JPS6313300A - Radio frequency cavity - Google Patents

Radio frequency cavity

Info

Publication number
JPS6313300A
JPS6313300A JP15854686A JP15854686A JPS6313300A JP S6313300 A JPS6313300 A JP S6313300A JP 15854686 A JP15854686 A JP 15854686A JP 15854686 A JP15854686 A JP 15854686A JP S6313300 A JPS6313300 A JP S6313300A
Authority
JP
Japan
Prior art keywords
phase
mode
intensity
cavity
frequency cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15854686A
Other languages
Japanese (ja)
Inventor
修平 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15854686A priority Critical patent/JPS6313300A/en
Priority to US07/056,781 priority patent/US4780683A/en
Publication of JPS6313300A publication Critical patent/JPS6313300A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、蓄積リングの高周波空胴の大電流化に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to increasing the current flow in the high frequency cavity of a storage ring.

〔従来の技術〕[Conventional technology]

第2図は例えばブロシーデインダス オブ ザファース
ト コース オブ ジ インターナシ四ナル スクール
 オブ パーティクル アクセルレーターズ オプ ジ
 “エトワール マジョラナ” センター フォー サ
イエンティフィック カルチャー、エリス 10−22
 1976年11月(Proceedings of 
the Fir3t Course of the E
nternational  5chool  of 
 Particle  Accelerators  
ofthe  Ettore Majorana” C
enter for 5cientificCultu
re+Er1ce 10−22 November 1
976)に示された従来のRF装置を示す断面図であり
、図において1はRF共振器(高周波空胴)、2は電解
ベクトルの向き、3は磁界ベクトルの向き、4はT M
 1r。
Figure 2 shows, for example, the International School of Particle Accelerators Op the “Etoile Majorana” Center for Scientific Culture, Ellis 10-22.
November 1976 (Proceedings of
the First Course of the E
international 5chool of
Particle Accelerators
of the Ettore Majorana”C
enter for 5 scientificCultu
re+Er1ce 10-22 November 1
976), in which 1 is an RF resonator (high frequency cavity), 2 is the direction of the electrolytic vector, 3 is the direction of the magnetic field vector, and 4 is the TM
1r.

モード吸収棒であり、また5は粒子ビームの軌道である
5 is a mode absorption rod, and 5 is the trajectory of the particle beam.

次に動作について説明する0粒子ビーム5によって共振
器1内には、基本モードに加えてT M lt 。
In addition to the fundamental mode, T M lt is generated in the resonator 1 by the zero particle beam 5, the operation of which will be explained next.

モード2あるいは3が励起される。この時、粒子は磁界
3との相互作用によりX方向に軌道変更を受ける。リン
グ型の粒子加速器において、粒子は、−周毎にこのX方
向の軌道変更を受け、やがて中心軌道より太き(離れた
軌道を通るようになり、最終的には壁に衝突し、失われ
てしまう。
Mode 2 or 3 is excited. At this time, the particles undergo a trajectory change in the X direction due to interaction with the magnetic field 3. In a ring-shaped particle accelerator, particles change their orbits in the It ends up.

これを回避するため、従来行われている安定化手段とし
てはTM、、。モード吸収体4が用いられている。
To avoid this, conventional stabilization measures include TM. A mode absorber 4 is used.

T M r Ioモード吸収体4は、T M + Io
モードのエネルギーを熱に変換し、TM、、。モードを
弱める特性を持ち、ビームの安定化に寄与する。その原
理は以下の様になる。吸収体4は、T M r + o
モードの磁界の一部が吸収体中を通過、するように配置
され、この状態において磁界の時間変動のため吸収体4
中に渦電流が発生し、吸収体4の抵抗により熱を発生す
る。すなわち、T M + +。モードのエネルギーが
熱に変換されることになる。
T M r Io mode absorber 4 is T M + Io
Converts the energy of the mode into heat, TM,... It has the property of weakening modes and contributes to beam stabilization. The principle is as follows. The absorber 4 has T M r + o
The mode is arranged so that a part of the magnetic field passes through the absorber, and in this state, the absorber 4
Eddy currents are generated therein, and heat is generated due to the resistance of the absorber 4. That is, T M + +. The energy of the mode will be converted into heat.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の高周波空胴の安定化手段は以上のように構成され
ているので、T M IIoモードを抑制するためには
吸収体4を共振器1内へかなり深く挿入 ゛せねばなら
ず、基本波に対して影響を与える等の問題があった。
Since the conventional high-frequency cavity stabilization means is configured as described above, in order to suppress the T M IIo mode, the absorber 4 must be inserted quite deeply into the resonator 1, and the fundamental wave There were problems such as having an impact on

この発明は上記のような問題点を解消するためになされ
たもので、基本モードにほとんど影響を与えず粒子ビー
ムの流れを安定化できる装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a device that can stabilize the flow of a particle beam without substantially affecting the fundamental mode.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る高周波空胴は、咳空胴内の基本モード以
外の高次モードの位相・強度を検出する検出手段と、該
検出手段の検出結果に従って上記基本モード以外の高次
モードと逆位相・同強度の高次モードを上記空胴内に励
起する励起手段とを備えたものである。
The high-frequency cavity according to the present invention includes a detection means for detecting the phase and intensity of a higher-order mode other than the fundamental mode in the cough cavity, and a phase opposite to the higher-order mode other than the fundamental mode according to the detection result of the detection means. - Excitation means for exciting higher-order modes of the same intensity into the cavity.

〔作用〕[Effect]

この発明においては、検出手段により基本モード以外の
高次モードの強度及び位相を検出し、該高次モードと逆
位相、同程度の高次モードを励起手段により与え、該高
次モードを下げる。
In this invention, the detection means detects the intensity and phase of a higher-order mode other than the fundamental mode, and the excitation means provides a higher-order mode having an opposite phase and the same degree as the higher-order mode, thereby lowering the higher-order mode.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、1はRF共振器(高周波空胴)、6はRF
共振器1の内部に取りつけられた基本波励振アンテナ、
7はTM、。逆位相モード励振アンテナ、8は高周波の
サーチコイル、9は基本モードカット用フィルタ、10
は位相検出器、11は強度検出器、12はTM、、。モ
ードの発振器、13は減衰器、14は移相器、15は基
本波に対しては無限大のインピーダンスをもつ終端抵抗
である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 1 is an RF resonator (high frequency cavity), 6 is an RF
a fundamental wave excitation antenna installed inside the resonator 1;
7 is TM. Anti-phase mode excitation antenna, 8 is a high frequency search coil, 9 is a fundamental mode cut filter, 10
is a phase detector, 11 is an intensity detector, 12 is a TM, . 13 is an attenuator, 14 is a phase shifter, and 15 is a terminating resistor having infinite impedance for the fundamental wave.

次に動作について説明する。Next, the operation will be explained.

まずビーム電流により励起されたT M + Ioモー
ドは、サーチコイル8によ−り検出され、フィルタ9で
基本モードがカットされ、位相検出器10゜強度検出器
11により、位相1強度を検出される。
First, the T M + Io mode excited by the beam current is detected by a search coil 8, the fundamental mode is cut off by a filter 9, and the phase 1 intensity is detected by a phase detector 10° and an intensity detector 11. Ru.

そして移相器14は外部TM110発振器12の位相を
位相検出器10の出力により調整し、ビーム電流による
T M lt。モードと逆位相の波を励起するようにす
る。そしてさらに発振器の出力を減衰器13より強度検
出器11の出力と等しく調整することにより、共振器1
内のT M + +。モードと同じ強度で位相が逆のモ
ードを励振アンテナ7により励振し、上記共振器1内の
T M r +。モードを打ち消すことができる。また
本実施例では基本波に対して無限大のインピーダンスを
持つ回路15をT M llo逆位相モード励振アンテ
ナ7の後に配置しているので、基本波モードが外部T 
M l+。発振器12に影響を与えることはない。
Then, the phase shifter 14 adjusts the phase of the external TM110 oscillator 12 by the output of the phase detector 10, and adjusts the phase of the external TM110 oscillator 12 by the beam current. Excite waves that are in opposite phase to the mode. Further, by adjusting the output of the oscillator to be equal to the output of the intensity detector 11 by the attenuator 13, the resonator 1
T M + + within. A mode having the same intensity and opposite phase as the mode is excited by the excitation antenna 7, and T M r + in the resonator 1 is generated. mode can be canceled. Furthermore, in this embodiment, since the circuit 15 having infinite impedance with respect to the fundamental wave is placed after the T M llo anti-phase mode excitation antenna 7, the fundamental wave mode is
M l+. It does not affect the oscillator 12.

なお、上記実施例ではT M + 16モ一ド発振器を
基本波モードのそれと別個のものとしたが、両者は同一
のものであってもよく、その場合は基本波モードに変調
を加えればよい。
In the above embodiment, the T M + 16 mode oscillator is separate from the fundamental mode oscillator, but the two may be the same, in which case modulation may be added to the fundamental mode. .

また、上記実施例では共振器で発生する基本波モード以
外の高次モードがT M + loモードである場合に
ついて説明したが、これは他のモードであっても本発明
を適用でき、上記と同様の効果を奏する。また、多数の
モードの安定化のため、上記のシステムを複数使用する
ことも可能である。
Further, in the above embodiment, the case where the higher-order mode other than the fundamental mode generated in the resonator is the T M + lo mode has been described, but the present invention can be applied to other modes as well, and the above-mentioned method can be applied. It has a similar effect. It is also possible to use more than one of the above systems for stabilization of multiple modes.

また上記実施例では電源間の結合を防ぐため無限大終端
抵抗を直列に配したが、これは方向性結合器、サーキュ
レータを用いてもよい。
Further, in the above embodiment, infinite terminating resistors are arranged in series to prevent coupling between power sources, but a directional coupler or a circulator may be used instead.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、共振器内の基本波モ
ード以外の高次モードの位相・強度を検出し、その結果
に従って該基本波モード以外の高次モードと逆位相・同
強度の高次モードを共振器内に励起させるように構成し
たから、基本波モード以外のモードを積極的に制御する
ことができ、基本波に影響を与えず十分に粒子ビームを
安定化できる装置を得られる効果がある。
As described above, according to the present invention, the phase and intensity of higher-order modes other than the fundamental wave mode in the resonator are detected, and according to the results, the phase and intensity of higher-order modes other than the fundamental wave mode are opposite in phase and have the same intensity. Since the structure is configured to excite higher-order modes within the resonator, modes other than the fundamental wave mode can be actively controlled, resulting in a device that can sufficiently stabilize the particle beam without affecting the fundamental wave mode. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるビーム安定化装置の
構成を示すブロック図、第2図は従来の安定化装置を示
す断面図である。 7はT M IIo逆位相モード励振アンテナ、12は
T M r +。モード発振器、13は減衰器、14は
移相器、15は終端抵抗である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing the configuration of a beam stabilizing device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional stabilizing device. 7 is a T M IIo anti-phase mode excitation antenna, and 12 is T M r +. A mode oscillator, 13 an attenuator, 14 a phase shifter, and 15 a terminating resistor. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)リング型粒子加速器の高周波空胴において、該空
胴内の電磁界から基本モード以外の高次モードの位相・
強度を検出する検出手段と、 該検出部の検出結果に従って上記基本モード以外の高次
モードと逆位相・同強度の高次モードを上記空胴内に励
起する励起手段とを備えたことを特徴とする高周波空胴
(1) In the high-frequency cavity of a ring particle accelerator, the phase of higher-order modes other than the fundamental mode is determined from the electromagnetic field within the cavity.
It is characterized by comprising: a detection means for detecting the intensity; and an excitation means for exciting a higher-order mode having an opposite phase and the same intensity as a higher-order mode other than the fundamental mode into the cavity according to the detection result of the detection section. High frequency cavity.
(2)上記検出手段が、 上記空胴内に設けられたサーチコイルと、 該サーチコイルの検出出力のうちから基本モードをカッ
トするフィルタと、 該フィルタから得られた高次モードの位相及び強度を検
出する位相検出器及び強度検出器とからなることを特徴
とする特許請求の範囲第1項記載の高周波空胴。
(2) The detection means includes a search coil provided in the cavity, a filter that cuts a fundamental mode from the detection output of the search coil, and a phase and intensity of a higher-order mode obtained from the filter. The high-frequency cavity according to claim 1, characterized in that it comprises a phase detector and an intensity detector for detecting.
(3)上記励起手段が、 高次モードを発振する発振器と、 該発振器からの高次モードに上記位相検出器によって検
出した位相と逆の位相を与える移相器と、上記発振器か
らの高次モードの強度を上記強度検出器によって検出し
た強度と同一強度にする減衰器と、 該減衰器と上記高周波空胴との間に接続された基本モー
ド用無限大終端抵抗と、 上記空胴内に上記終端抵抗に接続して設けられた励起ア
ンテナとからなることを特徴とする特許請求の範囲第1
項記載の高周波空胴。
(3) The excitation means includes an oscillator that oscillates a high-order mode, a phase shifter that gives a phase opposite to the phase detected by the phase detector to the high-order mode from the oscillator, and a phase shifter that provides a phase opposite to the phase detected by the phase detector to the high-order mode from the oscillator; an attenuator that makes the intensity of the mode the same as the intensity detected by the intensity detector; an infinite terminating resistor for a fundamental mode connected between the attenuator and the high frequency cavity; and an excitation antenna connected to the terminating resistor.
High frequency cavity as described in section.
JP15854686A 1986-06-05 1986-07-04 Radio frequency cavity Pending JPS6313300A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15854686A JPS6313300A (en) 1986-07-04 1986-07-04 Radio frequency cavity
US07/056,781 US4780683A (en) 1986-06-05 1987-06-02 Synchrotron apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15854686A JPS6313300A (en) 1986-07-04 1986-07-04 Radio frequency cavity

Publications (1)

Publication Number Publication Date
JPS6313300A true JPS6313300A (en) 1988-01-20

Family

ID=15674068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15854686A Pending JPS6313300A (en) 1986-06-05 1986-07-04 Radio frequency cavity

Country Status (1)

Country Link
JP (1) JPS6313300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246855A (en) * 2012-05-28 2013-12-09 Toshiba Corp Semiconductor memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246855A (en) * 2012-05-28 2013-12-09 Toshiba Corp Semiconductor memory

Similar Documents

Publication Publication Date Title
Choi et al. Experimental investigation of a high power, two-cavity, 35 GHz gyroklystron amplifier
Rossi et al. Operation analysis of a novel concept of RF source known as gyromagnetic line
De Smedt Correction due to a finite permittivity for a ring resonator in free space
Furuno et al. Theoretical and experimental investigation of a high-harmonic gyro-traveling-wave-tube amplifier
JPS6313300A (en) Radio frequency cavity
Walter et al. Effects of tapered tubes on long-pulse microwave emission from intense e-beam gyrotron-backward-wave-oscillators
Spencer et al. Results from gyrotron backward wave oscillator experiments utilizing a high-current high-voltage annular electron beam
Hendricks et al. Increasing the RF energy per pulse of an RKO
Blank et al. Circuit design of a wideband W-band gyroklystron amplifier for radar applications
CA1044374A (en) Charged particle beam deflector
Gold et al. High-voltage Ka-band gyrotron experiment
Yang et al. Design and simulation of a compact Ku-band RTTO with power divider extraction structure
SU1663791A1 (en) Metod for spurious oscillations of the e type suppression in the electrodinamic system of accelerators of heavy current beams of charged particles
US3210674A (en) Pushxpush l lower frequency pumped maser
Large et al. Cavity resonator modes in a cylindrically stratified magnetoplasma
Omar et al. On the modal expansion of resonator field in the source region
Nayek et al. Elimination of Mode Competition in $\mathbf {TE} _ {0n} $ Mode Gyrotron
JP2961251B1 (en) High acceleration gradient high frequency cavity
Andresen et al. Line shapes of resonant harmonic frequency generation in ruby
Chodorow et al. Current distribution in modulated magnetically focused electron beams
Salingaros Force-free plasma currents driven by electromagnetic oscillations with E parallel to B
Wigen et al. Controlling chaos in ferromagnetic resonance
Frank-Kamenetskii et al. Plasma Resonators and Waveguides
Freund et al. Three-dimensional theory of helix TWTs: models and applications
RU1841308C (en) Parametric transmission path