JPS63132905A - Polymerization of olefin - Google Patents

Polymerization of olefin

Info

Publication number
JPS63132905A
JPS63132905A JP27871386A JP27871386A JPS63132905A JP S63132905 A JPS63132905 A JP S63132905A JP 27871386 A JP27871386 A JP 27871386A JP 27871386 A JP27871386 A JP 27871386A JP S63132905 A JPS63132905 A JP S63132905A
Authority
JP
Japan
Prior art keywords
reactor
polymerization
compound
group
solid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27871386A
Other languages
Japanese (ja)
Other versions
JPH0764893B2 (en
Inventor
Akira Hasegawa
明 長谷川
Eiji Kakeya
掛谷 栄治
Hideki Tamano
玉野 秀樹
Minoru Suzuki
穣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP27871386A priority Critical patent/JPH0764893B2/en
Publication of JPS63132905A publication Critical patent/JPS63132905A/en
Publication of JPH0764893B2 publication Critical patent/JPH0764893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To almost completely prevent fouling phenomenon, by polymerizing an olefin in the presence of a catalyst system composed of an organic Al compound and a solid catalyst component containing Ti and halogen while adding a polyfunctional electron-donative compound to the polymerization system. CONSTITUTION:One or more olefins (e.g. ethylene) are polymerized in a hydrocarbon diluent in the presence of a catalyst system obtained from an organic Al compound (e.g. triethylaluminum) and a solid catalyst component containing Ti and a halogen in the form of a compound. The above polymerization is carried out while adding a polyfunctional electron-donative compound (e.g. N,N,N',N'-tetramethyldiaminomethane, acetolylacetone, etc.) to the reactor. The molar number of the whole functional group of the electron-donative compound is 0.001-0.9 based on 1mol of the organic Al compound. The polymerization operation is stabilized, the temperature control of the reactor is facilitated and a polyolefin having stable quality can be produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は少なくとも1種のオレフィンを触媒の存在下で
液相中で重合して、その液相に実質的に溶解しない重合
体を製造する、所謂、スラリー重合法によるポリオレフ
ィンの製造方法において、反応器に起こるファウリング
(スラリー中の重合反応生成物粒子、あるいは、固体触
媒粒子が反応器の器壁に付着する現象を言う)を防止す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention involves polymerizing at least one olefin in a liquid phase in the presence of a catalyst to produce a polymer that is substantially insoluble in the liquid phase. In the so-called slurry polymerization method for producing polyolefins, the fouling that occurs in the reactor (referring to the phenomenon in which polymerization reaction product particles in the slurry or solid catalyst particles adhere to the wall of the reactor) is prevented. Regarding the method.

〔発明の前景〕[Foreground of invention]

オレフィンを重合してポリオレフィンを製造する際に多
用される、所謂、スラリー重合法において、ポリマーが
反応器壁面に固着するファウリング現象が起きることが
ある。
In so-called slurry polymerization, which is often used to produce polyolefins by polymerizing olefins, a fouling phenomenon in which the polymer sticks to the wall of the reactor sometimes occurs.

ファウリングが発生すると反応器の壁面の平滑性が失わ
れるため攪拌動力が大巾に上昇すると同時に、管壁から
の反応熱除去が困難になり、温度調節が不能となり、最
悪の場合には反応が暴走する。
When fouling occurs, the smoothness of the walls of the reactor is lost, and the stirring power increases dramatically. At the same time, it becomes difficult to remove reaction heat from the tube walls, making temperature control impossible, and in the worst case, the reaction goes out of control.

また、一度ファウリングを進行させると運転中に付着物
を除去することは困難で、反応器の解体、清掃を行わな
いと正常に回復しない場合が多い。
Furthermore, once fouling has progressed, it is difficult to remove the deposits during operation, and normal recovery is often not possible unless the reactor is dismantled and cleaned.

−gに、スラリー重合では、用いる溶媒中での重合反応
物の融点以下の温度で重合させなければならない、なん
らかの異状発生によってこの限界温度を超えると、粒子
が融解し、管壁に付着する。
-G, in slurry polymerization, polymerization must be carried out at a temperature below the melting point of the polymerization reactant in the solvent used; if this critical temperature is exceeded due to the occurrence of some abnormality, the particles will melt and adhere to the tube wall.

この型のファウリングは重合物の相転移に関係しており
、溶媒と重合生成物の分子量および共重合組成により決
定され、大巾に改善することは不可能である。しかし、
反応器の温度がこの限界温度よりかなり下であってもフ
ァウリングは発生する。
This type of fouling is related to the phase transition of the polymer, is determined by the molecular weight and copolymerization composition of the solvent and polymerization product, and cannot be significantly improved. but,
Fouling will occur even if the reactor temperature is well below this critical temperature.

この現象は反応器中のスラリー濃度が高いほど発生しや
すく、したがって生産量をある水準以上にあげることが
難かしくなる。また、限度一杯の運転をすると、反応器
壁への付着が不連続かつ不均一に起こるので、反応器を
安定に運転することが難しくなる。
This phenomenon occurs more easily as the slurry concentration in the reactor increases, and therefore it becomes difficult to increase production above a certain level. Furthermore, if the reactor is operated at its maximum limit, adhesion to the reactor wall will occur discontinuously and unevenly, making it difficult to operate the reactor stably.

〔従来の技術〕[Conventional technology]

前述の如く、運転、保守の不安全環条(の問題があるフ
ァウリングを防止する技術がいくつか提案されている0
代表例としては9重合容器内に帯電防止剤を存在させる
方法(たとえば、特開昭59−64604号)あるいは
、シリコンオイル存在下で重合する方法(特開昭59−
86608号)等がある。これら公知技術はファウリン
グ防止に対しである程度の効果が認められるものの、そ
のファウリング防止の程度は未だ十分満足できるもので
はない。
As mentioned above, several technologies have been proposed to prevent unsafe operation and maintenance environments (problematic fouling).
Typical examples include a method in which an antistatic agent is present in the polymerization container (for example, JP-A-59-64604), or a method in which polymerization is carried out in the presence of silicone oil (JP-A-59-64604).
86608) etc. Although these known techniques are recognized to be effective to some extent in preventing fouling, the degree of prevention of fouling is still not fully satisfactory.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記公知技術の難点を解決し、オレフ
ィンのスラリー重合におけるファウリングをほぼ完全に
防止する方法を提供するにある。
An object of the present invention is to solve the problems of the above-mentioned known techniques and to provide a method that almost completely prevents fouling in slurry polymerization of olefins.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のオレフィンの重合方法は、チタンとハロゲンを
化合状態で含む固体触媒成分と有機アルミニウム化合物
から得られる触媒系を用いて、少なくとも1種のオレフ
ィンを炭化水素希釈剤中で重合を行う方法において、反
応器内へ多官能性電子供与性化合物を添加しながら重合
を行うことを特徴とする。
The olefin polymerization method of the present invention is a method in which at least one olefin is polymerized in a hydrocarbon diluent using a catalyst system obtained from a solid catalyst component containing titanium and a halogen in a combined state and an organoaluminum compound. , is characterized in that polymerization is carried out while adding a polyfunctional electron-donating compound into the reactor.

本発明によれば、微量の多官能性電子供与性化合物を用
いることにより、触媒の重合活性並びに得られるポリマ
ーの物性等に全く影響を与えることなく、ファウリング
が完全に防止される。その結果、従来ファウリングのた
めに不可能であった高生産性が維持、継続可能になり、
また、ファウリング進行のための運転停止及び反応器の
解体、清掃が不要になり、製造プラントの生産性、経済
性が飛躍的に向上する。
According to the present invention, by using a trace amount of a polyfunctional electron-donating compound, fouling can be completely prevented without affecting the polymerization activity of the catalyst and the physical properties of the resulting polymer. As a result, high productivity, which was previously impossible due to fouling, can be maintained and continued.
In addition, there is no need to shut down the operation and dismantle and clean the reactor due to the progress of fouling, and the productivity and economic efficiency of the manufacturing plant are dramatically improved.

前記の多官能性電子供与性化合物とは、−分子内に電子
供与性基を2ヶ以上含有し、かつ電子供与性基間が、所
謂、不活性基で結合された構造を有する化合物である。
The above-mentioned polyfunctional electron-donating compound is a compound containing two or more electron-donating groups in the molecule and having a structure in which the electron-donating groups are bonded by a so-called inert group. .

不活性基は最短路数で数えて1〜10ケ、好ましくは1
〜6ケの炭素数を有し、各電子供与性基間を結合してい
る炭化水素基もしくはへ口W換炭化水素基である。この
炭素数の多い不活性基は、ファウリング抑止能力が乏し
くなり、さらに沸点が高いため得られるポリマー製品と
の分離が困難になるので好ましくない。
The number of inert groups is 1 to 10, preferably 1, counting the number of shortest paths.
It is a hydrocarbon group or a W-substituted hydrocarbon group having ~6 carbon atoms and bonding each electron-donating group. This inert group having a large number of carbon atoms is not preferable because it has a poor fouling inhibiting ability and has a high boiling point, making it difficult to separate it from the resulting polymer product.

多官能性電子供与性化合物がもつ電子供与性基は活性水
素原子をもつものであってもよいし、活性水素原子をも
たなくともよい、電子供与性基の具体例としては、第1
アミノ基(−NHz)、第2アミノ基(:0−NH) 
、第3アミノ基(ミN)、ニトリル基(−CN) 、イ
ミノ基(ユC=N)、ヒドラゾン(二C”NNHg、 
CH冨NNH*)、ヒドラフェノール性水酸基(−OH
) 、カルボニル基<:C−O> 、カルボキシル基(
−COO−)、エーテル基(−0−) 、ホスホリル基
(二P−0゜2、第3アルキルおよびアリールホスフィ
ン(:1−P−) 、ホスフィンオキシト(ミP=0)
、チオール(−S H)、チオエーテル基(−S−)、
チオニル基(::5=O) 、スルフリル基(=SO,
)、スルホキシ基(−SOx  O−)等を挙げること
ができる。なかでも、第17ミノ基、第27ミノ基、第
3アミノ基、エーテル基、アルコール基、カルボニル基
、チオエーテル基、チオール基が好ましく、とりわけ、
第1アミノ基、第2アミノ基、第37ミノ基、エーテル
基、カルボニル基が特に好ましい。
The electron donating group possessed by the polyfunctional electron donating compound may or may not have an active hydrogen atom. Specific examples of the electron donating group include the first
Amino group (-NHz), secondary amino group (:0-NH)
, tertiary amino group (miN), nitrile group (-CN), imino group (yuC=N), hydrazone (diC''NNHg,
CH TomiNNH*), hydraphenolic hydroxyl group (-OH
), carbonyl group <:C-O>, carboxyl group (
-COO-), ether group (-0-), phosphoryl group (diP-0゜2, tertiary alkyl and arylphosphine (:1-P-), phosphine oxyto (miP=0)
, thiol (-S H), thioether group (-S-),
Thionyl group (::5=O), sulfuryl group (=SO,
), sulfoxy group (-SOx O-), and the like. Among these, 17th mino group, 27th mino group, tertiary amino group, ether group, alcohol group, carbonyl group, thioether group, and thiol group are preferred, and especially,
Particularly preferred are a primary amino group, a secondary amino group, a 37th amino group, an ether group, and a carbonyl group.

多官能性電子供与性化合物の具体例としては、以下のも
のが挙げられる。N、N、N’、N’ −テトラメチル
ジアミノメタン、N、N、N’、N’−テトラメチル−
1,1−ジアミノエタン、エチレンジアミン、ジエチレ
ンテトラミン、トリエチレンテトラミン、テトラエチレ
ンペンタミン、ペンタエチレンへキサミン、N、N、N
’、N’−テトラメチルエチレンジアミン、N−メチル
エチレンジアミン、N、N’−ジメチルエチレンジアミ
ン、トリメチレンジアミン、テトラメチレンジアミン、
ペンタメチレンジアミン、ヘキサメチレンジアミン、ポ
リエチレンイミン(平均分子量300〜100万)、モ
ノエタノールアミン、ジェタノールアミン、トリエタノ
ールアミン、0−エチルエタノールアミン、N−エチル
エタノールアミン、ジエチレングリコール、トリエチレ
ングリコール、ポリエチレングリコール(平均分子fj
1200〜6万)、ポリプロピレングリコール(平均分
子量200〜1万)、エチレングリコールジメチルエー
テル、エチレングリコールジフェニルエーテル、ポリエ
チレングリコールモノラウレート、ポリエチレングリコ
ール−モノ−p−ノニルフェニルエーテル、0−フェニ
レンジアミン、0−アミノフェノール、アセチルアセト
ン、アセドリルアセトン等。
Specific examples of polyfunctional electron-donating compounds include the following. N, N, N', N' -tetramethyldiaminomethane, N, N, N', N'-tetramethyl-
1,1-diaminoethane, ethylenediamine, diethylenetetramine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N, N, N
',N'-tetramethylethylenediamine, N-methylethylenediamine, N,N'-dimethylethylenediamine, trimethylenediamine, tetramethylenediamine,
Pentamethylene diamine, hexamethylene diamine, polyethyleneimine (average molecular weight 3 million to 1 million), monoethanolamine, jetanolamine, triethanolamine, 0-ethylethanolamine, N-ethylethanolamine, diethylene glycol, triethylene glycol, polyethylene Glycol (average molecule fj
1200 to 60,000), polypropylene glycol (average molecular weight 200 to 10,000), ethylene glycol dimethyl ether, ethylene glycol diphenyl ether, polyethylene glycol monolaurate, polyethylene glycol mono-p-nonylphenyl ether, 0-phenylenediamine, 0-amino Phenol, acetylacetone, acetylacetone, etc.

これら多官能性電子供与性化合物を反応器へ添加する方
法としては、純品をそのまま供給添加する方法、非極性
溶媒に溶解させて供給添加する方法、助触媒としての有
機アルミニウム化合物と予I混合した後で供給する方法
、固体触媒成分と予備混合した後で供給する方法のいず
れの方法も採り得るが、効果の安定的発現のためには、
非極性溶媒溶液の形で供給することが望ましい。
These polyfunctional electron-donating compounds can be added to the reactor by feeding and adding the pure product as it is, by dissolving it in a non-polar solvent and then adding it, or by pre-mixing it with an organoaluminum compound as a co-catalyst. Either method can be adopted, such as feeding after mixing with the solid catalyst component, or feeding after premixing with the solid catalyst component, but in order to stably express the effect,
Preferably, it is supplied in the form of a non-polar solvent solution.

非極性溶媒の例としては、炭化水素類、たとえば、ペン
タン、ヘキサン、ヘプタン、オクタン、シクロヘキサン
等の脂肪族炭化水素類およびベンゼン、トルエン、キシ
レン等の芳香族炭化水素類が挙げられる。
Examples of non-polar solvents include hydrocarbons, such as aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, and aromatic hydrocarbons such as benzene, toluene, xylene.

多官能性電子供与性化合物の添加量は、その全官能基モ
ル数と有機アルミニウム化合物のモル数との比が0.0
01〜0.9であることが望ましい。
The amount of the polyfunctional electron-donating compound added is such that the ratio of the number of moles of all functional groups to the number of moles of the organoaluminum compound is 0.0.
It is desirable that it is 01 to 0.9.

この比が0.001未構であるとファウリング防止効果
が不十分となり、また、その比が0.9を趨えると反応
速度を大きく低下させることになり、その結果、得られ
る重合体の固体触媒及び有機アルミニウム化合物残渣が
増加する。また、場合によっては、重合体の物性に悪影
響を及ぼし、好ましくない。
If this ratio is less than 0.001, the fouling prevention effect will be insufficient, and if the ratio exceeds 0.9, the reaction rate will be greatly reduced, and as a result, the resulting polymer Solid catalyst and organoaluminum compound residues increase. Moreover, in some cases, it may adversely affect the physical properties of the polymer, which is not preferable.

触媒系は、チタンとハロゲンを化合状態で含む固体触媒
成分と有機アルミニウム化合物からなる。
The catalyst system consists of a solid catalyst component containing titanium and halogen in a combined state and an organoaluminum compound.

チタンとハロゲンを化合状態で含む固体触媒成分として
は、三塩化チタン、三塩化チタンと塩化アルミニウムの
共晶体およびこれらを電子供与性化合物で処理したもの
、マグネシウムと■価若しくは■価のチタンと塩素を主
成分合計60重量%以上含む複合体が挙げられる。
Solid catalyst components containing titanium and halogen in a combined state include titanium trichloride, a eutectic of titanium trichloride and aluminum chloride, and those treated with an electron-donating compound, magnesium and ■valent or ■valent titanium and chlorine. Examples include composites containing 60% by weight or more of main components.

有機アルミニウム化合物としては下記の一般式で示され
るものが一般に用いられる。
As the organic aluminum compound, those represented by the following general formula are generally used.

AIR’R言R2および R’ R’ Al−0−AIR” R’ここで、Rl、
 RR,R3は炭素数が多くとも14個のアルキル基、
またはアルコキシ基、ハロゲン原子、および水素原子よ
り選ばれるが、それらのうち、少なくとも一個、より好
ましくは二個はアルキル基であり、R4,Rs、 R&
、 R’+は炭素数が多くとも14ケのアルキル基およ
びアルコキシ基である。これら有機アルミニウム化合物
の具体例としては、たとえば、トリエチルアルミニウム
、トリプロピルアルミニウム、トリイソブチルアルミニ
ウム、トリヘキシルアルミニウム、トリオクチルアルミ
ニウム、ジメチルアルミニウムクロリド、ジエチルアル
ミニウムクロリド、ジエチルアルミニウムヒドリド、ジ
エチルアルミニウムエトキシド、エチルアルミニウムセ
スキクロリド、エチルアルミニウムジクロリド、ビス(
ジエチルアルミニウム)オキシド等が挙げられる。
AIR' R word R2 and R'R'Al-0-AIR''R' where Rl,
RR and R3 are alkyl groups having at most 14 carbon atoms,
or an alkoxy group, a halogen atom, and a hydrogen atom, of which at least one, more preferably two, are an alkyl group, R4, Rs, R&
, R'+ is an alkyl group or an alkoxy group having at most 14 carbon atoms. Specific examples of these organoaluminum compounds include triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, dimethylaluminum chloride, diethylaluminium chloride, diethylaluminum hydride, diethylaluminum ethoxide, ethylaluminum sesquichloride, ethylaluminum dichloride, bis(
(diethylaluminum) oxide and the like.

重合系における固体触媒成分(チタン原子として)と有
機アルミニウム化合物の使用割合は、一般には、それぞ
れ0.001乃至1モルおよび多くとも1モルであり、
とりわけ、0.001乃至0.03モルおよび多くとも
0.1モルが好適である。
The proportion of the solid catalyst component (as titanium atoms) and organoaluminum compound used in the polymerization system is generally 0.001 to 1 mol and at most 1 mol each,
Particularly preferred are 0.001 to 0.03 mol and at most 0.1 mol.

以上のようにして得られる触媒系により重合されるオレ
フィンとしては炭素数が多くとも12個のオレフィンが
挙げられる。それらの具体例としては、エチレン、プロ
ピレン、ブテン−1,4−メチルペンテン−11ヘキセ
ン−11オクテン−1等が挙げられる0本発明の実施に
際しては、これらオレフィンを単独重合してもよいし、
二種以上のオレフィンを共重合してもよい本発明の方法
は、オレフィンの中でもオレフィンの少なくとも1種が
エチレンである場合の重合において特に効果が顕著であ
る。
Examples of the olefin polymerized by the catalyst system obtained as described above include olefins having at most 12 carbon atoms. Specific examples thereof include ethylene, propylene, butene-1,4-methylpentene-11hexene-11octene-1, etc. In carrying out the present invention, these olefins may be homopolymerized, or
The method of the present invention, which may copolymerize two or more types of olefins, is particularly effective in polymerizing when at least one of the olefins is ethylene.

重合は、不活性溶媒液相中で重合体が実質的に溶解しな
い方法、所謂、スラリー重合法にて行なわれる。用いる
不活性溶媒としては、イソブタン、ブタン、ペンタン、
ヘキサン、ヘプタン、オクタン、液状パラフィン等の液
状の脂肪族炭化水素類、ベンゼン、トルエン、キシレン
等の芳香族炭化水素類、シクロヘキサン等の脂環族炭化
水素類が挙げられるが、プロピレン、ブテン−11ヘキ
センー1等の原料オレフィン自体も用いられる。これら
の溶媒は単独または、混合溶媒で使用される。
The polymerization is carried out by a method in which the polymer is not substantially dissolved in the liquid phase of an inert solvent, a so-called slurry polymerization method. Inert solvents used include isobutane, butane, pentane,
Examples include liquid aliphatic hydrocarbons such as hexane, heptane, octane, and liquid paraffin, aromatic hydrocarbons such as benzene, toluene, and xylene, and alicyclic hydrocarbons such as cyclohexane. The raw material olefin itself, such as hexene-1, is also used. These solvents may be used alone or in combination.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、オレフtンのスラリー重合にお
ける反応生成物粒子あるいは固体触媒粒子の反応器壁へ
のファウリングを防止することができ、したがってファ
ウリングに起因する攪拌機動力の増加を抑制し、反応器
壁の伝熱係数の低下を防止することができる。
According to the method of the present invention, it is possible to prevent reaction product particles or solid catalyst particles from fouling on the reactor wall in slurry polymerization of oleftane, and therefore to suppress an increase in agitator power due to fouling. However, it is possible to prevent a decrease in the heat transfer coefficient of the reactor wall.

ファウリングが防止されることにより、オレフィンの重
合運転が安定し、反応器の温度制御が容易になり、得ら
れるポリオレフィンの品質安定化が可能になる。また、
従来は反応器のファウリング発生のためスラリー濃度を
あまり大きくとれなかったが、本発明によればファウリ
ングの解消により、スラリー濃度をあげることができ、
同一容積の反応器での生産性が向上する。このように本
発明はポリオレフィンの製造における安全性並びに経済
性に於いて非常に有意義なものである。
By preventing fouling, the olefin polymerization operation becomes stable, the temperature of the reactor can be easily controlled, and the quality of the obtained polyolefin can be stabilized. Also,
Conventionally, it was not possible to increase the slurry concentration due to fouling in the reactor, but according to the present invention, the slurry concentration can be increased by eliminating fouling.
Productivity is improved with a reactor of the same volume. As described above, the present invention is very significant in terms of safety and economy in producing polyolefins.

〔実施例〕〔Example〕

以下、実施例及び比較例について、本発明を具体的に説
明するが、本発明はその要旨をこえないかぎり、以下の
実施例に限定されるものではない。
The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

なお、実施例および比較例において、メルト・インデッ
クス(以下「M!」と言う)はJISに−6760にし
たがい、温度が190℃及び荷重が2.16kgの条件
で測定した。また、ハイ・ロード・メルト・インデック
ス(以下rHLMIJと言う)はJISに−6760に
したがい、温度が190℃及び荷重21.(ikgの条
件で測定した。さらに、密度はJIS K −6760
にしたがって測定した。
In the Examples and Comparative Examples, the melt index (hereinafter referred to as "M!") was measured in accordance with JIS -6760 at a temperature of 190° C. and a load of 2.16 kg. Also, the High Load Melt Index (hereinafter referred to as rHLMIJ) is according to JIS -6760 at a temperature of 190°C and a load of 21. (It was measured under the conditions of ikg. Furthermore, the density was determined according to JIS K-6760
Measured according to.

実施例 l 希釈剤としてn−ヘキサンを用い、無水塩化マグネシウ
ムに四塩化チタンとオキシ三塩化バナジウムを担持した
触媒(チタン含有量7.5重量%、バナジウム含有量6
.3重量%:以下「固体触媒A」という)を調製した。
Example l A catalyst in which titanium tetrachloride and vanadium oxytrichloride were supported on anhydrous magnesium chloride using n-hexane as a diluent (titanium content: 7.5% by weight, vanadium content: 6%)
.. 3% by weight (hereinafter referred to as "solid catalyst A") was prepared.

内容積3001の環状反応器を用い、この固体触媒Aと
トリエチルアルミニウムを反応器に連続供給し、重合溶
媒としてn−ペンタンを用い、水素存在下でエチレンの
連続重合を行った。
This solid catalyst A and triethylaluminum were continuously supplied to the reactor using an annular reactor having an internal volume of 3,000 ml, and ethylene was continuously polymerized in the presence of hydrogen using n-pentane as a polymerization solvent.

重合条件は圧力40 k g / c m ” 、温度
95℃であった。この際、固体触媒Aはn−ヘキサンス
ラリーとしてまた、トリエチルアルミニウムはn−ヘキ
サン溶液として、各々0.618/hr(固体触媒換算
)3.05g/hr ()リエチルアルミニウム換算)
の速度で反応器に連続供給した。
The polymerization conditions were a pressure of 40 kg/cm" and a temperature of 95°C. At this time, solid catalyst A was used as an n-hexane slurry, and triethylaluminum was used as an n-hexane solution at a rate of 0.618/hr (solid (catalyst equivalent) 3.05g/hr () ethylaluminum equivalent)
was continuously fed to the reactor at a rate of .

さらに、反応器のファウリング防止の目的で、キシレン
で希釈したエチレンジアミンをそれとトリエチルアルミ
ニウムとのモル比がl/80になるように反応器に連続
注入した。この際、反応器内スラリー濃度35%の条件
で循環ポンプの攪拌動力は6.5KW、また、反応器壁
の総括伝熱係数Uは 1+520 Kcal 7m” 
 ・h r ・’cであった。
Further, for the purpose of preventing fouling of the reactor, ethylenediamine diluted with xylene was continuously injected into the reactor so that the molar ratio of ethylenediamine and triethylaluminum was 1/80. At this time, under the condition that the slurry concentration in the reactor is 35%, the stirring power of the circulation pump is 6.5KW, and the overall heat transfer coefficient U of the reactor wall is 1+520 Kcal 7m"
・hr ・'c.

また、重合活性は40.000 g / g触媒であり
、エチレンジアミンを添加しない場合と実質的に変化が
なかった。得られた重合体のMlは1.25(g/ 1
0sin)、密度は0.9602 (g/ c c)で
あり、臭い、着色並びに実用物性について無添加品との
差異は全く認められなかった。
Furthermore, the polymerization activity was 40.000 g/g catalyst, which was substantially unchanged from the case where ethylenediamine was not added. The Ml of the obtained polymer was 1.25 (g/1
0 sin), and the density was 0.9602 (g/cc), and no difference was observed in odor, coloring, or practical physical properties from the additive-free product.

同一温度、圧力条件下で反応器内の水素/エチレン濃度
比を変化させ、HLMIO,IQからM2SO4までの
重合体を製造すべく30日間連続運転したところ、重合
体のMl  (HLMI)によらず循環ポンプの攪拌動
力の上昇並びに総括伝熱係数の低下は全くみられず、重
合運転は非常に安定であり、連続運転に支障をきたすこ
となく、31.7kg/hrでポリエチレンを生産する
ことができた。30日間連続運転でのファウリングの有
無を確認すべく、反応器を解体し、内部点検したところ
、反応器壁は重合開始前と全く変らず、ファウリングの
痕跡はみられなかった。
When the hydrogen/ethylene concentration ratio in the reactor was varied under the same temperature and pressure conditions and continuous operation was performed for 30 days to produce polymers ranging from HLMIO, IQ to M2SO4, it was found that regardless of the Ml (HLMI) of the polymers, There was no increase in the stirring power of the circulation pump or any decrease in the overall heat transfer coefficient, and the polymerization operation was extremely stable, making it possible to produce polyethylene at a rate of 31.7 kg/hr without hindrance to continuous operation. did it. When the reactor was dismantled and internally inspected to confirm the presence of fouling after 30 days of continuous operation, the reactor wall was completely unchanged from before the start of polymerization, and no traces of fouling were observed.

比較例 1 実施例1と同一の反応器を用い、同一触媒、同一重合条
件で、エチレンジアミンを添加せずにエチレンの連続重
合を行った。
Comparative Example 1 Using the same reactor as in Example 1, continuous polymerization of ethylene was carried out using the same catalyst and under the same polymerization conditions without adding ethylenediamine.

この際、反応器内スラリー濃度35%の条件で循環ポン
プの攪拌動力は?、IKW、また、総括伝熱係数は1.
385 Kcal 7m”  ・h r ・’Cであっ
た。
At this time, what is the stirring power of the circulation pump when the slurry concentration in the reactor is 35%? , IKW, and the overall heat transfer coefficient is 1.
It was 385 Kcal 7m"・hr・'C.

その後、循環ポンプの攪拌動力の上昇、総括伝熱係数の
低下のため、スラリー濃度の35%は維持不可能となり
、スラリー濃度を漸次低下させるべく、エチレン供給量
を低下させたが、連続運転10日0で、重合温度の制御
不能になり、人為的に重合運転を停止した。
After that, due to an increase in the stirring power of the circulation pump and a decrease in the overall heat transfer coefficient, it became impossible to maintain a slurry concentration of 35%, so in order to gradually reduce the slurry concentration, the ethylene supply rate was reduced, but continuous operation On day 0, the polymerization temperature became uncontrollable and the polymerization operation was artificially stopped.

重合運転停止後、反応器を解体、点検したところ反応器
壁全面にポリマーのファウリングがみられた。
After the polymerization operation was stopped, the reactor was dismantled and inspected, and polymer fouling was found all over the reactor wall.

実施例 2〜4 実施例1と同一の反応器を用い、同一の触媒、同一の重
合条件で、エチレンジアミンの添加量を変化させて、エ
チレンの連続重合を行った。結果を表1に示す。
Examples 2 to 4 Using the same reactor as in Example 1, continuous polymerization of ethylene was carried out using the same catalyst and under the same polymerization conditions, varying the amount of ethylenediamine added. The results are shown in Table 1.

以下余r 実施例 5〜8 実施例1と同一の反応器を用い、同一の触媒、キ衾キ嘲
1 / g Qになるように反応器に連続注入し、エチ
レンの連続重合を行った。結果を表2に示す。
Examples 5 to 8 Using the same reactor as in Example 1, continuous polymerization of ethylene was carried out by continuously injecting the same catalyst into the reactor at a rate of 1/g Q. The results are shown in Table 2.

以下余白 実施例 9 無水塩化マグネシウムとAA型三塩化チタンを振動ボー
ルミルの容器(ステンレス型、円筒型、内容積ioo 
x 、直径が20mmのステンレス製ボールを見掛は容
積で70%充填)に入れ、振幅10m m 、振動数1
200op−の振動ボールミルに取付け48時間共粉砕
を行い、均−状の共粉砕物を得た。
Example 9 with blank spaces below
x, a stainless steel ball with a diameter of 20 mm is placed in a container (apparently 70% filled by volume), the amplitude is 10 mm, and the frequency is 1.
The mixture was attached to a 200-op vibrating ball mill and co-pulverized for 48 hours to obtain a uniform co-pulverized product.

(以下、「固体触媒B」という。)この固体触媒B中の
チタン含有量は6.5重量%であった。実施例1と同一
の反応器を用い、この固体触媒Bとを機アルミニウムと
してジエチルアルミニウムクロリドを反応器に連続供給
し、重合溶媒としてn −ペンタンを用い、水素存在下
でエチレンとブテン−1との連続重合を行った。
(Hereinafter, referred to as "solid catalyst B.") The titanium content in this solid catalyst B was 6.5% by weight. Using the same reactor as in Example 1, using this solid catalyst B as aluminum, diethylaluminum chloride was continuously fed into the reactor, and n-pentane was used as the polymerization solvent to react with ethylene and butene-1 in the presence of hydrogen. Continuous polymerization was carried out.

重合条件は圧力40kg/cm”、温度75℃であった
。この際一固体触媒Bはn−ヘキサンスラリーとして、
また、ジエチルアルミニウムクロリドはn−ヘキサン溶
液として、各々0.68g/hr(固体触媒換算)、3
.lOg/hr(ジエチルアルミニウムクロリド換算)
の速度で反応器に連続供給した。
The polymerization conditions were a pressure of 40 kg/cm" and a temperature of 75°C. At this time, one solid catalyst B was prepared as an n-hexane slurry.
In addition, diethylaluminium chloride was used as an n-hexane solution at 0.68 g/hr (in terms of solid catalyst) and 3
.. lOg/hr (diethyl aluminum chloride equivalent)
was continuously fed to the reactor at a rate of .

さらに、反応器のファウリング防止の目的でトルエンで
希釈したジェタノールアミンをそれとジエチルアルミニ
ウムクロリドとのモル比で1/40になるように反応器
に連続注入した。この際、反応器内スラリー濃度35%
の条件で循環ポンプの攪拌動力は6.7KW、また反応
器壁の総括伝熱係数は1+520 Kcal /m” 
 ・h r ・’Cであった。
Furthermore, in order to prevent fouling of the reactor, jetanolamine diluted with toluene was continuously injected into the reactor at a molar ratio of 1/40 to diethylaluminium chloride. At this time, the slurry concentration in the reactor was 35%.
Under these conditions, the stirring power of the circulation pump is 6.7 KW, and the overall heat transfer coefficient of the reactor wall is 1+520 Kcal/m"
・hr ・'C.

また、重合活性は35.800 g / g触媒であり
、ジェタノールアミンを添加しない場合と実質的に変化
がなかった。得られた重合体のMlは5.12(g/ 
10sin)、密度は0.9415 (g/c c)で
あり、臭い、着色、並びに実用物性について無添加品と
の差異は全く認められなかった。
In addition, the polymerization activity was 35.800 g/g catalyst, which was substantially unchanged from the case where no jetanolamine was added. The Ml of the obtained polymer was 5.12 (g/
10 sin), and the density was 0.9415 (g/cc), and no difference was observed in odor, coloring, or practical physical properties from the additive-free product.

同一条件下で30日間連続運転したところ、循環ポンプ
の攪拌動力及び総括伝熱係数は連続運転中はぼ一定であ
った。その結果、重合運転は非常に安定であり、連続運
転に支障をきたすことなく、32、2 k g / h
 rでポリエチレンを生産することができた。
When the system was operated continuously for 30 days under the same conditions, the stirring power and overall heat transfer coefficient of the circulation pump remained almost constant during the continuous operation. As a result, the polymerization operation is very stable, with a speed of 32,2 kg/h without any hindrance to continuous operation.
It was possible to produce polyethylene using r.

実施例 lO〜13 実施例9と同一の反応器、同一の触媒を用い、同一温度
、圧力条件下で、反応器内の水素/エチレン濃度比並び
にブテン−I/エチレン濃度比を変化させて、連続重合
を行った。結果を表3に示す。
Examples 10 to 13 Using the same reactor and the same catalyst as in Example 9, changing the hydrogen/ethylene concentration ratio and the butene-I/ethylene concentration ratio in the reactor under the same temperature and pressure conditions, Continuous polymerization was performed. The results are shown in Table 3.

以下余白 実施例 14〜17 実施例9と同一の反応器、同一の触媒を用い、同一圧力
条件下で温度、反応器内の水素/エチレン濃度比並びに
用いるα−オレフィンの種類をプロピレン、ヘキセン−
14−メチルペンテン−1と変え、エチレンとの連続共
重合を行った。結果を表4に示す。
Examples 14 to 17 in the blank space below: Using the same reactor and the same catalyst as in Example 9, the temperature, hydrogen/ethylene concentration ratio in the reactor, and type of α-olefin used were changed to propylene, hexene, etc. under the same pressure conditions.
Continuous copolymerization with ethylene was performed in place of 14-methylpentene-1. The results are shown in Table 4.

以下余伯 実施例 18〜19 無水塩化マグネシウムを実施例9と同様の振動ボールミ
ルを用い、同様の条件下で12時間粉砕し、均一状の粉
砕物を得た。この粉砕物に希釈剤としてトルエンを用い
、テトラ−n−ブトキシチタンとテトラ−n−ブトキシ
ジルコニウムを担持した後、エチルアルミニウムセスキ
クロリドで還元し、触媒(チタン含有量7.8重量%、
ジルコニウム含有量5.7重量%、以下、「固体触媒C
」という、)を調製した。
Below are Yohaku Examples 18 to 19 Anhydrous magnesium chloride was pulverized for 12 hours under the same conditions using the same vibrating ball mill as in Example 9 to obtain a homogeneous pulverized product. This pulverized material was loaded with tetra-n-butoxytitanium and tetra-n-butoxyzirconium using toluene as a diluent, and then reduced with ethylaluminum sesquichloride, and the catalyst (titanium content: 7.8% by weight,
Zirconium content: 5.7% by weight, hereinafter referred to as "solid catalyst C"
) was prepared.

実施例1と同様の反応器を用い、この固体触媒Cと有機
アルミニウムとしてトリエチルアルミニウムを反応器に
連続供給し、さらに、ファウリング防止の目的でキシレ
ンで希釈したエチレンジアミンをそれとトリエチルアル
ミニウムとのモル比で1/40になるように反応器に連
続注入し、重合溶媒としてn−ペンタンを用い、エチレ
ンとブテン−1との連続共重合を行った。
Using the same reactor as in Example 1, this solid catalyst C and triethylaluminum as organic aluminum were continuously supplied to the reactor, and ethylenediamine diluted with xylene was added to the reactor to prevent fouling, and the molar ratio between it and triethylaluminum was adjusted. The amount of ethylene and butene-1 was continuously injected into the reactor to be 1/40, and n-pentane was used as a polymerization solvent to carry out continuous copolymerization of ethylene and butene-1.

重合条件は、圧力49kg/cm”、温度90℃であっ
た。この際、固体触媒Cはn−へキサンスラリーとして
、また、トリエチルアルミニウムはn−へキサン溶液と
して、各々1.53 g / h r(固体触媒換算)
 、3.22g/hr (トリエチルアルミニウム換算
)の速度で反応器に連続供給した。この際、反応器内ス
ラリー濃度35%の条件で循環ポンプの攪拌動力は6.
4KW、また、反応器壁の総括伝熱係数は1.530 
Kcal /m” ・h r ・℃であった。また、重
合活性は、15.550 g / g触媒であり、エチ
レンジアミンを添加しない場合と、実質的に変化がなか
った。得られた重合体のMlは、45.23(g / 
105in)、密度は、0.9464 (g /cc)
であり、臭い、着色、並びに実用物性について無添加と
の差異は全く認められなかった。
The polymerization conditions were a pressure of 49 kg/cm'' and a temperature of 90°C.At this time, solid catalyst C was used as an n-hexane slurry, and triethylaluminum was used as an n-hexane solution, each at a rate of 1.53 g/h. r (solid catalyst equivalent)
, 3.22 g/hr (in terms of triethylaluminum). At this time, the stirring power of the circulation pump was 6.5% under the condition that the slurry concentration in the reactor was 35%.
4KW, and the overall heat transfer coefficient of the reactor wall is 1.530
The polymerization activity was 15.550 g/g catalyst, which was essentially the same as when no ethylenediamine was added. Ml is 45.23 (g/
105in), density is 0.9464 (g/cc)
No difference was observed in terms of odor, coloration, or practical physical properties compared to the case without additives.

同一圧力、温度条件下で、反応器内のブテン−l/エチ
レン濃度比及び水素/エチレン濃度比を変化させ、Ml
が0.08から100、密度が0.920から0.96
0までの重合体を得るべく30日間連続運転したところ
、循環ポンプの攪拌動力及び総括伝熱係数は連続運転中
はぼ一定であった。その結果、重合運転は非常に安定で
あり、連続運転に支障をきたすことなく、30.8 k
 g / h rでポリエチレンを生産できた。
Under the same pressure and temperature conditions, the butene-l/ethylene concentration ratio and hydrogen/ethylene concentration ratio in the reactor were changed, and Ml
is 0.08 to 100, density is 0.920 to 0.96
When the system was operated continuously for 30 days to obtain a polymer with a temperature of 0.0, the stirring power of the circulation pump and the overall heat transfer coefficient remained almost constant during the continuous operation. As a result, the polymerization operation is very stable, with continuous operation up to 30.8 k without any hindrance.
It was possible to produce polyethylene at g/hr.

Claims (1)

【特許請求の範囲】 1、チタンとハロゲンを化合状態で含む固体触媒成分と
有機アルミニウム化合物から得られる触媒系を用いて、
少なくとも1種のオレフィンを炭化水素希釈剤中で重合
を行う方法において、反応器内へ多官能性電子供与性化
合物を添加しながら重合を行うことを特徴とするオレフ
ィンの重合方法。 2、多官能性電子供与性化合物の添加量が、有機アルミ
ニウム化合物に対して、全官能基モル数/有機アルミニ
ウム化合物モル数=0.001〜0.9である特許請求
の範囲第1項記載の方法。 3、少なくとも1種のオレフィンがエチレンである特許
請求の範囲第1項記載の方法。
[Claims] 1. Using a catalyst system obtained from a solid catalyst component containing titanium and halogen in a combined state and an organoaluminum compound,
A method for polymerizing at least one olefin in a hydrocarbon diluent, the method comprising polymerizing while adding a polyfunctional electron-donating compound into a reactor. 2. Claim 1, wherein the amount of the polyfunctional electron-donating compound added is 0.001 to 0.9 (number of moles of total functional groups/number of moles of organoaluminum compound) with respect to the organoaluminum compound. the method of. 3. The method according to claim 1, wherein the at least one olefin is ethylene.
JP27871386A 1986-11-25 1986-11-25 Polymerization method of ethylene Expired - Lifetime JPH0764893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27871386A JPH0764893B2 (en) 1986-11-25 1986-11-25 Polymerization method of ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27871386A JPH0764893B2 (en) 1986-11-25 1986-11-25 Polymerization method of ethylene

Publications (2)

Publication Number Publication Date
JPS63132905A true JPS63132905A (en) 1988-06-04
JPH0764893B2 JPH0764893B2 (en) 1995-07-12

Family

ID=17601153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27871386A Expired - Lifetime JPH0764893B2 (en) 1986-11-25 1986-11-25 Polymerization method of ethylene

Country Status (1)

Country Link
JP (1) JPH0764893B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362808A (en) * 1989-08-01 1991-03-18 Tonen Corp Catalyst for polymerizing styrenic compound
JPH0362806A (en) * 1989-08-01 1991-03-18 Tonen Corp Catalyst for polymerizing olefin
EP0653443A1 (en) * 1993-11-04 1995-05-17 SOLVAY (Société Anonyme) Catalyst system for the polymerization of alpha-olefins and process for this polymerization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362808A (en) * 1989-08-01 1991-03-18 Tonen Corp Catalyst for polymerizing styrenic compound
JPH0362806A (en) * 1989-08-01 1991-03-18 Tonen Corp Catalyst for polymerizing olefin
EP0653443A1 (en) * 1993-11-04 1995-05-17 SOLVAY (Société Anonyme) Catalyst system for the polymerization of alpha-olefins and process for this polymerization

Also Published As

Publication number Publication date
JPH0764893B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
CA1189246A (en) Method for the preparation of non-crystalline polymers of high molecular weight
KR100415699B1 (en) Methods for preventing contamination and seating in gas phase reactors
EP0799248B1 (en) Method for preventing fouling in polymerization reactors
US5032652A (en) Supported vanadium catalyst for polymerization olefins and a process of preparing and use the same
EP1515998B1 (en) Liquid phase process for the polymerization of alpha-olefins
TW201638117A (en) ZIEGLER-NATTA catalyst and preparation thereof
EP0280352B1 (en) Process for high-temperature (co)polymerization of ethylene
JPH062776B2 (en) Method for producing ultra high molecular weight polyethylene
JP2006521455A (en) Mineral oil-based chromium catalyst for polyethylene production
SK46393A3 (en) Method of polymerization of olefins and block copolymers derived from one oplefin at least
JPH0699507B2 (en) Catalyst component and polymerization catalyst system
JPS63230710A (en) Catalyst system for polymerizing or copolymerizing ethylene, its production, ethylene polymerizing or copolymerizing method, obtained polymer and article composed of said polymer
JPS59138206A (en) Manufacture of catalyst for olefin polymerization and olefinpolymerization
US4331791A (en) Polymerization process using high molecular weight epoxides
JPS63132905A (en) Polymerization of olefin
KR890002926B1 (en) Novel catalyst and method for producing olefin polymers
WO2018114347A1 (en) Ziegler-natta catalyst and preparation thereof
JP2007514026A (en) Liquid phase method for the polymerization of olefins.
CA1225500A (en) Ethylene polymerization catalyst and (co)polymerization of ethylene using said catalyst
JPS5834811A (en) Polymerization of ethylene
US4525551A (en) Highly active and efficient polyolefin catalyst
US4412939A (en) Reaction products of transition metal compounds and boron compounds and catalysts prepared therefrom
CN109422827A (en) Major catalyst component, preparation method and catalyst system for solwution method vinyl polymerization
US5122493A (en) Catalyst for olefinic hydrocarbon polymerization and process for producing olefinic hydrocarbon polymer
US5191041A (en) Catalyst for olefinic hydrocarbon polymerization and process and producing olefinic hydrocarbon polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term