JPS63133060A - Fish living condition monitoring instrument - Google Patents
Fish living condition monitoring instrumentInfo
- Publication number
- JPS63133060A JPS63133060A JP27882886A JP27882886A JPS63133060A JP S63133060 A JPS63133060 A JP S63133060A JP 27882886 A JP27882886 A JP 27882886A JP 27882886 A JP27882886 A JP 27882886A JP S63133060 A JPS63133060 A JP S63133060A
- Authority
- JP
- Japan
- Prior art keywords
- fish
- image
- water
- gravity
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title description 12
- 241000251468 Actinopterygii Species 0.000 claims abstract description 124
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 231100000614 poison Toxicity 0.000 claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims description 16
- 241001465754 Metazoa Species 0.000 claims description 14
- 230000005856 abnormality Effects 0.000 claims description 12
- 239000003440 toxic substance Substances 0.000 claims description 10
- 238000012806 monitoring device Methods 0.000 claims description 5
- 230000005484 gravity Effects 0.000 abstract description 27
- 238000012545 processing Methods 0.000 abstract description 25
- 238000009826 distribution Methods 0.000 abstract description 15
- 230000002159 abnormal effect Effects 0.000 abstract description 5
- 239000002574 poison Substances 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 238000000605 extraction Methods 0.000 description 10
- 230000006399 behavior Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 239000010865 sewage Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007096 poisonous effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 241001609213 Carassius carassius Species 0.000 description 1
- 241000252233 Cyprinus carpio Species 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000005338 frosted glass Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は浄水場の原水中や下水処理場の流入下水中の毒
物流入を飼育する水棲動物の行動を監視して判定する焦
眉監視装置に関する。 ゛〔従来の技術〕
従来から浄水場では原水中に毒物が混入したかどうかを
監視するために、yK水の一部を水層に導いてふな、こ
い、うぐい、たなご、にじまず、おいかわなどの水棲動
物を飼育していて、原水中に毒物が混入した場合には上
記魚類が異常に行動したり死んだりする現象を利用して
原水中の毒物流入を監視している。また下水処理場では
法律で禁止された毒物が流入下水中に流入したかどうか
を知る必要があり、このため人手による間欠的な水質分
析を行なっている。しかしこのような人手による魚類の
目視や水質の分析に依存した水中の毒物監視では、連続
監視および早期発見が固壁であって需要者への配水停止
などの対策が遅れる問題があった。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a close monitoring device for monitoring and determining the behavior of aquatic animals kept in the raw water of a water treatment plant or the inflowing sewage of a sewage treatment plant. .゛ [Conventional technology] Conventionally, in water treatment plants, in order to monitor whether or not poisonous substances have been mixed into the raw water, a portion of YK water is introduced into the water layer and treated with crucian carp, carp, Japanese grass, and grass. If you are raising aquatic animals such as oysters, and a poisonous substance is mixed into the raw water, you can monitor the inflow of toxic substances into the raw water by taking advantage of the phenomenon that the fish behave abnormally or die. There is. In addition, sewage treatment plants need to know whether legally prohibited toxic substances have entered the incoming sewage, and for this reason they conduct intermittent manual water quality analysis. However, such monitoring of toxic substances in water that relies on manual visual inspection of fish and water quality analysis has a problem in that continuous monitoring and early detection are difficult, resulting in delays in taking measures such as stopping water distribution to customers.
また魚の監視方法としては、水層中の魚を水層上部から
工業用テレビカメラ(ITV)で検出して画像処理する
方法が例えば第36回全国水道研究発表会の講演集p、
464〜466に記載されていて、この方法によると魚
が水面上を腹を横にして漂う場合に、その魚が「ある大
きさ以上の独立した明点ノとして認識でき、水面近傍に
存在する魚の高明度部および水面の凹凸による光の変化
のみを抽出することにより、背景を整理して魚の行動を
求めることが述べられている。Also, as a method of monitoring fish, there is a method of detecting fish in the water layer from the upper part of the water layer using an industrial television camera (ITV) and processing the image, for example, as described in the lecture collection of the 36th National Water Supply Research Conference, p.
464-466, and according to this method, when a fish floats on its belly on the surface of the water, the fish can be recognized as an independent bright spot of a certain size or larger, and is present near the water surface. It is stated that by extracting only the high brightness areas of fish and the changes in light due to irregularities on the water surface, the background can be sorted out and the behavior of the fish can be determined.
さらに魚の監視方法として、1個以上のタンク装置内の
複数個の生物の動きをビデオ装置で監視し、生物の運動
をコンピュータ装置で分析して予期される運動パターン
の統計的分布に対応する予測パラメータの組と比較する
方法が例えば特開昭61−46294号公報に記載され
ている。Further methods of monitoring fish include monitoring the movement of a plurality of organisms within one or more tank devices using video equipment and analyzing the movement of the organisms using computer equipment to make predictions corresponding to the statistical distribution of expected movement patterns. A method of comparing parameter sets is described in, for example, Japanese Patent Laid-Open No. 61-46294.
上記従来技術の水層中の魚を水層上部からITVで検出
して画像処理する方法では、魚が水面に浮上しないと検
出できないので魚の行動異常を早期に検出することがで
きない、また複数個の生物の動きを監視して運動を分析
する方法では、魚の運動の特徴として位置、形状、向き
について述べているが、これらの特徴から魚の行動異常
を判定する具体的な方法については述べられていない。In the conventional method described above, in which fish in the water layer are detected from the upper part of the water layer using ITV and image processed, abnormalities in fish behavior cannot be detected early because fish cannot be detected until they rise to the surface of the water. The method of monitoring and analyzing the movement of living organisms mentions position, shape, and orientation as characteristics of fish movement, but does not describe a specific method for determining abnormal behavior of fish from these characteristics. do not have.
本発明の目的は水層中の魚の動きを定量的に連続監視し
て水中の毒物の有無を早期に判定できる焦眉監視装置を
提供するにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a close-up monitoring device that can quantitatively and continuously monitor the movement of fish in a water layer and quickly determine the presence or absence of toxic substances in the water.
上記目的は、水中の毒物流入検知のために水棲動物(魚
)を飼育する水槽と、上記魚の画像情報を電気信号に変
換する撮像装置と、該撮像装置から得られる画像情報か
ら上記魚の位置および向きを検出する画像認識装置i!
(画像処理装置)と、上記魚の位置および向きから該魚
の速度および反転を検出して該反転の回転などから魚の
異常を判定する手段(演算装置)とを備えた魚jrM’
?M視装置により達成される。The above purpose is to provide an aquarium in which aquatic animals (fish) are raised in order to detect the inflow of toxic substances into water, an imaging device that converts image information of the fish into electrical signals, and a system that detects the position of the fish from the image information obtained from the imaging device. Image recognition device i! that detects orientation!
(image processing device) and means (computing device) for detecting the speed and reversal of the fish from the position and orientation of the fish and determining abnormality of the fish from the rotation of the reversal, etc.
? This is accomplished with an M vision device.
上記焦眉監視装置では、水中の毒物流入検知のための水
槽で飼育される魚の画像を撮像装置で輝度信号に変換し
、該輝度信号をディジタル化して画像処理装置の画像メ
モリに取り込み、該画像情報を2値化抽出および輪郭抽
出したのち、魚画像の魚の重心位置および向きを計算し
、上記魚の重巨位置および向きから演算装置で魚の速度
および反転を検出し、これらの所定時間計測した魚画像
計測情報の魚の位置および速度および反転の回数などの
魚の行動計測パターンを魚の行動正常時パターンと比較
することにより、一般に魚の異常行動として反転および
狂奔および鼻上げなどを含む魚の異常を監視して定量的
に判定できる。In the above-mentioned Jiomai monitoring device, an image of a fish kept in an aquarium for detecting the inflow of toxic substances into the water is converted into a brightness signal by an imaging device, and the brightness signal is digitized and imported into the image memory of an image processing device, and the image information is After binarizing and extracting the outline, the position and direction of the center of gravity of the fish in the fish image are calculated, and the speed and reversal of the fish are detected by a calculation device from the position and direction of the fish, and the fish image is obtained by measuring these over a predetermined period of time. By comparing fish behavior measurement patterns such as fish position and speed and number of reversals from measurement information with normal fish behavior patterns, it is possible to monitor and quantify abnormal fish behavior, which generally includes reversals, frenzy, nose raising, etc. It can be judged accurately.
以下に本発明の一実施例を第1図ないし第5図により説
明する。An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
第1図は本発明による焦眉監視装置の一実施例を示す全
体構成図である。第1図において、1は水中の毒物流入
検知のために水棲動物(魚)を飼育する水槽、2はバッ
クスクリーン、3は魚の画像情報を電気信号に変換する
撮像装置、4は撮像装!!!3からえられる画像情報か
ら魚の位置と向きの検出などを行なう画像処理装置(画
像認識装置)、5はモニタ、6は魚の向きから魚の反転
を検出する手段とその反転回数から魚の異常を判定する
手段などを含む演算装置、7は照明装置、8は照明制御
装置、9は警報装置、10は水棲動物(魚)である。FIG. 1 is an overall configuration diagram showing an embodiment of a close eye monitoring device according to the present invention. In Figure 1, 1 is an aquarium in which aquatic animals (fish) are raised to detect the inflow of toxic substances into the water, 2 is a back screen, 3 is an imaging device that converts image information of fish into electrical signals, and 4 is an imaging device! ! ! 3 is an image processing device (image recognition device) that detects the position and orientation of the fish from the image information obtained from the image information, 5 is a monitor, 6 is a means for detecting reversal of the fish from the direction of the fish, and determining an abnormality of the fish from the number of reversals. 7 is a lighting device, 8 is a lighting control device, 9 is an alarm device, and 10 is an aquatic animal (fish).
第1図の水中の毒物流入検知のための魚飼育用の水層1
には浄水場の原水あるいは下水処理場の流入下水あるい
は河川の毒物監視の場合には河川水などの水が常に供給
される。魚10は通常1匹以上飼育されるが本実施例で
は説明および理解を容易にするために一匹の場合を例に
説明することにし、供給される水に棲息する魚類として
例えばふな、こい、うぐい、たなご、おいかわなどが飼
育される。水層1内の魚10を照らす照明装置7は画像
処理技術を適用するに均一な照明が必要であり、このた
め照明制御装W8により制御するとともに照明装置7と
水層1の間にはすりガラスや白色アクリルなどを材質と
する光散乱板に相当する半透明バックスクリーン2を設
ける。このバックスクリーン2は背景を白色系として魚
10を黒色系とすることにより、魚10をコントラスト
よく認識する役目も同時に備える。水層1内の魚10の
画像を電気信号(映像信号)に変換する撮像装置3は例
えば工業用テレビカメラ(ITV)を使用し、撮像する
2次元空間を例えば256×256画素に分解して各画
素の明るさく111度)に対応した電圧の電気信号を出
力する。このさい画像処理装置(画像認識装置iり 4
は撮像装置3に対し水平・垂直の同期信号を出して撮像
のタイミングを制御し、撮像装置3から出力された映像
信号は画像処理装置4に送られる。Figure 1 Water layer 1 for fish rearing to detect inflow of toxic substances into water
Water is always supplied to the system, such as raw water from a water treatment plant, influent sewage from a sewage treatment plant, or river water in the case of toxic substance monitoring in a river. Normally, one or more fish 10 are kept, but in this example, for ease of explanation and understanding, the case of one fish will be explained as an example. , Japanese warbler, Japanese tanago, and Oikawa are bred here. The lighting device 7 that illuminates the fish 10 in the water layer 1 requires uniform illumination in order to apply the image processing technology, so it is controlled by the lighting control device W8, and there is a frosted glass between the lighting device 7 and the water layer 1. A translucent back screen 2 corresponding to a light scattering plate made of white acrylic or the like is provided. This back screen 2 has a white background and a black color for the fish 10, so that it also has the role of recognizing the fish 10 with good contrast. The imaging device 3 that converts the image of the fish 10 in the water layer 1 into an electric signal (video signal) uses, for example, an industrial television camera (ITV), and decomposes the two-dimensional space to be imaged into, for example, 256 x 256 pixels. It outputs an electric signal with a voltage corresponding to the brightness of each pixel (111 degrees). Image processing device (image recognition device iri) 4
outputs horizontal and vertical synchronization signals to the imaging device 3 to control the timing of imaging, and the video signal output from the imaging device 3 is sent to the image processing device 4.
さらに画像処理装置4は撮像装置3からえられる魚10
の画像情報に基づいて魚10を認識し、魚10の重心位
置Gおよび向きDを求める。なお画像処理袋fl!f4
の構成および動作は後述する。また画像処理装置4には
モニタ5が接続されていて、撮像装置3による魚画像や
その画像処理結果などを表示する。つぎに画像処理装置
4によりえられる魚10の重心Gおよび向きDの信号は
演算装置6に送られ、演算装置6は送られる魚10の重
心Gおよび向きDの情報から魚10の移動速度Vおよび
反転の有無を計測し、この処理を所定時間だけ繰り返し
て魚10の位置および速度の分布ならびに反転回数を求
める。この演算装置6には魚10が正常状態の場合の位
置および速度の分布ならびに反転回数が記憶されていて
、これらの正常値と上記オンライン計測値とを比較する
ことにより、あらかじめ設定した偏差値以上の差が生じ
た場合に魚10の動きが異常と判定する。この判定結果
は警報装置9に送られ、警報袋!!!9はこの異常検知
信号を受信すると警報を鳴らしたり監視者に水質調査を
促すためのメツセージを音声出力したりするとともに、
画像処理袋[i!4に接続されたモニタ5には魚10の
モニタリングのほかに魚10の位置および速度ならびに
反転回数などの計測値を表示し、また魚10の動きの異
常時にはモニタ画面の色を例えば赤に変えるなどして視
覚的に異常を知らせる。なお演算装置i!6に記憶する
魚10の位置および速度分布ならびに反転回数の正常値
は魚1oの種類および水温や季節などの環境条件に応じ
て補正または変更できる。なお演算装置6の構成および
動作の詳細は後述する。Further, the image processing device 4 is configured to handle the fish 10 obtained from the imaging device 3.
The fish 10 is recognized based on the image information, and the center of gravity position G and orientation D of the fish 10 are determined. In addition, image processing bag fl! f4
The configuration and operation of will be described later. A monitor 5 is also connected to the image processing device 4, and displays fish images captured by the imaging device 3, the results of image processing, and the like. Next, the signals of the center of gravity G and direction D of the fish 10 obtained by the image processing device 4 are sent to the arithmetic device 6, and the arithmetic device 6 uses the sent information about the center of gravity G and the direction D of the fish 10 to determine the moving speed V of the fish 10. The presence or absence of reversal is measured, and this process is repeated for a predetermined period of time to obtain the position and velocity distribution of the fish 10 and the number of reversals. This arithmetic device 6 stores the position and speed distribution and the number of reversals when the fish 10 is in a normal state, and by comparing these normal values with the above online measurement value, it is possible to determine whether the fish 10 is in a normal state or not, and by comparing these normal values with the above-mentioned online measurement value. If a difference occurs, the movement of the fish 10 is determined to be abnormal. This judgment result is sent to the alarm device 9, and the alarm bag is sent! ! ! When 9 receives this abnormality detection signal, it sounds an alarm and outputs a voice message to urge the supervisor to investigate the water quality.
Image processing bag [i! In addition to monitoring the fish 10, the monitor 5 connected to the fish 10 displays measured values such as the position and speed of the fish 10 and the number of reversals, and also changes the color of the monitor screen to red, for example, when the movement of the fish 10 is abnormal. etc. to visually notify abnormalities. Furthermore, the arithmetic device i! The normal values of the position and velocity distribution of the fish 10 and the number of reversals stored in the fish 10 can be corrected or changed according to the type of the fish 1o and environmental conditions such as water temperature and season. Note that details of the configuration and operation of the arithmetic unit 6 will be described later.
第2図は第1図の画像処理装置4の詳細構成側図である
。第2図において、401はA/D変換装置、402は
濃淡画像メモリ、403はタイマ、404は2値化装置
、405は2値メモリ、406は輪郭抽出装置、407
は位置演算装置、408は向き演算装置、409はセレ
クタ、410は入出力装置、411はセレクタである。FIG. 2 is a side view of the detailed configuration of the image processing device 4 shown in FIG. 1. In FIG. 2, 401 is an A/D conversion device, 402 is a grayscale image memory, 403 is a timer, 404 is a binarization device, 405 is a binary memory, 406 is a contour extraction device, 407
408 is a position calculation device, 408 is a direction calculation device, 409 is a selector, 410 is an input/output device, and 411 is a selector.
この画像処理装置4は撮像装置3により得られた魚1o
の画像から魚10の重心位1tYGおよび向きDを検出
する手段をなす。This image processing device 4 is a system for processing fish 1o obtained by the imaging device 3.
This is a means for detecting the center of gravity 1tYG and direction D of the fish 10 from the image.
第2図の撮像装置(ITV)3からの映像信号はA/D
変換装置401によりディジタル化されて濃淡画像メモ
リ402に格納される。この濃淡画像メモリ402は例
えば256X256画素×8ビット(各画素256階W
R)の容量をもち、上記ディジタル化された画像が連続
的に格納される。The video signal from the imaging device (ITV) 3 in Fig. 2 is an A/D
The converted image is digitized by the conversion device 401 and stored in the grayscale image memory 402. This grayscale image memory 402 has, for example, 256 x 256 pixels x 8 bits (each pixel has 256 floors
R), and the digitized images are stored continuously.
まず魚10の重心位置Gの検出について説明すると、タ
イマ403はあらかじめ設定された時間間隔Δtごとに
濃淡画像メモリ402内の魚10の画像情報をセレクタ
409を介して2値化装置404に送る。2値化装置4
04は濃淡画像メモリ402の画像情報(輝度情報H)
を受けると、しきい値Tよりも明るい画素を全て0”と
し、しきい値Tよりも暗い画素を全て11′′として。First, the detection of the center of gravity G of the fish 10 will be described. The timer 403 sends image information of the fish 10 in the grayscale image memory 402 to the binarization device 404 via the selector 409 at preset time intervals Δt. Binarization device 4
04 is image information (luminance information H) of the grayscale image memory 402
Then, all pixels brighter than the threshold value T are set to 0'', and all pixels darker than the threshold value T are set to 11''.
2値メモリ405に格納する。この2値メモリ□405
は例えば256X256画素×1ビットの容量をもち、
濃淡画像メモリ404のi行j列の画素の輝度情報H(
xyj)とし、2値メモリ405のi行j列の画素の輝
度B(IIJ)とすれば、2値化装[404による2M
化の計算は次式により行なわれる。The data is stored in the binary memory 405. This binary memory □405
For example, has a capacity of 256 x 256 pixels x 1 bit,
Luminance information H(
xyj) and the brightness B(IIJ) of the pixel in the i row and j column of the binary memory 405.
The calculation of the value is performed using the following formula.
H(i、J)≧TのときB (i、 j) =O(1)
H(i* j)<TのときB (i、 j) =1
(2)ここで画像情報(輝度情報H)は魚1oが黒色系
(輝度が低い)で、背景が白色系(輝度が高い)である
ので、2値メモリ405の輝度B (i。When H(i, J)≧T, B (i, j) = O(1)
When H(i* j)<T, B (i, j) = 1
(2) Here, the image information (brightness information H) is that the fish 1o is black (low brightness) and the background is white (high brightness), so the brightness B (i.
J)が1″の値をもつ画素(]、IIJの集合は魚1o
を表わし、輝度B(1?J)が0′″の値の画素(i、
j)は背景を表わす。ここで位置演算装置407は2値
メモリ405の輝度B (i。The set of pixels (], IIJ where J) has a value of 1'' is fish 1o
, and the pixel (i,
j) represents the background. Here, the position calculation device 407 calculates the brightness B (i) of the binary memory 405.
j)の情報を受けて、輝度B(IIJ)が1′″の画素
(11J)の座標B (Xt、 Yt)とし、その画素
の総数Nとすると、魚10の重心位h’ZG(Xg 、
Yt )を次式により計算する。j), the coordinates B (Xt, Yt) of the pixel (11J) whose brightness B (IIJ) is 1''', and the total number of pixels are N, then the center of gravity of the fish 10 is h'ZG (Xg ,
Yt ) is calculated using the following formula.
Xヨ= Σ X 1 / N (
3)i=1
i=1
つぎに魚10の向きDの検出につblて説明すると、上
記タイマ403を介して時間間隔Δtごとに出力される
濃淡画像メモリ407の黒画像情報を輪郭抽出装置40
6に送る。この輪郭抽出装置406は黒画像情報(輝度
情報H)内の輝度差を強調する機能をもち、たとえif
ラプラシアンやメディアンフィルタなどの公知の画(象
処理技術を用いて、点画像は魚10が黒色系で背景力1
白色系であるため背景と魚10との境界の輝度差の大き
b)部分が輪郭として強調され、背景および魚10の境
界内部の輝度差の小さb)部分の輝度力11」1さくな
って、この輪郭強調された情報力へ輪郭抽出装置406
からセレクタ409を介して2値イヒ装置404へ出力
される。ついで2値イヒ装置404 itこの輪郭強調
された情報P’(ly j)とすれ番よ。X yo = Σ X 1 / N (
3) i=1 i=1 Next, to explain the detection of the direction D of the fish 10, the black image information in the grayscale image memory 407 output at every time interval Δt via the timer 403 is used by the contour extraction device. 40
Send to 6. This contour extraction device 406 has a function of emphasizing the luminance difference in black image information (luminance information H), and even if
Using known image processing techniques such as Laplacian and median filters, point images are created with fish 10 being black and background power 1.
Since it is a white color, the part b) where the brightness difference between the background and the fish 10 is large is emphasized as an outline, and the brightness power of the part b) where the brightness difference is small inside the boundary between the background and the fish 10 is reduced. , to this contour-enhanced information power, a contour extraction device 406
The signal is output from the selector 409 to the binary input device 404 . Next, the binary output device 404 inputs this contour-enhanced information P'(ly j).
次式により2値化して2値メモiノ405に31ま魚1
0と背景の境界部分すなわち輪郭が輝度“1″でそれ以
外が輝度It OI+の情報B (i、j)が格納され
る。Binarize it using the following formula and write it as a binary memo i-no-405.
Information B (i, j) is stored in which the boundary between 0 and the background, that is, the outline, has a brightness of "1" and the rest has a brightness of It OI+.
P(IIj)≧TのときB (it j) =1 (
5)P (11j)<TのときB (i、 j) =O
(6)ここで向き演算袋5t1408は2値メ−T=l
J405からの情報を受けて魚10の向きを計算すべく
、まず2値メモリ405内の輝度tt l uの画素を
細線化処理して輪郭を幅1画素の線とし、つぎにこの輪
郭の線を表わす画素の全てについて連結方向を垂直方向
、水平方向、45°方向×2の4方向につき計算し、さ
らに輪郭を表す画素の全てを上記4方向に分類して各方
向をもつ画素ごとにカウントし、その4方向の分類のな
かで画素数が最大の方向を魚10の方向りとする。上記
のようにして位置演算装置407および向き演算袋[4
08により計算された魚10の重心位[Gおよび向きD
の情報は入出力装?!410を介して演算袋fit6へ
送られ、またA/’D変換装置401からの映像信号、
濃淡画像メモリ402.2値メモリ405、位置演算装
置407、向き演算装置408からの信号がセレクタ4
11を経てモニタ4へ出力できる。When P(IIj)≧T, B (it j) = 1 (
5) When P (11j)<T, B (i, j) = O
(6) Here, the direction calculation bag 5t1408 is a binary value T=l
In order to calculate the direction of the fish 10 based on the information from J405, first, the pixels of luminance tt l u in the binary memory 405 are thinned to make the outline a line with a width of 1 pixel, and then the line of this outline is Calculate the connection directions for all pixels representing the contour in four directions: vertical, horizontal, and 45° directions x 2, then classify all pixels representing the outline into the four directions above and count each pixel in each direction. Among the four directions, the direction with the largest number of pixels is defined as the direction of the fish 10. As described above, the position calculation device 407 and the orientation calculation bag [4
The center of gravity of the fish 10 calculated by 08 [G and direction D
Is the information about the input/output device? ! 410 to the arithmetic bag fit6, and the video signal from the A/'D converter 401;
Signals from the grayscale image memory 402, binary memory 405, position calculation device 407, and orientation calculation device 408 are sent to the selector 4.
It can be output to the monitor 4 via 11.
第3図(a)、(b)は第2図の2値化装置404の2
値化処理の説明図で、第3図(a)は濃淡画像メモリ4
02に格納された点画像の説明図、第3図(b)は第3
図(a)の点画像のA−へ線上の輝度分布および2値化
装置404の2値化しきい値Tの説明図である。第3図
(a)において、Bは背景の部分を示し、Fは魚10の
部分を表わす。第3図(b)において、第3図(a)の
A−A!上の輝度分布は背景Bの部分の輝度I](B)
が高く、魚F(10)の部分の輝度H(F)が低い。こ
の点画像の輝度情報Hを2値化しきい値’r(F<T≦
B)を用いて2値化装置404テ上記(1)、(2)式
により2値化すると、m度の低い魚F(10)の部分が
輝度rr 1 nの2値画像として抽出され、2値メモ
リ405に格納される。FIGS. 3(a) and 3(b) show two parts of the binarization device 404 in FIG.
This is an explanatory diagram of the value conversion process, and FIG. 3(a) shows the grayscale image memory 4.
An explanatory diagram of the point image stored in 02, FIG. 3(b) is the 3rd
FIG. 4 is an explanatory diagram of the brightness distribution on the line A- of the point image in FIG. 3A and the binarization threshold T of the binarizer 404. In FIG. 3(a), B indicates the background part, and F indicates the fish 10 part. In FIG. 3(b), A-A in FIG. 3(a)! The brightness distribution above is the brightness I of the background B part] (B)
is high, and the brightness H(F) of the fish F(10) portion is low. The brightness information H of this point image is converted to a binarization threshold 'r (F<T≦
When the binarization device 404 performs binarization according to the above equations (1) and (2) using B), the part of the fish F(10) with a low m degree is extracted as a binary image with luminance rr 1 n, It is stored in binary memory 405.
第4図(a)、(b)、(c)は第2図の輪郭抽出装@
406および向き演算装置408の点画像の輪郭抽出処
理および向き検出処理の説明図で。Figures 4 (a), (b), and (c) are the contour extraction system shown in Figure 2.
406 and an explanatory diagram of point image contour extraction processing and orientation detection processing of the orientation calculation device 408.
第4図(a)は濃淡画像メモリ402に格納された点画
像の説明図、第4図(b)は第4図(a)の点画像を輪
郭抽出装置406で輪郭抽出後に2、値化装置404で
2値化して2値メモリ405に格納した画像を向き演算
装置408で細線化した画像の説明図、第4図(c)は
第4図(b)の輪郭抽出後2値化細線化した点画像から
向き演算装置408で画素の連結方向を垂直方向(3の
方向)、水平方向(1の方向)、45°方向X2 (2
,4の方向)4方向に分類して魚F(10)の方向りを
決定する4方向の説明図である。第4図(a)において
、Bは背景部分、Flは魚10の本体部分、Fiは魚1
0のひれ部分をそれぞれ表わし、魚10のひれ部分Fx
の輝度H(Fz)は背景部分Bの輝度H(B)よりも低
いが魚10の本体部分Flの輝度H(Fl)よりも高い
(Ft<Fz〈B)、ついで第4図(b’)において、
第4図(a)の点画像を輪郭抽出装置406で背景部分
B、魚F(10)の本体部分F1.ひれ部分F2の各境
界の輝度差の大きい部分を強調して輪郭を抽出したのち
、この輪郭強調した情報Pを2値化装置404で上記(
5)、(6)式により2値化して2値化メモリに格納し
、さらに向き演算装置408で細線化処理すると、図示
のように魚F(10)の本体部分F1およびひれ部分F
2と背景部分Bとの境界とともに、魚F(10)の本体
部分F1とひれ部分F2との境界も輪郭の線をなす幅1
画素の輝度111 +1の列として検出される。FIG. 4(a) is an explanatory diagram of the point image stored in the grayscale image memory 402, and FIG. 4(b) is an explanatory diagram of the point image stored in the grayscale image memory 402, and FIG. 4(b) shows the point image in FIG. An explanatory diagram of an image that has been binarized by the device 404 and stored in the binary memory 405 and thinned by the orientation calculation device 408. FIG. 4(c) is the binarized thin line after contour extraction in FIG. 4(b). From the converted point image, the orientation calculation device 408 determines the connection direction of pixels in the vertical direction (direction 3), horizontal direction (direction 1), and 45° direction X2 (direction 2).
, 4 directions) is an explanatory diagram of four directions in which the direction of the fish F (10) is determined by classifying them into four directions. In FIG. 4(a), B is the background, Fl is the main body of fish 10, and Fi is fish 1.
Each represents the fin part of fish 0, and the fin part Fx of fish 10
The brightness H(Fz) of is lower than the brightness H(B) of the background part B but higher than the brightness H(Fl) of the main body part Fl of the fish 10 (Ft<Fz<B), and then in FIG. 4(b' ), in
The point image in FIG. 4(a) is extracted by the contour extraction device 406 into the background portion B, the main body portion F1 of the fish F (10). After extracting the contour by emphasizing the portion with a large brightness difference between each boundary of the fin portion F2, the information P with this contour emphasis is converted into the above-mentioned ((
5) and (6) are binarized and stored in the binarized memory, and further thinned by the orientation calculation device 408, the body part F1 and the fin part F of the fish F (10) are obtained as shown in the figure.
Along with the boundary between 2 and the background part B, the boundary between the body part F1 and the fin part F2 of the fish F (10) also has a width of 1, which forms the outline line.
It is detected as a column of pixel brightness 111 +1.
つぎに第4図(C)において、第4図(b)の輪郭抽出
後2値化細線化された魚画像から向き演算装置408で
画素8連結により画素連結方向を水直方向(3の方向)
、水平方向(1の方向)。Next, in FIG. 4(C), from the fish image which has been binarized and thinned after contour extraction in FIG. )
, horizontal direction (1 direction).
45°方向X2 (2,4の方向)の4方向に分類して
全画素の連結性を計算して魚F(10)の方向りを決定
すると、図示の例では魚F(10)の方向りは45°方
D2(2の方向)となる。If the direction of fish F (10) is determined by classifying into four directions of 45° direction X2 (2 and 4 directions) and calculating the connectivity of all pixels, in the example shown The direction is 45° direction D2 (direction 2).
第5図は第1図の演算装N6の詳細構成側図である。第
5図において、601はセレクタ、602は重心記憶装
置、603は反転検出装置、604は速度演算装置、6
05は反転記憶装置、606は重心判定装置、607は
速度判定装置、608は反転判定装置である。この演算
装置6は画像処理装置(画像Lz識装置)4からの魚1
0の重心位[0および向きDの情報に基づき魚10の移
動速度計算および反転検出を行ない魚10の重心、速度
9反転回数を正常値と比較して魚10の行動の異常を判
定する手段をなす。FIG. 5 is a side view of the detailed configuration of the arithmetic unit N6 in FIG. 1. In FIG. 5, 601 is a selector, 602 is a center of gravity storage device, 603 is a reversal detection device, 604 is a speed calculation device, and 6
05 is a reversal storage device, 606 is a center of gravity determination device, 607 is a speed determination device, and 608 is a reversal determination device. This calculation device 6 processes the fish 1 from the image processing device (image Lz recognition device) 4.
Means for calculating the moving speed of the fish 10 and detecting reversals based on the information on the center of gravity of the fish 10 [0 and the direction D, and comparing the center of gravity of the fish 10 and the number of reversals of the speed 9 with normal values to determine abnormality in the behavior of the fish 10 to do.
第5図の画像処理装置4から計算された魚10の重心位
Ii!G (X g 、 Y t )および向きDの情
報はセレクタ601を介してそれぞれ重心記憶装置60
2および反転検出装置603に送られ、重心G (Xi
、Yt )は時間間隔Δtごとに所定時間Tの間の値
が重心位置記憶装置602に格納され、この重心G (
Xi −Yw )は重心Gの出現頻度分布を形成する。The center of gravity Ii of the fish 10 calculated from the image processing device 4 in FIG. 5! G (X g , Y t ) and direction D information are sent to the center of gravity storage device 60 via the selector 601.
2 and the reversal detection device 603, and the center of gravity G (Xi
, Yt) is stored in the barycenter position storage device 602 for a predetermined time T at every time interval Δt, and this barycenter G
Xi − Yw ) forms the appearance frequency distribution of the center of gravity G.
この所定時間Tの重心Gの頻度分布の情報は重心判定装
置606に送られ正常時の重心の頻度分布と比較して、
その偏差が所定値よりも大きい場合には警報袋F!17
へ異常発生信号を送る。また速度演算装置604は重心
記憶装置602から時間間隔Δ乞ごとに所定時間Tの間
に送られてくる重心a (XJI 、 Yll )から
時間間隔Δtごとの魚10の移動速度Vを計算して記憶
し、この移動速度Vは速度Vの頻度分布を形成する。Information on the frequency distribution of the center of gravity G during this predetermined time T is sent to the center of gravity determination device 606 and compared with the frequency distribution of the center of gravity during normal times.
If the deviation is larger than the predetermined value, alarm bag F! 17
Sends an abnormality signal to. In addition, the speed calculating device 604 calculates the moving speed V of the fish 10 at each time interval Δt from the center of gravity a (XJI, Yll) sent during a predetermined time T at every time interval Δt from the center of gravity storage device 602. The moving speed V forms a frequency distribution of the speed V.
この所定時間Tの速度Vの頻度分布の情報は速度判定装
置607に送られ正常時の速度の頻度分布と比較して、
その偏差が所定値よりも大きい場合には警報装置17へ
異常発生信号を送る。一方の反転検出装置603は上記
セレクタ601から送られる魚10の向きDの情報を記
憶するとともに、上記重心記憶装置602から時間間隔
Δtごとに所定期間Tの間に送られる魚10の重心G
(Xi 。Information on the frequency distribution of the speed V during the predetermined time T is sent to the speed determination device 607 and compared with the frequency distribution of the speed during normal times.
If the deviation is larger than a predetermined value, an abnormality occurrence signal is sent to the alarm device 17. One reversal detection device 603 stores information on the direction D of the fish 10 sent from the selector 601, and also stores the center of gravity G of the fish 10 sent from the center of gravity storage device 602 for a predetermined period T at every time interval Δt.
(Xi.
Y富)の情報から魚10の進行方向(分布)を計算して
記憶することができ、この魚10の進行方向と魚10の
向きDの情報とから魚10の反転を検出し、この反転情
報は所定時間Tの間に反転記憶装置605に送られ記憶
される6さらに反転記憶装置605に記憶された所定時
間Tの間の魚10の反転情報の反転回数が反転判定装置
608に送られて正常時の反転回数と比較し、その偏差
が所定値よりも大きい場合には警報装置7へ異常発生信
号を送出する。The moving direction (distribution) of the fish 10 can be calculated and stored from the information of the fish 10 (Y wealth), and the reversal of the fish 10 can be detected from the information of the moving direction of the fish 10 and the direction D of the fish 10. The information is sent to and stored in the reversal storage device 605 for a predetermined period of time T. 6 Furthermore, the number of reversals of the reversal information of the fish 10 during the predetermined period of time T stored in the reversal storage device 605 is sent to the reversal determination device 608. The number of reversals is compared with the normal number of reversals, and if the deviation is larger than a predetermined value, an abnormality occurrence signal is sent to the alarm device 7.
本発明によれば、魚(水棲動物)の行動を魚の重心位置
と移動速度と反転回数により連続的にかつ定量的に監視
して魚の異常を判定できるので。According to the present invention, abnormalities in the fish can be determined by continuously and quantitatively monitoring the behavior of the fish (aquatic animal) based on the position of the fish's center of gravity, moving speed, and number of reversals.
水中に毒物が流入したかどうかを迅速かつ自動的に判定
することができ、浄水場における流入原水などの青水監
視を正確かつ省力的に実施できて水質の安全性を確保で
きる。It is possible to quickly and automatically determine whether poisonous substances have entered the water, and the monitoring of blue water such as incoming raw water at water treatment plants can be carried out accurately and labor-savingly, thereby ensuring the safety of water quality.
第1図は1本発明による焦眉監視装置の一実施例を示す
全体構成側図、第2図は第1図の画像処理装置の詳細構
成図、第3図(a)、(b)は第2図の魚画像および2
値化しきい値の説明図、第4図(a)、(b)、(c)
は第2図の魚画像および輪郭抽出後2値化細線化画像お
よび魚の向きの4方向の説明図、第5図は第1図の演算
装置の詳細構成側図である。
1・・・水層、2・・・バックスクリーン、3・・・撮
像装置、4・・・画像処理装置(魚の位置と向きの検出
などを行なう画像認識装置)、5・・・モニタ、6・・
・演算装置(魚の反転を検出する手段と反転回数などか
ら魚の異常を判定する手段など)、7・・・照明、8・
・・照明制御装置、9・・・警報装置、1o・・・魚(
水棲動物)。FIG. 1 is a side view of the overall configuration of an embodiment of the image processing device according to the present invention, FIG. 2 is a detailed configuration diagram of the image processing device shown in FIG. 1, and FIGS. 2 Fish images and 2
Explanatory diagram of valorization threshold, Fig. 4 (a), (b), (c)
2 is an explanatory diagram of the fish image in FIG. 2, the binarized thinned image after outline extraction, and the four directions of the direction of the fish, and FIG. 5 is a side view of the detailed configuration of the arithmetic device in FIG. 1. DESCRIPTION OF SYMBOLS 1... Water layer, 2... Back screen, 3... Imaging device, 4... Image processing device (image recognition device for detecting the position and orientation of fish, etc.), 5... Monitor, 6・・・
- Arithmetic device (means for detecting reversal of fish, means for determining abnormality of fish from the number of reversals, etc.), 7... Lighting, 8.
...Lighting control device, 9...Alarm device, 1o...Fish (
aquatic animals).
Claims (1)
槽と、上記水棲動物の画像情報を電気信号に変換する撮
像装置と、該撮像装置から得られる画像情報から上記水
棲動物の位置および向きを検出する画像認識装置と、上
記水棲動物の向きからその反転を検出する装置と、上記
反転の回数から上記水棲動物の異常を判定する手段とか
ら成る魚態監視装置。1. An aquarium in which aquatic animals are raised to detect the inflow of toxic substances into water, an imaging device that converts image information of the aquatic animals into electrical signals, and a position and orientation of the aquatic animals based on the image information obtained from the imaging device. A fish condition monitoring device comprising: an image recognition device for detecting a change in the aquatic animal; a device for detecting a reversal based on the orientation of the aquatic animal; and a means for determining an abnormality in the aquatic animal based on the number of times the aquatic animal turns.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27882886A JPH0785079B2 (en) | 1986-11-25 | 1986-11-25 | Fish condition monitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27882886A JPH0785079B2 (en) | 1986-11-25 | 1986-11-25 | Fish condition monitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63133060A true JPS63133060A (en) | 1988-06-04 |
JPH0785079B2 JPH0785079B2 (en) | 1995-09-13 |
Family
ID=17602723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27882886A Expired - Lifetime JPH0785079B2 (en) | 1986-11-25 | 1986-11-25 | Fish condition monitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0785079B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004068414A1 (en) * | 2003-01-27 | 2006-05-25 | 富士通株式会社 | Appearance position display device of target object |
-
1986
- 1986-11-25 JP JP27882886A patent/JPH0785079B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004068414A1 (en) * | 2003-01-27 | 2006-05-25 | 富士通株式会社 | Appearance position display device of target object |
Also Published As
Publication number | Publication date |
---|---|
JPH0785079B2 (en) | 1995-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4888703A (en) | Apparatus for monitoring the toxicant contamination of water by using aquatic animals | |
CN101907453B (en) | Online measurement method and device of dimensions of massive agricultural products based on machine vision | |
JPS63133061A (en) | Fish living condition monitoring instrument | |
CN113327263A (en) | Fish shoal liveness monitoring method based on image vision | |
KR20190063188A (en) | Method for controlling water purification using real-time image analysis | |
JPH05263411A (en) | Object observation method and device | |
JP3691502B2 (en) | Water quality monitoring device and fish image recognition method used therefor | |
JPS63133060A (en) | Fish living condition monitoring instrument | |
JPS63222262A (en) | Water quality abnormality detector | |
JP7507034B2 (en) | Information processing device, water treatment system, information processing method and program | |
JPH0616034B2 (en) | Aquatic animal image monitoring apparatus and method | |
JPH01285854A (en) | Apparatus for detecting dangerous degree of invading poison by school of fish | |
JPS63135859A (en) | Abnormal water quality monitor | |
JPH02242154A (en) | Image monitor apparatus for organism | |
JP2526237B2 (en) | Image monitoring device for living groups | |
JP2517737B2 (en) | Image monitoring device for fish | |
JPH0789115B2 (en) | Fish poison detector | |
JPH0531941B2 (en) | ||
JPH03163358A (en) | Image monitoring apparatus of fish | |
JPS63253478A (en) | Method and device for monitoring of fish picture | |
CN108401142A (en) | A kind of workpiece counting device on assembly line and method | |
JPS63175766A (en) | Abnormal water quality detector | |
JPS63307358A (en) | Method for recognizing position of plural fishes | |
JPH0670626B2 (en) | Aquatic life monitoring equipment | |
CN113284147B (en) | Foreign matter detection method and system based on yellow foreign matter defects |