JPS63133513A - Current transformer - Google Patents

Current transformer

Info

Publication number
JPS63133513A
JPS63133513A JP61280384A JP28038486A JPS63133513A JP S63133513 A JPS63133513 A JP S63133513A JP 61280384 A JP61280384 A JP 61280384A JP 28038486 A JP28038486 A JP 28038486A JP S63133513 A JPS63133513 A JP S63133513A
Authority
JP
Japan
Prior art keywords
magnetic
current
light emitting
emitting diode
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61280384A
Other languages
Japanese (ja)
Inventor
Hidenori Kakehashi
英典 掛橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61280384A priority Critical patent/JPS63133513A/en
Publication of JPS63133513A publication Critical patent/JPS63133513A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • H01F2038/305Constructions with toroidal magnetic core

Landscapes

  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE:To prevent a light emitting diode from breaking down and disconnecting while expanding the lower and upper limit of primary current wherein conductivity can be displayed by a method wherein a saturated part saturating current in a large current region and an unsaturated part not saturating current in a small current region are provided in parallel with each other in a part of magnetic channel of a magnetic core. CONSTITUTION:A cylindrical magnetic body 25 in high magnetic permeability, a secondary winding 24 and a primary winding 23 are concentrically contained in a winding containing recession 21a of a core 21 constituting a magnetic core main body 29 while another halved core 22 is bonded to the core 21. The cores 21, 22 are made of,e.g., Mn-Zn base ferrite while the cylindrical body 25 formed of magnetic ally soft material such as amorphous one, etc., makes a shape encircling a butting part 29a. Thus, the magnetic body 25 becomes a saturated part 27 while the butting part 29a of magnetic core main body 20 becomes an unsaturated part 28. Resultantly, within a current transformer connected to a light emitting diode, the light emitting diode current is increased in a small current region but to be decreased in a large current region.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、通電表示装置に使用され、負荷への通電路
に1次巻線を挿入し、2次巻線に発光ダイオードを接続
し、i荷への通電を検出して発光ダイオードを点灯させ
るカレントトランスに関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention is used for a energization display device, in which a primary winding is inserted into a energization path to a load, a light emitting diode is connected to a secondary winding, and a light emitting diode is connected to an i-load. This relates to a current transformer that detects energization and lights up a light emitting diode.

〔背景技術〕[Background technology]

家庭内配線設備等の中で、商用電源から白熱ランプ、f
n光ランプ等の負荷への通電をスイッチ装置で断続する
とともに、負荷への通電を発光ダイオードの点灯でもっ
て表示するパイロ・ノドランプ内蔵型のスイッチ装置が
ある。
In household wiring equipment, incandescent lamps, f
There is a switch device with a built-in pyro-nod lamp that uses a switch device to turn on and off power to a load such as an n-light lamp, and indicates that power is being applied to the load by lighting up a light emitting diode.

このようなスイッチ装置は、負荷電流が0.05Aから
15Aまでの負荷に対して使用され、特に門柱灯、玄関
灯への通電を屋内でモニタするような用途に使用される
Such a switch device is used for a load having a load current of 0.05 A to 15 A, and is particularly used for indoor monitoring of power supply to gatepost lights and entrance lights.

第7図は上記のスイッチ装置の商用電源および負荷に対
する接続関係を示す回路図であり、一点鎖線で囲まれた
部分がスイッチ装置の回路構成で、スイッチ本体lとカ
レントトランス2の1次巻線と負荷(白熱ランプ、螢光
ランプ、電気る具等)3とが商用電I!Ii!4に対し
直列に接続され、カレントトランス2の2次巻線に発光
ダイオード5を接続している。
FIG. 7 is a circuit diagram showing the connection relationship between the above-mentioned switch device and the commercial power supply and load. and loads (incandescent lamps, fluorescent lamps, electric appliances, etc.) 3 are commercial electricity I! Ii! 4, and a light emitting diode 5 is connected to the secondary winding of the current transformer 2.

この回路においては、スイッチ本体1をオンにすると、
商用電源4から負83を通してカレントトランス2の1
次巻線に1大電流■1が流れ、カレントトランス2の2
次S*に接続された発光ダイオード5が2次電流12で
もって点灯することになる。
In this circuit, when switch body 1 is turned on,
1 of current transformer 2 through negative 83 from commercial power supply 4
A large current ■1 flows through the next winding, and the current transformer 2's 2
The light emitting diode 5 connected to the secondary current S* is turned on by the secondary current 12.

発光ダイオード5の光出力は、発光ダイオード5への通
電電流に比例するが、この特性は負荷電流量、カレント
トランス2の特性1発光ダイオード5の特性に依存する
The light output of the light emitting diode 5 is proportional to the current flowing through the light emitting diode 5, but this characteristic depends on the amount of load current, the characteristics of the current transformer 1, and the characteristics of the light emitting diode 5.

使用に供されることの多い門柱灯や玄関灯は負荷がIO
W以下と小さいため、負荷電流が小さく、発光ダイオー
ド電流、光出力が小さくなる。ところが、使用者側から
見れば、通電を確認するためのものであるから、負荷が
どのような値であろうとも、一定レベル以上の光出力が
得られることが必要である。
The load of gatepost lights and entrance lights that are often used is IO.
Since it is small (W or less), the load current is small, and the light emitting diode current and light output are small. However, from the user's perspective, since it is used to confirm energization, it is necessary to obtain a light output of a certain level or higher, no matter what the load value is.

カレントトランス2は、上記の点を考慮に入れて設計さ
れるが、特に磁芯の材質・特性により、その寸法、電気
特性が制限される。
Although the current transformer 2 is designed taking the above points into consideration, its dimensions and electrical characteristics are limited, particularly depending on the material and characteristics of the magnetic core.

第8図は負荷電流がO,l Aから4Aまでの定格のス
イッチ装置(投下電工■製のWN5241)の外観斜視
図を示し、第9図は下ハウジングの断面図を示し、第1
O図は下ハウジングの平面図を示している。このスイッ
チ装置は、下ハウジング11に上ハウジング12を被せ
た構造であり、下ハウジング11の内部空間の片側にカ
レントトランス13を収容するとともに、もう片側に接
点部。
Figure 8 shows a perspective view of the external appearance of a switch device (WN5241 manufactured by Hiroshi Electric Works) whose load current is rated from 0.1A to 4A, and Figure 9 shows a sectional view of the lower housing.
Figure O shows a plan view of the lower housing. This switch device has a structure in which a lower housing 11 is covered with an upper housing 12, and a current transformer 13 is housed in one side of the internal space of the lower housing 11, and a contact part is provided in the other side.

ばね等(図示せず)を収容してあり、上ハウジング12
にシーソ形のつまみ14を取付け、このつまみ140回
動によって接点を開閉するようになっている。つまみ1
4には、窓が設けられ、発光ダイオード15の発光部分
が窓から露出した状態に発光ダイオード15が一体固定
されている。
The upper housing 12 houses a spring etc. (not shown).
A seesaw-shaped knob 14 is attached to the terminal, and the contacts are opened and closed by rotating this knob 140. Knob 1
4 is provided with a window, and the light emitting diode 15 is integrally fixed with the light emitting portion of the light emitting diode 15 exposed through the window.

カレントトランス13は、第11WJに示すように、2
分割されたフェライト製の略E形のコア21およびコア
22と1次巻線23および2次巻線24とからなり、コ
ア21の巻線収容凹部21aに1次巻線23および2次
巻線24を同心に嵌込み、コア22をコア21に接着剤
で接合し、コア21゜22で閉磁路を構成している。こ
のカレントトランス13の外形寸法a、b、C1,C2
はそれぞれ16.5mm、15m、3.75f1.i7
5日である。
As shown in the 11th WJ, the current transformer 13 has two
Consisting of a roughly E-shaped core 21 and core 22 made of divided ferrite, a primary winding 23 and a secondary winding 24, the primary winding 23 and the secondary winding are placed in the winding housing recess 21a of the core 21. 24 are fitted concentrically, and the core 22 is bonded to the core 21 with an adhesive, so that the cores 21 and 22 form a closed magnetic circuit. External dimensions a, b, C1, C2 of this current transformer 13
are respectively 16.5mm, 15m, and 3.75f1. i7
It is the 5th.

このようなスイッチ装置は、小形、軽量化の要求が強い
が、カレントトランス13は、現状では、上記の寸法以
下にすることができない。
Although there is a strong demand for such a switch device to be small and lightweight, the current transformer 13 cannot currently be made smaller than the above-mentioned dimensions.

このカレントトランスの光出力に比例する発光ダイオー
ド電流は、カレントトランスの1次電流(負荷電流)に
比例して増加する。したがって、1次電流が0.1 A
程度の小電流域では発光ダイオードの発光は弱く、1次
電流が4A定格付近の大電流域では発光ダイオードの発
光が強くなる。
The light emitting diode current, which is proportional to the optical output of the current transformer, increases in proportion to the primary current (load current) of the current transformer. Therefore, the primary current is 0.1 A
The light emitted from the light emitting diode is weak in a small current range of about 4 A, and the light emitted by the light emitting diode becomes strong in a large current range where the primary current is around the rated 4A.

発光ダイオードの点灯でもって通電を確認するためには
、小電流域での光出力は大きい程よく、そのため、通電
表示用の発光ダイオードとしては、小電流域で発光効率
の良いGaP系が使用されている。
In order to confirm energization by lighting a light-emitting diode, the higher the light output in a small current range, the better.Therefore, GaP-based light-emitting diodes, which have high luminous efficiency in a small current range, are used as light-emitting diodes to indicate energization. There is.

GaP系の発光ダイオードの代表的な直流の順方向電流
It(mA)と光度[0(mad)の関係を第12図に
示す、第12図において、実線A1はGaAaPのスー
パーレッドの発光ダイオードの特性を示し、実線A2は
GaAs Pのオレンジの発光ダイオードの特性を示し
、実線A3はGaPのレッドの発光ダイオードの特性を
示している。
Figure 12 shows the relationship between the typical DC forward current It (mA) and the luminous intensity [0 (mad) of a GaP-based light emitting diode. The solid line A2 shows the characteristics of a GaAs P orange light emitting diode, and the solid line A3 shows the characteristics of a GaP red light emitting diode.

第12図から明らかなようにGaP系の発光ダイオード
は小電流域で光度が高い。
As is clear from FIG. 12, the GaP-based light emitting diode has high luminous intensity in a small current range.

このように、通電表示用としてGaP系の発光ダイオー
ドを用いると、小電流域でも点灯、消灯を人に目視確認
させることができるが、このGaP糸の発光ダイオード
においても、点灯、消灯を目視確認させることができる
ための最小の発光電流値が決まっており、カレントトラ
ンスの変成比を太き(すれば、1次電流がさらに小さい
値でも、発光ダイオードの点灯、消灯を目視確認させる
ことができる、ところが、カレントトランスの変成比を
大きくすると、1次電流が定格付近になると、発光ダイ
オード電流が過大になって発光ダイオードが過熱し、発
光ダイオードが破壊されたり断線するという問題があり
、通電表示可能な1次電流範囲が狭いという問題があっ
た。
In this way, when GaP-based light emitting diodes are used to indicate energization, it is possible for a person to visually confirm whether the light is on or off even in a small current range. The minimum light emitting current value that can be used is determined, and by increasing the transformation ratio of the current transformer, it is possible to visually confirm whether the light emitting diode is turned on or off even if the primary current is even smaller. However, when the transformation ratio of the current transformer is increased, when the primary current reaches around the rated value, the light emitting diode current becomes excessive and the light emitting diode overheats, causing the light emitting diode to be destroyed or disconnected. There was a problem that the possible primary current range was narrow.

このような問題を解消し、通電表示可能な1次電流を広
げるには、小電流域ではカレントトランスの変成比を大
きくし、大電流域ではカレントトランスの変成比を小さ
くすれば、小電流域では光出力が増加して表示可能な1
次電流の範囲の下限が広がり、かつ大電流域では発光ダ
イオード電流が減少するため、表示可能な1次電流の上
限が広がることになるが、現状の第11図のカレントト
ランスは上記のような設計はできなかった。
To solve this problem and widen the primary current that can be displayed as energization, increase the transformation ratio of the current transformer in the small current range, and reduce the transformation ratio of the current transformer in the large current range. 1, which can be displayed by increasing the light output.
As the lower limit of the primary current range expands and the light emitting diode current decreases in the large current range, the upper limit of the primary current that can be displayed will expand, but the current transformer shown in Figure 11 is I couldn't design it.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、通電表示可能な1次電流範囲を広げ
ることができるカレントトランスを提供することである
An object of the present invention is to provide a current transformer that can widen the range of primary current that can be displayed as energization.

〔発明の開示〕[Disclosure of the invention]

この発明のカレントトランスは、磁芯に巻装した1次巻
線を1ffi1!検出用電路に介挿し前記磁芯に巻装し
た2次巻線に発光ダイオードを接続したカレントトラン
スにおいて、 前記磁芯の磁路の一部に大電流域で飽和する飽和部と大
電流域で飽和しない不飽和部とを並列的に設けたことを
特徴とする。
The current transformer of this invention has a primary winding wound around a magnetic core of 1ffi1! In a current transformer in which a light emitting diode is connected to a secondary winding inserted in a detection circuit and wound around the magnetic core, a part of the magnetic path of the magnetic core has a saturation part that saturates in a large current range and a saturated part that saturates in a large current range. It is characterized by providing an unsaturated portion that is not saturated in parallel.

この発咀の構成によれば、磁芯の磁路の一部に大電流域
で飽和する飽和部と大電流域で飽和しない不飽和部とを
並列に設けたため、1次電流の小電流域では飽和部と不
飽和部の両方を磁束が通り磁気抵抗が小さく、したがっ
て小電流域の変成比が大きくなり、また1次電流の大電
流域では不飽和部の方に磁束が通るのみで磁気抵抗が大
きく、したがって大電流域の変成比が小さくなる。この
結果、小電流域での発光ダイオードの光出力を増加させ
るとともに大電流域での発光ダイオード電流を抑制して
発光ダイオードの破壊、断線を防止できる。したがって
、発光ダイオードで通電表示可能な1次電流の下限およ
び上限が広がることになる。
According to this configuration, a saturated part that saturates in a large current range and an unsaturated part that does not saturate in a large current range are provided in parallel in a part of the magnetic path of the magnetic core, so that the small current range of the primary current In this case, the magnetic flux passes through both the saturated and unsaturated parts, and the magnetic resistance is small, so the transformation ratio in the small current range becomes large, and in the large current range of the primary current, the magnetic flux only passes through the unsaturated part, and the magnetic resistance is small. The resistance is large, so the transformation ratio in the large current range is small. As a result, it is possible to increase the light output of the light emitting diode in a small current range and to suppress the light emitting diode current in a large current range, thereby preventing destruction and disconnection of the light emitting diode. Therefore, the lower and upper limits of the primary current that can be displayed by the light emitting diode are expanded.

実施例 この発明の第1の実施例を第1図ないし第4図に基づい
て説明する。このカレントトランスは、第1図および第
2図に示すように磁芯26に巻装した1次巻線23を通
電検出用電路に介挿し磁芯26に巻装した2次巻線24
に通電表示用の発光ダイオードを接続したカレントトラ
ンス(第7図参照)において、磁芯26の磁路の一部に
1次電流の大電流域で飽和する飽和部27と1次電流の
大電流域で飽和しない不飽和部28とを並列に設けたこ
とを特徴とする。
Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 4. As shown in FIGS. 1 and 2, this current transformer has a primary winding 23 wound around a magnetic core 26 inserted into a current detection circuit, and a secondary winding 24 wound around the magnetic core 26.
In a current transformer (see Fig. 7) in which a light emitting diode for energization indication is connected to the energization state, a part of the magnetic path of the magnetic core 26 has a saturated portion 27 that saturates in the large current range of the primary current and a large current region of the primary current. It is characterized in that an unsaturated portion 28 that does not saturate in the basin is provided in parallel.

この場合、磁芯26は、突き合せ部29aを有する磁芯
本体29と、この磁芯本体29の突き合せ部29aを包
囲するように配置した円筒状の高透磁率の磁性体25と
で構成され、磁性体25が飽和部27となるとともに磁
芯本体29の突き合せ部29aが不飽和部28となる。
In this case, the magnetic core 26 is composed of a magnetic core main body 29 having an abutting portion 29a, and a cylindrical high permeability magnetic body 25 disposed so as to surround the abutting portion 29a of the magnetic core main body 29. The magnetic body 25 becomes a saturated portion 27 and the abutting portion 29a of the magnetic core body 29 becomes an unsaturated portion 28.

このカレントトランスは、磁芯本体29を構成するコア
21のti線収容凹部21aに円筒状の高透磁率の磁性
体25と2次巻線24と1次巻線23とを同心に収容し
、コア21にもう一方の2分割コア22を接着している
This current transformer concentrically accommodates a cylindrical high permeability magnetic body 25, a secondary winding 24, and a primary winding 23 in a Ti wire housing recess 21a of a core 21 constituting a magnetic core body 29. The other two-part core 22 is bonded to the core 21.

上記のコア21.22はMn−Zn系フェライトで作ら
れている。磁性体25は円筒状をなし、突き合せ部29
aを包囲する形状をなしており、その材質は、フェライ
ト、パーマロイ、アモルファス等の軟磁性材料で形成さ
れるが、本実施例では、アモルファス磁性薄帯(アライ
ド社製のMETGLA32826MB)を用いて巻磁芯
を作り、これを磁性体25として使用した。
The cores 21 and 22 mentioned above are made of Mn-Zn ferrite. The magnetic body 25 has a cylindrical shape, and the abutting portion 29
The material is a soft magnetic material such as ferrite, permalloy, or amorphous. A magnetic core was made and used as the magnetic body 25.

次表に、この磁性体の磁気特性と焼鈍条件とを示すが、
この材料の透磁率はμ麟aXで750000ときわめて
高いことがわかる。
The following table shows the magnetic properties and annealing conditions of this magnetic material.
It can be seen that the magnetic permeability of this material is extremely high at 750,000 in terms of μlin aX.

(以下余白) 第1表 試作したカレントトランスの2次巻線24へ発光ダイオ
ードを接続し、1次巻線23を通電検出用電路に介挿し
、1次巻線23に電流を流して2次側の発光ダイオード
電流を測定した。この測定結果を第3図に示す、第3図
においては横軸に1次電流をとり、縦軸に発光ダイオー
ド電流をとっている0図中、実線B1は本実施例のカレ
ントトランスの特性を示し、破線B2は従来例のカレン
トトランスの特性を示している。第3図から、1次電流
が0.1Aの小電流域では発光ダイオード電流が従来比
で5%増加し、1次電流が4A(a大定格)の大電流域
では、発光ダイオード電流が20%減少して40mAと
なって発光ダイオードの最大定格以下となった。すなわ
ち、この実施例のカレントトランスでは、従来例に比べ
て、小電流域では発光ダイオード電流が増加し、大電流
域では発光ダイオード電流が減少することになる。
(Leaving space below) Table 1 A light emitting diode is connected to the secondary winding 24 of the prototype current transformer, the primary winding 23 is inserted into the current detection circuit, and a current is passed through the primary winding 23 to The side light emitting diode current was measured. The measurement results are shown in Figure 3. In Figure 3, the horizontal axis represents the primary current and the vertical axis represents the light emitting diode current. In Figure 3, the solid line B1 represents the characteristics of the current transformer of this example. The broken line B2 indicates the characteristics of the conventional current transformer. From Figure 3, in the small current range where the primary current is 0.1A, the light emitting diode current increases by 5% compared to the conventional ratio, and in the large current range where the primary current is 4A (large a rating), the light emitting diode current increases by 20%. % decreased to 40 mA, which is below the maximum rating of the light emitting diode. That is, in the current transformer of this embodiment, compared to the conventional example, the light emitting diode current increases in the small current range and decreases in the large current range.

この原因については明確な解答が得られてはいないが、
つぎのような作用によるものと考えられる。すなわち、
このカレントトランスにおける磁芯26の磁束の流れを
磁芯26の中心部およびその周辺部について考えると、
1次電流が小電流域では、第4図ta+のように、突き
合せ部29aを通る磁路C1l、 C10と、突き合せ
部29aをバイパスして磁性体25を通る磁路C21,
C22とがある。
Although there is no clear answer as to the cause of this,
This is thought to be due to the following effects. That is,
Considering the flow of magnetic flux in the magnetic core 26 in this current transformer with respect to the center of the magnetic core 26 and its surroundings,
When the primary current is in a small current range, as shown in FIG. 4 ta+, magnetic paths C1l and C10 pass through the abutting portion 29a, and magnetic paths C21 and C21 bypass the abutting portion 29a and pass through the magnetic body 25.
There is C22.

この場合に、磁路C11,CI2は、突き合せ部29a
による磁気抵抗R,をもち、磁路C2+は、第4図(C
1のように磁芯本体29と磁性体25との接合部による
磁気抵抗RL l +RL 2をもち、磁路C22は、
同じく磁芯本体29と磁性体25との接合部による磁気
抵抗RL 3 +RL 4をもっている。
In this case, the magnetic paths C11 and CI2 are connected to the abutting portion 29a.
The magnetic path C2+ has a magnetic resistance R, as shown in Fig. 4 (C
1, the magnetic path C22 has a magnetic resistance RL l +RL 2 due to the joint between the magnetic core body 29 and the magnetic body 25, and the magnetic path C22 is
Similarly, it has magnetic resistance RL 3 +RL 4 due to the joint between the magnetic core body 29 and the magnetic body 25.

小電流域では、磁束が磁路CII +  CI2’+ 
 C21+C22を通るため、磁芯26の中心脚および
その周辺部の合成磁気抵抗RPは RP=RM/(RL t +RL2)//(RL3+R
L4)= (RM  (RL 1+RL2)(RL3+
RL4))/(RM  (RLl+RL2)+RM  
(RL3+RL4)+(RLl+RL2)(RL3+R
L4))となり、 R,>RP となる。
In the small current range, the magnetic flux forms the magnetic path CII + CI2'+
C21+C22, the composite magnetic resistance RP of the central leg of the magnetic core 26 and its surroundings is RP=RM/(RL t +RL2)//(RL3+R
L4)=(RM (RL 1+RL2)(RL3+
RL4))/(RM (RLl+RL2)+RM
(RL3+RL4)+(RLl+RL2)(RL3+R
L4)), and R,>RP.

一方、大電流域では、磁性体25が飽和し、磁束は第4
図(blのように磁路C11,CI2.CI3+  C
14を通り、磁性体25には通らないことなり、このと
きの磁芯26の中心脚およびその周辺部の磁気抵抗RM
のみになり、小電流域に比べて大電流域では磁気抵抗が
大きくなる。
On the other hand, in the large current region, the magnetic body 25 is saturated and the magnetic flux is
Figure (as shown in bl, magnetic path C11, CI2.CI3+ C
14 and does not pass through the magnetic body 25. At this time, the magnetic resistance RM of the central leg of the magnetic core 26 and its surrounding area
The magnetic resistance becomes larger in the large current range than in the small current range.

このように、1次電流の小電流域では、磁気抵抗が小さ
く磁束が通りやすくなり、変成比が大きく1次電流に対
する2次側の発光ダイオード電流の割合が増加する。逆
に、大電流域では磁気抵抗が大きくなって磁束が通りに
く(なり、変成比が小さく1次電流に対する2次側の発
光ダイオード電流の割合が小さくなる。すなわち、本実
施例においては、磁性体25が小電流域では磁束の通路
として働き、2次側の発光ダイオード電流の割合が増加
し、大電流域では磁性体25が飽和して磁路としては遮
断されて2次側の発光ダイオード電流の割合が小さくな
るためと見られる。
As described above, in the small current range of the primary current, the magnetic resistance is small and the magnetic flux passes through easily, the transformation ratio is large, and the ratio of the secondary side light emitting diode current to the primary current increases. On the other hand, in a large current range, the magnetic resistance becomes large and the magnetic flux is difficult to pass through, and the transformation ratio is small and the ratio of the secondary side light emitting diode current to the primary current becomes small. In other words, in this example, In a small current range, the magnetic body 25 acts as a path for magnetic flux, increasing the proportion of light emitting diode current on the secondary side, and in a large current area, the magnetic body 25 is saturated and the magnetic path is cut off, causing light emission on the secondary side. This appears to be because the proportion of diode current becomes smaller.

このような特徴は、従来のカレントトランスでは考えら
れなかったことであり、発光ダイオードを2次側に接続
して通電表示用として用いるカレントトランスにおける
効果は絶大なものである。
Such a feature was unimaginable in conventional current transformers, and the effect in current transformers used for energization indication by connecting a light emitting diode to the secondary side is tremendous.

なお、磁性体は、中心脚の突き合せ部29を包囲するよ
うに配置するだけでなく、周辺の一部に配置するだけで
もよい、また、側脚の突き合せ部の周辺に配置しても同
様の効果が得られる。
Note that the magnetic material may not only be placed so as to surround the abutting portion 29 of the center leg, but may also be placed only in a part of the periphery, or may be placed around the abutting portion of the side leg. A similar effect can be obtained.

また、上記実施例では、磁性体25として、アモルファ
ス磁性材料を、発光ダイオードとしてGaP系のものを
用いたが、磁性体25として、アモルファス以外の高透
磁率材料、例えばフェライト、パーマロイ、スーパーマ
ロイ、けい素鋼板等の磁性材料を、また発光ダイオード
としてGaAsP系等のものを用いても同等の効果が得
られることはもちろんである。
In the above embodiment, an amorphous magnetic material was used as the magnetic body 25, and a GaP-based material was used as the light emitting diode. Of course, the same effect can be obtained by using a magnetic material such as a silicon steel plate, or by using a GaAsP-based light emitting diode.

この発明の第2の実施例を第5図および第6図に基づい
て説明する。このカレントトランスは、楕円トロイダル
形の磁芯本体31の磁路の一部に切欠32を形成して磁
芯33とし、この磁芯33に1次巻線34および2次S
線35を巻装したものである。
A second embodiment of the invention will be described based on FIGS. 5 and 6. This current transformer has a magnetic core 33 by forming a notch 32 in a part of the magnetic path of an elliptic toroidal magnetic core main body 31, and a primary winding 34 and a secondary S
The wire 35 is wound around the wire 35.

この場合、切欠32により形成された磁芯本体31の頚
部36が飽和部37となり、切欠32が不飽和部38と
なる。
In this case, the neck portion 36 of the magnetic core body 31 formed by the notch 32 becomes a saturated portion 37, and the notch 32 becomes an unsaturated portion 38.

また、磁芯本体31は、アモルファス磁性薄帯(アライ
ド社製の260532 i組成Fe?8B+:+S i
 g )を巻いて形成されている。アモルファス磁性薄
帯は、40oeの磁場を印加しながら400℃、2時間
の焼鈍を行い、5℃/分の冷却速度で冷却したものであ
る。
The magnetic core body 31 is made of an amorphous magnetic ribbon (260532 manufactured by Allied Co., Ltd., composition Fe?8B+:+S i
g) is formed by winding it. The amorphous magnetic ribbon was annealed at 400° C. for 2 hours while applying a magnetic field of 40 oe, and cooled at a cooling rate of 5° C./min.

この実施例の場合、1次電流が小電流域のときは磁束が
第4図で矢印りで示すように頚部36を通り、この部分
は磁気抵抗が低いことから変成比が大きく、すなわち1
次電流に対する発光ダイオード電流の割合を大きくする
ことができる。また、大電流域のときは、頚部36が飽
和し、磁束は切欠32の部分(ギャップとなる)を通る
ことになり、この部分は磁気抵抗が大きいため、変成比
が小さく、すなわ51次電流に対する発光ダイオード電
流の割合を小さくすることができる。
In the case of this embodiment, when the primary current is in the small current range, the magnetic flux passes through the neck 36 as shown by the arrow in FIG.
The ratio of the light emitting diode current to the next current can be increased. In addition, in the large current region, the neck 36 is saturated and the magnetic flux passes through the notch 32 (which becomes a gap), and this part has a large magnetic resistance, so the metamorphic ratio is small, that is, the 51st order. The ratio of the light emitting diode current to the current can be reduced.

この実施例は、磁性体を新たに設けてはいないので構造
がより簡単になる。その他は第1の実施例と同様である
In this embodiment, since no magnetic material is newly provided, the structure is simpler. The rest is the same as the first embodiment.

なお、カレントトランスを構成する磁芯33および磁性
体25の材料については特に制限はないが、高透磁率、
高磁束密度を実現することができるアモルファス磁性薄
帯が望ましい。
There are no particular restrictions on the materials of the magnetic core 33 and magnetic body 25 that constitute the current transformer, but materials with high magnetic permeability,
An amorphous magnetic ribbon that can achieve high magnetic flux density is desirable.

〔発明の効果〕〔Effect of the invention〕

この発明のカレントトランスによれば、磁芯の磁路の一
部に大電流域で飽和する飽和部と大電流域で飽和しない
不飽和部とを並列に設けたため、1次電流の小電流域で
は飽和部と不飽和部の両方を磁束が通り磁気抵抗が小さ
く、したがって小電流域の変成比が大きくなり、また1
次電流の大電流域では不飽和部の方に磁束が通るのみで
磁気抵抗が大きく、したがって大電流域の変成比が小さ
くなる。この結果、小電流域での発光ダイオードの光出
力を増加させるとともに大電流域での発光ダイオード電
流を抑制して発光ダイオードの破壊。
According to the current transformer of the present invention, a saturated part that saturates in a large current range and an unsaturated part that does not saturate in a large current range are provided in parallel in a part of the magnetic path of the magnetic core, so that the primary current can be used in a small current range. In this case, the magnetic flux passes through both the saturated and unsaturated parts, and the magnetic resistance is small, so the metamorphic ratio in the small current region becomes large, and 1
In the large current region of the next current, the magnetic flux only passes toward the unsaturated portion, resulting in a large magnetic resistance, and therefore the metamorphic ratio in the large current region becomes small. As a result, the light output of the light emitting diode in the small current range is increased, and the light emitting diode current in the large current range is suppressed, thereby destroying the light emitting diode.

断線を防止できる。したがって、発光ダイオードで通電
表示可能な1次電流の下限および上限が広がることにな
る。
Can prevent wire breakage. Therefore, the lower and upper limits of the primary current that can be displayed by the light emitting diode are expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例のカレントトランスの
断面図、第2Fl!Jはその分解斜視図、第3図は実施
例および従来例の1次電流と発光ダイオード電流の関係
を示す特性図、第4図は磁路の変化を示す説明図、第5
図はこの発明の第2の実施例のカレントトランスの斜視
図、第6図はその断面図、第7図は従来のパイロットラ
ンプ内蔵型のスイッチ装置の回路図、第8図はスイッチ
装置の斜視図、第9図はその要部断面図、第10図は同
じく要部平面図、第11図は従来のカレントトランスの
分解斜視図、第12図は各種発光ダイオードの順方向電
流と光度の関係を示す特性図である。 23・・・1次巻線、24・・・2次巻線、25・・・
磁性体、26・・・磁芯、27・・・飽和部、28・・
・不飽和部、29・・・磁芯本体、29a・・・突き合
せ部→l;欠電it  (実幼値) (b) (C) 第4図 第5図 第6図 第9図 第11図 第12図
FIG. 1 is a sectional view of the current transformer according to the first embodiment of the present invention, and the second Fl! J is an exploded perspective view of the same, FIG. 3 is a characteristic diagram showing the relationship between the primary current and light emitting diode current of the embodiment and the conventional example, FIG. 4 is an explanatory diagram showing changes in the magnetic path, and FIG.
Figure 6 is a perspective view of a current transformer according to a second embodiment of the present invention, Figure 6 is a sectional view thereof, Figure 7 is a circuit diagram of a conventional switch device with a built-in pilot lamp, and Figure 8 is a perspective view of the switch device. Figure 9 is a sectional view of the main part, Figure 10 is a plan view of the main part, Figure 11 is an exploded perspective view of a conventional current transformer, and Figure 12 is the relationship between forward current and luminous intensity of various light emitting diodes. FIG. 23...Primary winding, 24...Secondary winding, 25...
Magnetic material, 26...Magnetic core, 27...Saturation part, 28...
・Unsaturated part, 29...Magnetic core body, 29a...Abutting part→l; Lack of electricity it (actual value) (b) (C) Fig. 4 Fig. 5 Fig. 6 Fig. 9 Figure 11 Figure 12

Claims (3)

【特許請求の範囲】[Claims] (1)磁芯に巻装した1次巻線を通電検出用電路に介挿
し前記磁芯に巻装した2次巻線に発光ダイオードを接続
したカレントトランスにおいて、前記磁芯の磁路の一部
に大電流域で飽和する飽和部と大電流域で飽和しない不
飽和部とを並列的に設けたことを特徴とするカレントト
ランス。
(1) In a current transformer in which a primary winding wound around a magnetic core is inserted into a conduction detection circuit, and a light emitting diode is connected to a secondary winding wound around the magnetic core, one of the magnetic paths of the magnetic core is A current transformer characterized in that a saturated part that saturates in a large current range and an unsaturated part that does not saturate in a large current range are provided in parallel.
(2)前記磁芯は、突き合せ部を有する磁芯本体と、こ
の磁芯本体の突き合せ部の周縁に配置した高透磁率の磁
性体とで構成され、前記磁性体が前記飽和部となるとと
もに前記磁芯本体の突き合せ部が前記不飽和部となる特
許請求の範囲第(1)項記載のカレントトランス。
(2) The magnetic core is composed of a magnetic core main body having an abutting portion, and a high magnetic permeability magnetic material disposed around the periphery of the abutting portion of the magnetic core main body, and the magnetic material is connected to the saturation portion. The current transformer according to claim 1, wherein the abutting portion of the magnetic core body is the unsaturated portion.
(3)前記磁芯は、磁芯本体と、この磁芯本体の磁路の
一部に設けた切欠とで構成され、前記切欠により形成さ
れた前記磁芯本体の頚部が前記飽和部となるとともに前
記切欠が不飽和部となる特許請求の範囲第(1)項記載
のカレントトランス。
(3) The magnetic core is composed of a magnetic core body and a notch provided in a part of the magnetic path of the magnetic core body, and the neck of the magnetic core body formed by the notch serves as the saturation part. The current transformer according to claim 1, wherein the cutout is an unsaturated portion.
JP61280384A 1986-11-25 1986-11-25 Current transformer Pending JPS63133513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280384A JPS63133513A (en) 1986-11-25 1986-11-25 Current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280384A JPS63133513A (en) 1986-11-25 1986-11-25 Current transformer

Publications (1)

Publication Number Publication Date
JPS63133513A true JPS63133513A (en) 1988-06-06

Family

ID=17624269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280384A Pending JPS63133513A (en) 1986-11-25 1986-11-25 Current transformer

Country Status (1)

Country Link
JP (1) JPS63133513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117419U (en) * 1991-03-30 1992-10-21 日本光電工業株式会社 power transformer
CN101833239A (en) * 2009-03-10 2010-09-15 东京毅力科创株式会社 Substrate processing method using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117419U (en) * 1991-03-30 1992-10-21 日本光電工業株式会社 power transformer
CN101833239A (en) * 2009-03-10 2010-09-15 东京毅力科创株式会社 Substrate processing method using same

Similar Documents

Publication Publication Date Title
US4414491A (en) Current limiting power supply for electron discharge lamps
KR930000415B1 (en) Magnetic leakage transformer
JP2531897B2 (en) Plane transformer
US4321652A (en) Low voltage transformer relay
JPS63133513A (en) Current transformer
US2561855A (en) Ballast construction
US4385280A (en) Low reluctance latching magnets
JPH07123089B2 (en) Current transformer
JPH10208949A (en) Inverter transformer
JP3469464B2 (en) Inverter transformer
JP3081888U (en) Power supply voltage general-purpose inductor device
KR101361438B1 (en) Transformer
JPH0735356Y2 (en) Cordless luminaire
JPH07123088B2 (en) Power indicator
JPH08124772A (en) Inverter transformer
TWI771711B (en) Magnetic induction components
KR200355756Y1 (en) Transformer structure
JPH0321036Y2 (en)
JPH037915Y2 (en)
JPH0742110U (en) Toroidal transformer
JPH0742508U (en) Coil parts
KR20230152595A (en) Field magnet unit for power converting apparatus
JPH06295824A (en) Transformer
JPS5813681U (en) Tap with power indicator
JPH0722528U (en) Backlight transformer