JPS63133108A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPS63133108A
JPS63133108A JP61281096A JP28109686A JPS63133108A JP S63133108 A JPS63133108 A JP S63133108A JP 61281096 A JP61281096 A JP 61281096A JP 28109686 A JP28109686 A JP 28109686A JP S63133108 A JPS63133108 A JP S63133108A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
substrate
groove
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61281096A
Other languages
Japanese (ja)
Inventor
Hisao Go
久雄 郷
Taisuke Murakami
泰典 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61281096A priority Critical patent/JPS63133108A/en
Publication of JPS63133108A publication Critical patent/JPS63133108A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • G02B6/4289Optical modules with tapping or launching means through the surface of the waveguide by inducing bending, microbending or macrobending, to the light guide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the light condensing efficiency by providing a supporting member which bends and fixes an optical fiber and an optical waveguide which has one end closely brought into contact with the surface of the bending part of the optical fiber and has the other end formed into an exit end. CONSTITUTION:A substrate 2 used for production of an optical element is used as the means which bends an optical fiber 1 with a prescribed radius of curvature and supports it. A groove 2a formed into a desired optical fiber shape is provided on the substrate 2 with the width approximately equal to the diameter of the optical fiber 1. An optical waveguide 3 having a width approximately equal to that of the groove 2a is formed in the substrate 2. One end of the optical waveguide 3 is exposed near the apex of bend of the groove 2a, and the other is exposed to the side face of the substrate 2. Since the light radiated from the bent optical fiber 1 is very efficiently acquired, light is detected by a relatively large radius of curvature of the optical fiber 1 and a general detecting system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ファイバから、その光ファイバを伝播する
光信号の一部を取り出すために用いられる光検出器に関
する。より詳細には、本発明は、光信号の伝送路たる光
ファイバから、その光ファイバを物理的に切断すること
なく、また、機械的な負担をかけることなく、更に、放
射等による損失を生じることなく所望の分岐比で光信号
の一部を検出することのできる新規な光検出器の構成に
関する。尚、本発明による光検出器は、光通信等の分野
において有利に使用することができるが、これに限定さ
れるものではない。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photodetector used for extracting a portion of an optical signal propagating through an optical fiber from an optical fiber. More specifically, the present invention provides an optical fiber that is a transmission path for optical signals, without physically cutting the optical fiber, without applying mechanical stress, and without causing loss due to radiation or the like. The present invention relates to a novel photodetector configuration that is capable of detecting a portion of an optical signal at a desired branching ratio without causing any problems. Note that the photodetector according to the present invention can be advantageously used in fields such as optical communication, but is not limited thereto.

従来の技術 光通信関係技術の進歩により、光通信は、光LAN、各
種監視システムなど比較的小規模なシステムにも適用が
拡がっている。このようなシステムにおいては、伝送路
である光ファイバを伝播する光信号を、各種処理装置へ
取り出すための素子、  が不可欠である。
BACKGROUND OF THE INVENTION Due to advances in optical communication related technology, optical communication is being applied to relatively small-scale systems such as optical LANs and various monitoring systems. In such a system, an element is essential for extracting optical signals propagating through an optical fiber, which is a transmission path, to various processing devices.

従来、このような光検出素子としては、光ファイバカプ
ラー、光導波型分岐器等が用いられてきた。
Conventionally, optical fiber couplers, optical waveguide type splitters, and the like have been used as such photodetecting elements.

光ファイバカプラーは、2本の光ファイバを側面で融着
して更に延伸したものであり、融着部の長さの変化によ
って任意の分岐比の分岐器を形成することができるとい
う特徴がある。しかしながら、融着並びに延伸という工
程は自動化が困難であり、大量生産には不向きであるこ
とが問題とされていた。
An optical fiber coupler is made by fusing two optical fibers at the sides and then stretching them, and is characterized by being able to form a splitter with any branching ratio by changing the length of the fused part. . However, the process of fusing and stretching is difficult to automate, making it unsuitable for mass production.

これに対して、基板上に形成された7字型の光導波路に
よる光導波型分岐器は、半導体素子の製造技術を応用し
て大量生産を実施することができる。しかしながら、こ
の形式の光分岐器は、1:1またはそれに近い値の分岐
比しか得ることができない。ところが、例えば1本の光
ファイババスに複数のノードを接続するようなシステム
の場合、分岐比が小さいとバス側を伝播する光信号の減
衰が大きくなる。従って、光導波型分岐器を用いた場合
、非常に小規模(ノード数が5乃至10程度)のシステ
ムしか構成できない。
On the other hand, an optical waveguide type splitter using a 7-shaped optical waveguide formed on a substrate can be mass-produced by applying semiconductor element manufacturing technology. However, this type of optical splitter can only obtain a splitting ratio of 1:1 or a value close to it. However, in the case of a system in which a plurality of nodes are connected to one optical fiber bus, for example, if the branching ratio is small, the attenuation of the optical signal propagating on the bus side becomes large. Therefore, when an optical waveguide type splitter is used, only a very small-scale system (about 5 to 10 nodes) can be constructed.

また、先導波型分岐器の場合、光ファイバとは異なる材
料による素子を光ファイバと接続することになるので、
屈折率分布の不整合等により大きな結合損失が生じるこ
とが知られている。
In addition, in the case of a leading wave type splitter, an element made of a material different from the optical fiber is connected to the optical fiber.
It is known that large coupling losses occur due to mismatching of refractive index distribution, etc.

発明が解決しようとする問題点 上述のような従来の各種光検出器の問題点を克服し得る
新規な光検出器として、光タップと呼ばれる形式が近年
登場している。これは、光ファイバを屈曲したときに、
その光ファイバを伝播する光に放射モードが増加し、伝
播光の一部が光ファイバの外部に漏洩することを利用し
たものである。
Problems to be Solved by the Invention In recent years, a type of photodetector called an optical tap has appeared as a new photodetector that can overcome the problems of the various conventional photodetectors as described above. This means that when the optical fiber is bent,
This method takes advantage of the fact that the radiation mode increases in the light propagating through the optical fiber, and a portion of the propagating light leaks to the outside of the optical fiber.

第4図に示すように、光タップは、屈曲した光ファイバ
10から漏洩した光を光学系20によって、あるいは更
に光電変換素子30を付加することによ、って集光して
処理していた。
As shown in FIG. 4, the optical tap condenses and processes the light leaking from the bent optical fiber 10 using an optical system 20 or by adding a photoelectric conversion element 30. .

この方式の特徴は、検出すべき信号が伝播する光ファイ
バを切断することなく光信号を検出できるので、結合損
失が少なく、また、着脱が可能な構成とすることができ
る。更に、大きな分岐比が得易く、素子としての挿入損
失も比較的少ないという実用上の数々の利点を備えてい
る。
The feature of this method is that the optical signal can be detected without cutting the optical fiber through which the signal to be detected propagates, so there is little coupling loss, and it can be configured to be detachable. Furthermore, it has many practical advantages, such as being able to easily obtain a large branching ratio and having relatively little insertion loss as an element.

しかしながら、従来公知の光タップでは、屈曲された光
ファイバから放射される光を効率よく集光することが難
しく、品質の高い高価な光学系あるいは感度の高い受光
素子を使用せざるを得ないという問題点がある。また逆
に、光ファイバを強く屈曲することによって充分な放射
光を得ようとすると、光ファイバに強い屈曲を強いるこ
とになり(1〜2mm以下)、甚だしい場合は光ファイ
バを折損する恐れがある。
However, with conventionally known optical taps, it is difficult to efficiently collect the light emitted from a bent optical fiber, and it is necessary to use a high-quality, expensive optical system or a highly sensitive light-receiving element. There is a problem. On the other hand, if you try to obtain sufficient emitted light by bending the optical fiber strongly, you will force the optical fiber to bend strongly (1 to 2 mm or less), and in severe cases, there is a risk that the optical fiber may break. .

即ち、本発明の目的は、屈曲された光ファイバから放射
された光の集光効率を向上せしめることによって、基本
的に数々の有利な特徴を備える光タップ型光検出器を実
用的な素子として完成することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to develop an optical tap type photodetector, which basically has a number of advantageous features, into a practical device by improving the collection efficiency of light emitted from a bent optical fiber. It is about completion.

問題点を解決するための手段 そこで、本発明に従い、光ファイバを屈曲させて固定す
る支持部材と、該支持部材によって固定された光ファイ
バの屈曲部から放射される伝播光を捕捉するように一端
が該光ファイバ屈曲部表面に密着し、他端が出射端とな
るように形成された光導波路とを具備することを特徴と
する光検出器が提供される。
Means for Solving the Problems Therefore, according to the present invention, there is provided a support member for bending and fixing an optical fiber, and one end of the optical fiber fixed by the support member so as to capture the propagating light emitted from the bent portion. Provided is a photodetector characterized by comprising an optical waveguide formed in such a way that the optical fiber is in close contact with the surface of the bent portion of the optical fiber, and the other end thereof is an output end.

詐」 本発明に従う光検出器の主要な特徴は、従来の光タップ
が有していた、光ファイバを傷付けることなく光検出を
行うという特徴を保持したまま、その光ファイバから漏
洩した光を効率良く集光することによって、光ファイバ
に対する機械的な負担を取り除き、光検出器としての特
性を向上したことにある。
The main feature of the photodetector according to the present invention is that it efficiently detects light leaking from the optical fiber while retaining the characteristic of conventional optical taps that it detects light without damaging the optical fiber. By focusing the light well, the mechanical load on the optical fiber is removed and its characteristics as a photodetector are improved.

即ち、従来の光タップでは、光ファイバの屈曲部周囲に
放射された光を光学的手段によって集光していたが、本
発明に従う光検出器では、光ファイバの屈曲部、即ち漏
洩光の放射部に集光手段たる光導波路を密着して集光を
行う。従って、光ファイバから漏洩した光が、集光手段
以外に放散されることは殆どなく、光ファイバが放射し
た光を有効に利用することができる。
That is, in the conventional optical tap, the light emitted around the bent part of the optical fiber is focused by optical means, but in the photodetector according to the present invention, the light emitted around the bent part of the optical fiber, that is, the emitted light is focused by optical means. An optical waveguide, which serves as a light focusing means, is closely attached to the area to collect light. Therefore, the light leaked from the optical fiber is hardly scattered outside the condensing means, and the light emitted by the optical fiber can be effectively utilized.

また、光を放射する光ファイバの側から考察すると、放
射光の略全てが有効に利用されるので、光ファイバを極
端に強く屈曲する必要がなく、光検出器に接続するが故
に生ずる機械的負担をB減することができる。
In addition, considering from the side of the optical fiber that emits light, almost all of the emitted light is effectively used, so there is no need to bend the optical fiber extremely strongly, and mechanical damage caused by connecting it to the photodetector is eliminated. The burden can be reduced by B.

実施例 以下に、添付の図面を参照して本発明をより具体的に詳
述するが、以下に示すものは本発明の一実施例に過ぎず
、本発明の技術的範囲を何ら制限するものではない。
EXAMPLES The present invention will be described in more detail below with reference to the accompanying drawings, but what is shown below is only one example of the present invention, and does not limit the technical scope of the present invention in any way. isn't it.

第1図は、本発明に従う光検出器の構成を概略的に示す
ものである。
FIG. 1 schematically shows the configuration of a photodetector according to the present invention.

光ファイバ1を所定の曲率半径で屈曲して支持する手段
として、ここでは各種の光素子を作製するために用いる
基板2を利用した。基板2上には光ファイバ1の径と略
同じ幅で、所望の光ファイバ形状に形成した溝2aが形
成されている。また、この基板2内には、溝2aと略同
じ深さで光導波路3が形成されている。この光導波路3
の一端は、溝2aの屈曲の頂点付近に露出しており、他
端は基板2の側面に露出している。尚、光ファイバIと
しては、外径250μm(樹脂被覆部の外径)の石英光
ファイバを用いた。
As a means for bending and supporting the optical fiber 1 at a predetermined radius of curvature, a substrate 2 used for manufacturing various optical elements was used here. A groove 2a is formed on the substrate 2 and has a width substantially the same as the diameter of the optical fiber 1 and is formed into a desired optical fiber shape. Furthermore, an optical waveguide 3 is formed within this substrate 2 at approximately the same depth as the groove 2a. This optical waveguide 3
One end of the groove 2a is exposed near the bending apex of the groove 2a, and the other end is exposed on the side surface of the substrate 2. As the optical fiber I, a quartz optical fiber with an outer diameter of 250 μm (outer diameter of the resin coating) was used.

このような光検出器部材Aに対して、光ファイバ1を溝
2aに嵌太し、光ファイバ1と基板2との間隙に樹脂を
充填した後、更に基板全体を上方から基板と同じ材料で
作製した板状部材Bによって覆うことによって完成する
For such a photodetector member A, after fitting the optical fiber 1 into the groove 2a and filling the gap between the optical fiber 1 and the substrate 2 with resin, the entire substrate is further covered with the same material as the substrate from above. It is completed by covering with the produced plate-like member B.

尚、上述のような光検出器部材Δは以下のようにして作
製した。
Incidentally, the photodetector member Δ as described above was manufactured as follows.

3i02基板上に、ドライエツチングによって、第2図
(a)に示すような深さ260μmの溝3aを形成する
。この溝3aは、前述の光導波路3の形状に対応するも
のである。
A groove 3a having a depth of 260 μm as shown in FIG. 2(a) is formed on the 3i02 substrate by dry etching. This groove 3a corresponds to the shape of the optical waveguide 3 described above.

次いで、第2図(1))に示すように光導波路材料とし
て八52S3の融液をこの溝3aに流し込んだ。この人
52S3融液を徐冷して光導波路を形成する。
Next, as shown in FIG. 2(1)), a melt of 852S3 was poured into the groove 3a as an optical waveguide material. This 52S3 melt is slowly cooled to form an optical waveguide.

尚、光導波路材料としては高分子材料等であっても差し
支えない。
Note that the optical waveguide material may be a polymer material or the like.

最後に、光ファイバ1を嵌入するための溝2aをドライ
エツチングにより形成した。この溝は、幅が300μm
1深さが260μmで屈曲部の曲率半径はlQmmとし
た。
Finally, a groove 2a for inserting the optical fiber 1 was formed by dry etching. This groove has a width of 300 μm
1 depth was 260 μm, and the radius of curvature of the bent portion was lQmm.

第3図は、第1図に示した構成で作製した光検出器を、
光ファイバ1の伝播光軸を含む面で切った断面図である
。尚、既に第1図において説明された部材には同じ参照
番号を付している。
Figure 3 shows a photodetector manufactured with the configuration shown in Figure 1.
FIG. 2 is a cross-sectional view of the optical fiber 1 taken along a plane including the propagation optical axis. Note that the same reference numerals are given to the members already explained in FIG.

光ファイバ1には、図中の矢印C===>) Sの方向
に光が伝播している。この光は、図中に2本の矢印〔→
)K、Lで示すように、光ファイバ1の屈曲部で放射光
となる。この放射光は樹脂層を介して光導波路3に入射
するが、光ファイバ1の表面と樹脂層との界面並びに樹
脂層と光ファイバ3との界面では、一定の角度以内で入
射した光が全反射し、光導波路3を伝搬して光ファイバ
3の他端の端面に達する。従って、この端面には他の光
ファイバを接続してもあるいは適当な光学系を介して光
電変換素子を配置して処理してもよい。
Light propagates through the optical fiber 1 in the direction of arrow C===>)S in the figure. This light is connected to the two arrows in the diagram [→
) As shown by K and L, the light becomes emitted light at the bent portion of the optical fiber 1. This emitted light enters the optical waveguide 3 through the resin layer, but at the interface between the surface of the optical fiber 1 and the resin layer, and the interface between the resin layer and the optical fiber 3, all of the incident light is within a certain angle. It is reflected, propagates through the optical waveguide 3, and reaches the end face of the other end of the optical fiber 3. Therefore, another optical fiber may be connected to this end face, or a photoelectric conversion element may be arranged and processed via a suitable optical system.

いま、光ファイバ1のクラッド層の屈折率をN光ファイ
バ1と基板との間隙に充填された樹脂の屈折率をn。、
光導波路3の屈折率を711、基板の屈折率をn2とす
る。
Now, the refractive index of the cladding layer of the optical fiber 1 is N, and the refractive index of the resin filled in the gap between the optical fiber 1 and the substrate is n. ,
The refractive index of the optical waveguide 3 is 711, and the refractive index of the substrate is n2.

第3図中の断面Pにおける各部材の屈折率の関係は、光
ファイバ1から漏洩する光が効率良く光導波路3に伝播
することを考慮すると、N≦n。
Considering that the light leaking from the optical fiber 1 efficiently propagates to the optical waveguide 3, the relationship between the refractive index of each member in the cross section P in FIG. 3 is N≦n.

≦n1となる。また光導波路3の機能に鑑みて、11、
 >n2であることはいうまでもない。   ′一方、
光導波路3に接しない部分での放射光は少ないことが好
ましいという観点からすると、断面Qにおける各部材の
屈折率の関係は、N2H。
≦n1. In addition, in view of the function of the optical waveguide 3, 11,
>n2. 'on the other hand,
From the viewpoint that it is preferable that the amount of emitted light be small in areas that are not in contact with the optical waveguide 3, the relationship between the refractive index of each member in the cross section Q is N2H.

≧n2となることが望ましい。It is desirable that ≧n2.

これらを総合すると、各屈折率の間にある、n、≧no
 =N>n2 のような関係が明らかになる。
Putting these together, n, ≧no between each refractive index
A relationship such as =N>n2 becomes clear.

そこで、放射光と導波路の間の結合効率を重視し、また
光導波路3の放射損失の減少を考慮してn、=2.4、
TI2 = 1.5とした。
Therefore, with emphasis on the coupling efficiency between the synchrotron radiation and the waveguide, and considering the reduction of the radiation loss of the optical waveguide 3, n, = 2.4.
TI2 = 1.5.

このように作製した光検出器では、基板2と光導波路3
との界面での全反射角は51°と大きく、放射光に、L
は極めて効率良く光導波路に結合する。また、放射光結
合部では導波路3が幅方向にテーパ状となっているため
、高次モード光が低次モード光に変換され、導波路出射
端から出射される光の集光も効率良く行われる。
In the photodetector manufactured in this way, the substrate 2 and the optical waveguide 3 are
The total reflection angle at the interface with the L
is coupled to the optical waveguide extremely efficiently. In addition, since the waveguide 3 is tapered in the width direction in the radiation coupling part, high-order mode light is converted to low-order mode light, and the light emitted from the waveguide output end is efficiently focused. It will be done.

従って、本発明に従う光検出器は、100:3の分岐比
に対して、挿入損失0.1dB、光ファイバからの放射
光の光導波路への結合効率95%という極めて優れた特
性を示した。
Therefore, the photodetector according to the present invention exhibited extremely excellent characteristics such as an insertion loss of 0.1 dB and a coupling efficiency of emitted light from the optical fiber to the optical waveguide of 95% for a branching ratio of 100:3.

発明の効果 本発明の光検出器は、予てより知られていた光タップの
数々の特徴、即ち、光ファイバを損なうことがない、大
きな分岐比を得られる、結合損失並びに挿入損失が小さ
いという利点を維持しつつ、光ファイバへの機械的負担
を軽減して、理想的な光検出となっている。
Effects of the Invention The photodetector of the present invention has many characteristics of optical taps that have been known for a long time, namely, that the optical fiber is not damaged, a large branching ratio can be obtained, and the coupling loss and insertion loss are small. While maintaining the advantages, the mechanical load on the optical fiber is reduced, making it ideal for optical detection.

即ち、本発明に従う光検出器では、屈曲した光ファイバ
から放射される光を極めて効率良く捕捉することができ
るので、比較的大きな光ファイバの曲率半径と一般的な
検出系によって光検出を実施することができる。
That is, the photodetector according to the present invention can extremely efficiently capture the light emitted from the bent optical fiber, so that photodetection can be performed using a relatively large radius of curvature of the optical fiber and a general detection system. be able to.

また、被分岐側の光ファイバには何ら加工することなく
光検出器を構成できるので、着脱自在という、従来の光
検出器では成し得なかった特徴も有している。
Furthermore, since the photodetector can be constructed without any processing on the optical fiber on the side to be branched, it also has the feature of being detachable, which is not possible with conventional photodetectors.

更に、その製造に際しては、多くの部材に半導体製造技
術を適用することができ、比較的大量生産にも適してい
るといえる。
Furthermore, in its manufacture, semiconductor manufacturing technology can be applied to many members, making it relatively suitable for mass production.

これら数々の特徴を備えた本発明に従う光検出器は、近
年実用化の著しい光LAN等の普及に極めて有効な素子
である。
The photodetector according to the present invention, which has these many features, is an extremely effective element for the widespread use of optical LANs, etc., which have been put into practical use significantly in recent years.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従う光検出器の概略適な構成を示す
ものであり、 第2図(a)乃至(C)は、第1図に示した光検出器の
製造方法を経時的に示す図であり、 第3図は、第1図に示した光検出器における光の伝播状
態を詳細に示す平面図であり、第4図は、従来の光タッ
プの構成を概略的に示す図である。 (主な参照番号) 1.10・・光ファイバ、 2・・・・基板、 3・・・・光導波路、 20・・・・レンズ、 30・・・・フォトダイオード
FIG. 1 schematically shows a suitable configuration of a photodetector according to the present invention, and FIGS. 2(a) to (C) show the method for manufacturing the photodetector shown in FIG. 1 over time. FIG. 3 is a plan view showing in detail the propagation state of light in the photodetector shown in FIG. 1, and FIG. 4 is a diagram schematically showing the configuration of a conventional optical tap. It is. (Main reference numbers) 1.10...Optical fiber, 2...Substrate, 3...Optical waveguide, 20...Lens, 30...Photodiode

Claims (4)

【特許請求の範囲】[Claims] (1)光ファイバを屈曲させて固定する支持部材と、該
支持部材によって固定された光ファイバの屈曲部から放
射される伝播光を捕捉するように一端が該光ファイバ屈
曲部表面に密着し、他端が出射端となるように形成され
た光導波路とを具備することを特徴とする光検出器。
(1) a support member for bending and fixing an optical fiber; one end of the optical fiber fixed by the support member is in close contact with the surface of the bent portion of the optical fiber so as to capture propagating light emitted from the bent portion; 1. A photodetector comprising: an optical waveguide formed such that the other end thereof is an output end.
(2)前記支持部材が、屈曲した光ファイバと嵌合する
溝を形成された該光ファイバのクラッド層よりも屈折率
の低い材料による基板であり、前記光導波路が、該溝の
内面に一端を解放し他端を基板側面の外側に解放して該
基板内に形成された該光ファイバのクラッド層よりも屈
折率が高いか等しい材料による光導波路であることを特
徴とする特許請求の範囲第1項に記載の光検出器。
(2) The supporting member is a substrate made of a material having a lower refractive index than the cladding layer of the optical fiber, and has a groove formed therein to fit into the bent optical fiber, and the optical waveguide has one end on the inner surface of the groove. The optical waveguide is made of a material having a refractive index higher than or equal to that of the cladding layer of the optical fiber formed in the substrate with the optical fiber being opened and the other end being released outside the side surface of the substrate. The photodetector according to item 1.
(3)前記基板に形成された溝と、該溝に収納された光
ファイバとの間に、該光ファイバのクラッド層と同じ屈
折率の樹脂または屈折率整合材が充填されていることを
特徴とする特許請求の範囲第2項に記載の光検出器。
(3) A resin or a refractive index matching material having the same refractive index as the cladding layer of the optical fiber is filled between the groove formed in the substrate and the optical fiber housed in the groove. A photodetector according to claim 2.
(4)上記基板の上面が、少なくとも前記溝並びに前記
光導波路の上面を覆うように、前記クラッド層の屈折率
よりも低い屈折率の材料よりなる板材によって封止され
ていることを特徴とする特許請求の範囲第2項あるいは
第3項に記載の光検出器。
(4) The upper surface of the substrate is sealed with a plate made of a material having a refractive index lower than the refractive index of the cladding layer so as to cover at least the groove and the upper surface of the optical waveguide. A photodetector according to claim 2 or 3.
JP61281096A 1986-11-26 1986-11-26 Photodetector Pending JPS63133108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281096A JPS63133108A (en) 1986-11-26 1986-11-26 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281096A JPS63133108A (en) 1986-11-26 1986-11-26 Photodetector

Publications (1)

Publication Number Publication Date
JPS63133108A true JPS63133108A (en) 1988-06-04

Family

ID=17634281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281096A Pending JPS63133108A (en) 1986-11-26 1986-11-26 Photodetector

Country Status (1)

Country Link
JP (1) JPS63133108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122425A (en) * 1995-09-11 2000-09-19 Icor Instruments Ab Optical-fibre cable having a fixed-bend section
JP2006308791A (en) * 2005-04-27 2006-11-09 Furukawa Electric Co Ltd:The Optical device
JP2008064875A (en) * 2006-09-05 2008-03-21 Hamamatsu Photonics Kk Optical component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122425A (en) * 1995-09-11 2000-09-19 Icor Instruments Ab Optical-fibre cable having a fixed-bend section
JP2006308791A (en) * 2005-04-27 2006-11-09 Furukawa Electric Co Ltd:The Optical device
JP2008064875A (en) * 2006-09-05 2008-03-21 Hamamatsu Photonics Kk Optical component

Similar Documents

Publication Publication Date Title
CA1058307A (en) Electro-optical branching device and method of manufacturing the same
US3756688A (en) Metallized coupler for optical waveguide light source
CA1200709A (en) Concentric core optical fiber coupler
US4076375A (en) Directional optical waveguide coupler and power tap arrangement
EP0271177B1 (en) Optical fibre coupler
US4274706A (en) Wavelength multiplexer/demultiplexer for optical circuits
US3912362A (en) Termination for fiber optic bundle
US5138677A (en) Broadband optical power summer
JPS5950041B2 (en) optical directional coupler
US20050175306A1 (en) Waveguides with integrated lenses and reflective surfaces
JPH07104146A (en) Production of optical parts
JPH023A (en) Method of accessing optical fiber circuit and connector plug thereof
KR970003762B1 (en) Optical fiber tap utilizing reflector and resilient closure
US20200135960A1 (en) Method and Apparatus For Control and Suppression of Stray Light in a Photonic Integrated Circuit
US5490227A (en) Light receiving module for SCM transmission
JP3875452B2 (en) Mode converter and method
US4898444A (en) Non-invasive optical coupler
JP3568156B2 (en) Semiconductor device
JPS63133108A (en) Photodetector
US6868210B2 (en) Optical waveguide and their application of the optical communication system
JPH07174946A (en) Photodetecting module
JPS6057049B2 (en) Convex lens for numerical aperture conversion
JPS62258407A (en) Optical branching and coupling device
JP6110797B2 (en) Light receiving device
JPS63173007A (en) Optical tap device