined depth in a semiconductor substrate, forming a dielectric layer such as a silicon oxide layer in the groove, and further forming an electrode layer on the dielectric layer. A trench type capacitor is configured, and a switching transistor that turns on and off based on a selection signal such as a word line is mounted on the same substrate.
They have a structure in which they are formed adjacently within the same cell.

そして、情報信号の読み出しや書き込みは、上記スイッ
チングトランジスタを介して上記誘電体層の界面等に蓄
積される電荷の充放電により行われる。
Reading and writing of information signals is performed by charging and discharging charges accumulated at the interface of the dielectric layer and the like via the switching transistor.

D0発明が解決しようとする問題点 しかしながら、上述のような溝型容量を有してなる半導
体メモリ装置にあっても、さらに集積度を向上させてい
った場合には、問題を生ずることになる。
D0 Problems to be Solved by the Invention However, even in a semiconductor memory device having a trench type capacitor as described above, problems will arise if the degree of integration is further improved. .

即ち、半導体基板には、複数のセル毎に上述の溝型容量
が形成されるが、集積度を向上させ、セル相互の距離が
近接したときには、空乏層が拡がってパンチスルー現象
が生ずるおそれが有る。このため半導体メモリ装置の高
集積化の妨げとなっている。
That is, the above-mentioned trench capacitance is formed in a semiconductor substrate for each of a plurality of cells, but when the degree of integration is improved and the distance between the cells becomes close, there is a risk that the depletion layer will expand and a punch-through phenomenon will occur. Yes. This obstructs higher integration of semiconductor memory devices.

また、このような溝型容量へα線等の影響から電子が注
入された場合には、これがソフトエラーとなって現れ、
このようなソフトエラーを低減することが要求されてい
る。
Additionally, if electrons are injected into such a trench capacitor due to the influence of alpha rays, etc., this will appear as a soft error,
There is a need to reduce such soft errors.

そこで、本発明は上述の問題点に鑑み、セル間の相互干
渉やソフトエラーの低減等を実現する半導体メモリ装置
の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a semiconductor memory device that reduces mutual interference between cells and soft errors.

E0問題点を解決するための手段 本発明は、溝型容量とスイッチングトランジスタとを有
する半導体メモリ装置において、低濃度半導体領域上に
高濃度不純物領域と、液高濃度不純物領域上に低濃度不
純物領域とを形成し、上記溝型容量は上記高濃度不純物
領域中に形成され、且つ上記低濃度半導体領域と隔離さ
れて形成されることを特徴とする半導体メモリ装置によ
り上述の問題点を解決する。
Means for Solving the E0 Problem The present invention provides a semiconductor memory device having a trench type capacitor and a switching transistor, in which a high concentration impurity region is formed on a low concentration semiconductor region, and a low concentration impurity region is formed on a liquid high concentration impurity region. The above problem is solved by a semiconductor memory device characterized in that the groove type capacitor is formed in the high concentration impurity region and is formed isolated from the low concentration semiconductor region.

F0作用 本発明の半導体メモリ装置は、溝型容量が高濃度不純物
領域中に形成されており、液高濃度不純物領域では空乏
層の拡がりが押さえられ、セル間の相互干渉を防止する
ことができる。また、α線に対しては、当該高濃度不純
物領域がバリヤとして機能するため、ソフトエラーの低
減を図ることができる。
F0 effect In the semiconductor memory device of the present invention, a trench type capacitor is formed in a high concentration impurity region, and in the liquid high concentration impurity region, the expansion of the depletion layer is suppressed, and mutual interference between cells can be prevented. . Further, since the high concentration impurity region functions as a barrier against α rays, soft errors can be reduced.

G、実施例 本発明の好適な実施例を図面を参照しながら説明する。G. Example Preferred embodiments of the present invention will be described with reference to the drawings.

本実施例の溝型容量とスイッチングトランジスタを有す
る半導体メモリ装置は、低濃度半導体領域上に高濃度不
純物領域と低濃度不純物領域とを順次形成しているため
、セル相互の干渉を抑制して、ソフトエラーの低減を図
ることができる。
In the semiconductor memory device having the trench type capacitor and the switching transistor of this embodiment, since the high concentration impurity region and the low concentration impurity region are sequentially formed on the low concentration semiconductor region, mutual interference between cells can be suppressed. Soft errors can be reduced.

先ず、本実施例の半導体メモリ装置は、第1図に示すよ
うに、P型の低濃度半導体領域としてのP型の半導体基
板領域2上に同じ導電型であり且つ表面からの深さxp
の深さまでP型の高濃度不純物領域1が形成され、さら
にその上には同じくP型の低濃度不純物領域3が形成さ
れている。これら各領域2,1.3のそれぞれ不純物濃
度は、例えば第2図に示すような分布となり、上記P型
の半導体基板領域2の不純物濃度は1015(口う)程
度であり、上記高濃度不純物領域lの不純物濃度は10
17〜1018 (c114)程度であり、上記低濃度
不純物領域3の不純物濃度は1016程度である。尚、
第2図は第1図のA−A線断面での不純物濃度分布を示
す。
First, as shown in FIG. 1, the semiconductor memory device of this embodiment has a P-type semiconductor substrate region 2 as a P-type low concentration semiconductor region having the same conductivity type and a depth xp from the surface.
A P-type high-concentration impurity region 1 is formed to a depth of , and a P-type low-concentration impurity region 3 is further formed thereon. The impurity concentration of each of these regions 2, 1.3 has a distribution as shown in FIG. 2, for example, and the impurity concentration of the P-type semiconductor substrate region 2 is about 1015, The impurity concentration in region l is 10
17 to 1018 (c114), and the impurity concentration of the low concentration impurity region 3 is about 1016. still,
FIG. 2 shows the impurity concentration distribution in a cross section taken along the line A--A in FIG.

そして、このような不純物濃度分布を有してなる基体に
対して、本発明の半導体メモリ装置は、溝型容110と
スイッチングトランジスタ20が形成されている。情報
信号を電荷の形で蓄積する溝型容量10は、illを掘
ることにより形成され深さはXtである。この溝11は
、上記低濃度不純物領域3を貫通し、半導体基板領域2
にまでは至らすに、大部分は高濃度不純物領域1に囲ま
れている。このため後述するようにセル間相互の干渉を
防止しソフトエラーの低減を図ることができる。
In the semiconductor memory device of the present invention, a trench type capacitor 110 and a switching transistor 20 are formed on a substrate having such an impurity concentration distribution. The trench capacitor 10, which stores information signals in the form of charges, is formed by digging an ill, and has a depth of Xt. This trench 11 penetrates the low concentration impurity region 3 and extends through the semiconductor substrate region 2.
Most of the area is surrounded by the high concentration impurity region 1. Therefore, as will be described later, mutual interference between cells can be prevented and soft errors can be reduced.

このようなallの側壁および底部には、N型の不純物
が導入されセル毎の下部電極領域12が1形成され、該
下部電極領域12に沿って誘電体層13が形成され、さ
らにプレート電極として機能する上部電極領域14が形
成されている。また、この容量のtJljllは、二層
目の多結晶シリコン層15で充填されている。
N-type impurities are introduced into the sidewalls and bottom of the all to form one lower electrode region 12 for each cell, a dielectric layer 13 is formed along the lower electrode region 12, and a dielectric layer 13 is formed as a plate electrode. A functional upper electrode region 14 is formed. Further, this capacitance tJljll is filled with the second polycrystalline silicon layer 15.

スイッチングトランジスタ20は、ソース・ドレイン領
域となるN型の不純物領域21.22が上記低濃度不純
物領域3に形成され、従ってチャンネルも当該低濃度不
純物領域3に形成されて、所望のVth (闇値電圧)
を実現できる。このチャンネルを形成する領域の上には
、ゲート酸化膜23を介して、ゲート1!極24が形成
される。上記不純物領域21は例えば上記容量の下部電
極領域12と接続し、上記不純物領域22は例えばビッ
ト線等のA1配線25とコンタクト孔26を介して接続
する。尚、このコンタクト孔26はAs5GやBSG等
の眉間絶縁r527を介して開口されるものであり、ゲ
ート電極24はポリサイドやシリサイドであっても良い
。また、Al配線25を形成する時に、金属バリヤN2
8を形成するものであっても良い。
In the switching transistor 20, N-type impurity regions 21 and 22, which serve as source and drain regions, are formed in the lightly doped region 3, and a channel is also formed in the lightly doped region 3 to achieve a desired Vth (dark value). Voltage)
can be realized. A gate 1! is formed on the region where the channel is to be formed, with a gate oxide film 23 interposed therebetween. A pole 24 is formed. The impurity region 21 is connected, for example, to the lower electrode region 12 of the capacitor, and the impurity region 22 is connected to, for example, an A1 wiring 25 such as a bit line via a contact hole 26. Note that this contact hole 26 is opened through a glabellar insulation r527 such as As5G or BSG, and the gate electrode 24 may be made of polycide or silicide. Furthermore, when forming the Al wiring 25, the metal barrier N2
8 may be formed.

以上のような容量10とスイッチングトランジスタ20
をそれぞれ有する半導体メモリ装置の1つのセルは、従
来のDRAM等と同様に、フィールド酸化膜30が形成
され、さらにチャンネルストツバ−領域31が形成され
て、セル間のチャンネル形成が抑制されている。しがし
ながら、素子の高集積化に伴い、従来通りの上記フィー
ルド酸化膜30やチャンネルストッパー領域31では素
子分離が不十分な場合であっても、本実施例の半導体メ
モリ装置はセル間の干渉を有効に防止することができる
。即ち、上記容量1oは高濃度不純物領域1に大部分が
囲まれており、この容量l。
Capacitor 10 and switching transistor 20 as above
In each cell of a semiconductor memory device, a field oxide film 30 is formed, and a channel stopper region 31 is further formed, as in conventional DRAMs, to suppress channel formation between cells. . However, as devices become more highly integrated, even if the conventional field oxide film 30 and channel stopper region 31 do not provide sufficient device isolation, the semiconductor memory device of the present embodiment can provide isolation between cells. Interference can be effectively prevented. That is, the capacitance 1o is mostly surrounded by the high concentration impurity region 1, and this capacitance l.

の下部電極領域12からの空乏層の拡がりは、その高濃
度故に抑えられ、容量値の電流依存性を少す<シハンチ
スルー等の現象は防止されることになる。このため隣接
するセル相互の干渉は抑制され、性能の高い半導体メモ
リ装置となる。
The expansion of the depletion layer from the lower electrode region 12 is suppressed due to its high concentration, and phenomena such as chanch-through, which reduces the current dependence of the capacitance value, are prevented. Therefore, mutual interference between adjacent cells is suppressed, resulting in a semiconductor memory device with high performance.

また、本実施例の半導体メモリ装置は、上述のような不
純物濃度の分布を有し、例えば当該半導体メモリ装置に
α線が基板方向から入射した場合であっても、上記半導
体基板領域2と上記高濃度不純物領域1とではポテンシ
ャルの差が有り且つ上記高濃度不純物領域1ではキャリ
アの寿命を短くできるため、α線に起因する電子キャリ
アの寿命を短くし容量領域等への注入を抑えて、ソフト
エラーの生起確率を低減させることができる。さらに、
この高濃度不純物領域2はスイッチングトランジスタ2
0へのkWとしても機能することになる。
Further, the semiconductor memory device of this embodiment has the impurity concentration distribution as described above, and even when α rays are incident on the semiconductor memory device from the substrate direction, the semiconductor substrate region 2 and the Since there is a difference in potential between the high concentration impurity region 1 and the high concentration impurity region 1, and the life of carriers can be shortened, the life of electron carriers caused by α rays can be shortened and injection into the capacitance region etc. can be suppressed. The probability of soft errors occurring can be reduced. moreover,
This high concentration impurity region 2 is a switching transistor 2
It will also function as a kW to 0.

このような半導体メモリ装置のセル相互の干渉を抑制し
、α線の悪影響を防止する不純物濃度の分布を形成する
ためには、高エネルギーのイオン注入により、このよう
な不純物分布を形成することができる。イオン注入によ
っては、制御性良く、製造原価の低減も図ることができ
る。イオン注入は複数回のものでも良く、また、エピタ
キシャル成長によって、或いはエピタキシャル成長と組
み合わせて行っても良い。このように例えば高エネルギ
ーのイオン注入により形成される不純物濃度分布は、特
に第2図に示す分布に附定されず、高濃度不純物領域l
の上部の低濃度不純物領域3と下部の低濃度半導体領域
である半導体基板領域2のそれぞれ不純物濃度は、同程
度の不純物濃度であっても良いことは言うまでもない。
In order to form an impurity concentration distribution that suppresses interference between cells of such a semiconductor memory device and prevents the adverse effects of alpha rays, it is necessary to form such an impurity distribution by high-energy ion implantation. can. Depending on the ion implantation, it is possible to achieve good controllability and reduce manufacturing costs. Ion implantation may be performed multiple times, or may be performed by epitaxial growth or in combination with epitaxial growth. In this way, the impurity concentration distribution formed by, for example, high-energy ion implantation is not specifically assigned to the distribution shown in FIG.
It goes without saying that the impurity concentrations of the upper low concentration impurity region 3 and the lower low concentration semiconductor region 2 of the semiconductor substrate region 2 may be approximately the same.

そして、このような半導体メモリ装置は、第3図に示す
ような構造を有する周辺回路を伴うことができる。第3
図はCMO3)ランジスタの構造例であって、所謂ツイ
ン・ウェル構造となっている。Pウェル領域41には不
純物領域42.43が形成され、更にゲート酸化膜44
を介してゲート電極45が形成され、眉間絶縁層46を
開口してAN配線47が形成されてNMOSトランジス
タとして動作する。また、Nウェル領域51には不純物
領域52.53が形成され、更にゲート酸化膜44を介
してゲート電極55が形成され、眉間絶縁層46を開口
してA7!配線47が形成されてPMO3)ランジスタ
として動作する。そして、上記不純物領域42.43.
52.53やゲート酸化膜44、層間絶縁層46、Al
配線47等は、上述のDRAMセルの各スイッチングト
ランジスタ等と共に同一基板上に同時に形成することが
できるものであり、このような周辺回路の素子において
、ランチアップの防止やα線防止として上述の不純物濃
度分布は機能する。
Such a semiconductor memory device can be accompanied by a peripheral circuit having a structure as shown in FIG. Third
The figure shows an example of the structure of a CMO3) transistor, which has a so-called twin well structure. Impurity regions 42 and 43 are formed in the P well region 41, and a gate oxide film 44 is further formed.
A gate electrode 45 is formed through the gate electrode 45, and an AN wiring 47 is formed through an opening in the glabella insulating layer 46 to operate as an NMOS transistor. Further, impurity regions 52 and 53 are formed in the N well region 51, and a gate electrode 55 is further formed via the gate oxide film 44, and the glabella insulating layer 46 is opened to form an A7! A wiring 47 is formed and the PMO3) operates as a transistor. Then, the impurity regions 42, 43.
52, 53, gate oxide film 44, interlayer insulating layer 46, Al
The wiring 47 and the like can be formed simultaneously on the same substrate together with the switching transistors of the above-mentioned DRAM cell, and the above-mentioned impurities are used to prevent launch-up and alpha rays in such peripheral circuit elements. Concentration distribution works.

叩ち、これらのウェル領域41.51の間には、フィー
ルド酸化膜61の下部にチャンネルストッパー領域62
が形成されるが、本実施例では、1〜2μm程度の深い
位置に高濃度不純物領域1が形成され、これが0MO3
)ランジスタのラッチアンプ防止に寄与する。また、高
濃度不純物領域1があるため、基板方向からα線が入射
したときでも、キャリアの寿命を短くし、ソフトエラー
の生起確率を低減させることができる。従って、半導体
メモリ装置としてCMOSトランジスタを例えば周辺回
路に用いても何らラフチアツブ、ソフトエラー等の弊害
はなく、これらを上述の第2図に示すような不純物濃度
分布によりメモリと周辺回路部で同時に行うことができ
、相乗的効果を挙げることができる。
Between these well regions 41 and 51, a channel stopper region 62 is formed under the field oxide film 61.
However, in this example, a high concentration impurity region 1 is formed at a deep position of about 1 to 2 μm, and this is 0MO3.
) Contributes to prevention of transistor latch amplifier. Further, since there is the high concentration impurity region 1, even when α rays are incident from the direction of the substrate, the lifetime of carriers can be shortened and the probability of soft errors occurring can be reduced. Therefore, even if a CMOS transistor is used as a semiconductor memory device, for example, in the peripheral circuit, there will be no adverse effects such as rough drop, soft errors, etc., and these can be done simultaneously in the memory and the peripheral circuit by using the impurity concentration distribution as shown in Figure 2 above. can produce synergistic effects.

H,発明の効果 本発明の半導体メモリ装置は、上述の不純物濃度分布を
有し、高濃度不純物領域では空乏層の拡がりが抑制され
るため、セル間の相互干渉を防止することができる。ま
た、α線に対しては、高濃度不純物領域がバリヤとして
機能するため、ソフトエラーの低減を図ることができる
。さらに周辺回路にCMO3I−ランジスタを形成した
場合にあっても、同時に周辺回路の高性能化を図ること
ができる。
H. Effects of the Invention The semiconductor memory device of the present invention has the above-mentioned impurity concentration distribution, and since the expansion of the depletion layer is suppressed in the high concentration impurity region, mutual interference between cells can be prevented. Further, since the high concentration impurity region functions as a barrier against α rays, soft errors can be reduced. Furthermore, even when a CMO3I-transistor is formed in the peripheral circuit, the performance of the peripheral circuit can be improved at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体メモリ装置の構造の一例を示す
概略断面図、第2図は第1図のA−A線断面での不純物
濃度分布を示す不純物濃度分布図、第3図は本発明の半
導体メモリ装置の周辺回路の一例を示す概略断面図であ
る。 1・・・高濃度不純物領域 52・・・半導体基板領域(低濃度半導体領域)3・・
・低濃度不純物領域 10・・・溝型容量 11 ・ ・ ・溝 12・・・下部電極領域 20・・・スイッチングトランジスタ 特 許 出 願 人  ソニー株式会社代理人   弁
理士     小泡 見間         田村榮− CMO5Trの49’J 第3図
FIG. 1 is a schematic cross-sectional view showing an example of the structure of a semiconductor memory device of the present invention, FIG. 2 is an impurity concentration distribution diagram showing the impurity concentration distribution in a cross section taken along line A-A in FIG. 1, and FIG. 1 is a schematic cross-sectional view showing an example of a peripheral circuit of a semiconductor memory device of the invention. 1... High concentration impurity region 52... Semiconductor substrate region (low concentration semiconductor region) 3...
・Low concentration impurity region 10...Trench type capacitor 11...Trench 12...Lower electrode region 20...Switching transistor Patent Applicant Sony Corporation Representative Patent Attorney Kobu Mima Sakae Tamura - CMO5Tr 49'J Figure 3

Claims (1)

【特許請求の範囲】  溝型容量とスイッチングトランジスタとを有する半導
体メモリ装置において、 低濃度半導体領域上に高濃度不純物領域と、該高濃度不
純物領域上に低濃度不純物領域とを形成し、上記溝型容
量は上記高濃度不純物領域中に形成され、且つ上記低濃
度半導体領域と隔離されて形成されることを特徴とする
半導体メモリ装置。
[Scope of Claim] A semiconductor memory device having a trench type capacitor and a switching transistor, wherein a high concentration impurity region is formed on a low concentration semiconductor region, a low concentration impurity region is formed on the high concentration impurity region, and the trench A semiconductor memory device characterized in that a type capacitor is formed in the high concentration impurity region and isolated from the low concentration semiconductor region.
JP61157313A 1986-07-04 1986-07-04 Semiconductor memory device Pending JPS6313367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157313A JPS6313367A (en) 1986-07-04 1986-07-04 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157313A JPS6313367A (en) 1986-07-04 1986-07-04 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS6313367A true JPS6313367A (en) 1988-01-20

Family

ID=15646950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157313A Pending JPS6313367A (en) 1986-07-04 1986-07-04 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6313367A (en)

Similar Documents

Publication Publication Date Title
KR100497708B1 (en) Semiconductor memory cell and manufacturing method
US4792834A (en) Semiconductor memory device with buried layer under groove capacitor
US6686624B2 (en) Vertical one-transistor floating-body DRAM cell in bulk CMOS process with electrically isolated charge storage region
US5258635A (en) MOS-type semiconductor integrated circuit device
US5448090A (en) Structure for reducing parasitic leakage in a memory array with merged isolation and node trench construction
KR100403066B1 (en) Improved vertical mosfet
US5442584A (en) Semiconductor memory device and method for fabricating the same dynamic random access memory device construction
US6885080B2 (en) Deep trench isolation of embedded DRAM for improved latch-up immunity
US4752819A (en) Semiconductor integrated circuit device having a carrier trapping trench arrangement
EP0145606A2 (en) Semiconductor memory device
JP3272979B2 (en) Semiconductor device
JPH05190795A (en) Memory cell array
US6822281B2 (en) Trench cell for a DRAM cell array
US5237528A (en) Semiconductor memory
KR20170055031A (en) Capacitorless 1t dram cell device using tunneling field effect transistor, fabrication method thereof and memory array using the same
US4926223A (en) Dynamic memory of the integrated circuit type
US5214496A (en) Semiconductor memory
JP2689923B2 (en) Semiconductor device and manufacturing method thereof
US4901128A (en) Semiconductor memory
JPH0640573B2 (en) Semiconductor integrated circuit device
US6750509B2 (en) DRAM cell configuration and method for fabricating the DRAM cell configuration
JPH04278579A (en) Semiconductor memory device using stack-shaped capacitor
JP2754487B2 (en) Integrated circuit type dynamic memory
US4866494A (en) Semiconductor memory device having a plurality of memory cells of single transistor type
JP2001024161A (en) Semiconductor memory cell