JPS63132785A - Electron beam welding method - Google Patents

Electron beam welding method

Info

Publication number
JPS63132785A
JPS63132785A JP28035686A JP28035686A JPS63132785A JP S63132785 A JPS63132785 A JP S63132785A JP 28035686 A JP28035686 A JP 28035686A JP 28035686 A JP28035686 A JP 28035686A JP S63132785 A JPS63132785 A JP S63132785A
Authority
JP
Japan
Prior art keywords
beam current
welding
transmitted beam
target
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28035686A
Other languages
Japanese (ja)
Inventor
Toshiichi Murayama
村山 敏一
Minoru Yamada
実 山田
Masahiro Yuki
正弘 結城
Shinichi Tanioka
谷岡 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP28035686A priority Critical patent/JPS63132785A/en
Publication of JPS63132785A publication Critical patent/JPS63132785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To uniformize the quantity of shrinkage in the axial direction by maintaining a target transmitted beam current to the difference between the target transmitted beam current and a stored transmitted beam current after cylindrical bodies make a round around the circumference and return to the original position. CONSTITUTION:A command of an incident beam IIN corresponding to the target transmitted beam current I'OUT(S) is given from a controller 18 to a electron beam welding machine 6 and the incident beam current IIN is applied from the electron beam welding machine 6 to a joint part and the welding is performed. Since a transmitted beam current IOUT is not generated for a while at the time of starting the welding, even if the cylindrical bodies 1 and 2 make a round and return to the position K=1 in the peripheral direction, for a while, a signal of I'OUT(S)=IOUT(S) is given to the controller 18 and the transmitted beam current IOUT is controlled to a fixed value. The welding is performed while being controlled so as to attain the target transmitted beam current I'OUT(S) after subtracting the transmitted beam current at the time of starting the welding from the target transmitted beam current in case the welding is performed properly from the position where the transmitted beam current starts to rise.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は円筒体の軸線方向収縮量が円筒体円周方向の何
れの位置においても均一になるようにした電子ビーム溶
接方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electron beam welding method in which the amount of axial contraction of a cylindrical body is made uniform at any position in the circumferential direction of the cylindrical body. .

[従来の技術] 従来の電子ビーム溶接方法を第6図及び第7図により説
明すると、同一半径のパイプ或いは中空ドラム等の円筒
体1.2の端部同志を当接し、円筒体1.2或いは電子
ビーム4の一方又は双方を、円筒体1.2の軸線を中心
に基準となるO@の位置を溶接開始点として回転させな
がら、継手部分3の全周面を電子ビーム4により溶接す
る。5は溶接ビードである。
[Prior Art] A conventional electron beam welding method will be explained with reference to FIGS. 6 and 7. The ends of cylindrical bodies 1.2 such as pipes or hollow drums having the same radius are brought into contact with each other, and the cylindrical bodies 1.2 Alternatively, the entire circumferential surface of the joint portion 3 is welded by the electron beam 4 while rotating one or both of the electron beams 4 about the axis of the cylindrical body 1.2 using the reference position O@ as the welding start point. . 5 is a weld bead.

上述の電子ビーム溶接の際の円筒体1.2の継手部分3
の円周方向位置(角度)と入射ビーム電流の関係を第6
図により説明すると、溶接開始時には、円筒体1.2を
回転させつつ継手部分3へ投射される入射ビーム電流を
定常値(部材内周部まで完全な溶接が可能な所定の値)
になるまで徐々に上昇させ、定常値になったら以後は一
定の入射電流で円筒体1.2全周の溶接を行い、溶接開
始時に入射ビーム電流が定常値になった角度から成る角
度θだけ先の角度まで部分的にオーバーラツプさせて定
常値の入射ビーム電流により溶接を行い、しかる後、入
射ビーム電流零まで徐々に下降させて溶接を終了する。
Joint part 3 of cylindrical body 1.2 during the above-mentioned electron beam welding
The relationship between the circumferential position (angle) and the incident beam current is expressed as
To explain with a diagram, at the start of welding, the incident beam current projected to the joint part 3 while rotating the cylindrical body 1.2 is set at a steady value (a predetermined value that allows complete welding to the inner circumference of the member).
When it reaches a steady value, weld the entire circumference of the cylinder 1.2 with a constant incident current, and only the angle θ is formed by the angle at which the incident beam current reaches a steady value at the start of welding. Welding is performed using a steady-state incident beam current with partial overlap up to the previous angle, and then the incident beam current is gradually lowered to zero to complete welding.

上述のように溶接すると、円筒体1.2は定常値の入射
ビーム電流で溶接した部分はもとより溶接開始時に徐々
に上昇している入射ビーム電流で溶接を行った部分も内
面側まで健全な裏ビードが形成され、完全な溶接が行わ
れる。
When welding is performed as described above, the cylinder 1.2 will have a healthy back surface even on the inner surface, not only in the part welded with a steady-state incident beam current, but also in the part welded with an incident beam current that gradually increases at the start of welding. A bead is formed and a complete weld is made.

[発明か解決しようとする問題点コ しかしながら、上記従来の電子ビーム溶接方法では、継
手の全周面に健全な裏ビードが形成される完全な溶接を
行うために、入射ビーム電流定常値で溶接を行う部分を
一部オーバーラップしており、該オーバーラツプ部分は
周面の他の部分に比べて入熱量が多くなる。従って溶接
後の円筒体1.2の軸線方向の熱収縮量はオーバーラツ
プ部分が他の部分より大きく (第5図の線B)、溶接
した円筒体1.2はオーバーラツプ部分を基準として屈
曲してしまう。
[Problems to be solved by the invention] However, in the conventional electron beam welding method described above, in order to perform complete welding in which a healthy back bead is formed on the entire circumference of the joint, welding is performed at a steady value of the incident beam current. The portions where this occurs partially overlap, and the amount of heat input is greater in the overlapped portions than in other portions of the circumferential surface. Therefore, the amount of heat shrinkage in the axial direction of the cylindrical body 1.2 after welding is larger in the overlap part than in other parts (line B in Fig. 5), and the welded cylindrical body 1.2 is bent with the overlap part as a reference. Put it away.

本発明は上述の実情に鑑み、継手の全周面を完全に溶接
すると共に、溶接後の収縮による円筒体の屈曲を防止し
得るようにした電子ビーム溶接方法を提供することを目
的とするものである。
In view of the above-mentioned circumstances, an object of the present invention is to provide an electron beam welding method that completely welds the entire circumferential surface of a joint and prevents bending of the cylindrical body due to contraction after welding. It is.

[問題点を解決するための手段] 本発明は、2つの円筒体の端面を対向させ該対向部全周
を、溶接機と円筒体を相対的に円周方向へ移動させつつ
電子ビームにより溶接する電子ビーム溶接方法において
、溶接開始時に、溶接機から投射されるビーム電流を徐
々に上昇させ、円筒体継手部分を通って溶接機の配設さ
れてない側へ透過する透過ビーム電流を円筒体円周方向
位置に対応して記憶器に記憶させ、前記透過ビーム電流
が予め求めておいた適正な溶接のできる目標透過ビーム
電流になったら該目標透過ビーム電流を一定に保持して
円筒体の円周方向の溶接を行い、溶接が一周して前記溶
接開始時の透過ビーム電流が零でない位置まで来たら、
以降の目標透過ビーム電流を前記適正な溶接のできる目
標透過ビーム電流と前記記憶させておいた透過ビーム電
流の差になるよう溶接する構成としている。
[Means for Solving the Problems] The present invention involves making the end surfaces of two cylindrical bodies face each other and welding the entire circumferences of the facing parts with an electron beam while moving the welding machine and the cylindrical bodies relatively in the circumferential direction. In the electron beam welding method, at the start of welding, the beam current projected from the welding machine is gradually increased, and the transmitted beam current that passes through the cylindrical body joint part to the side where the welding machine is not installed is applied to the cylindrical body. When the transmitted beam current reaches a predetermined target transmitted beam current that enables proper welding, the target transmitted beam current is held constant and the cylindrical body is Perform welding in the circumferential direction, and when the welding completes one revolution and reaches a position where the transmitted beam current at the start of welding is not zero,
Welding is performed so that the subsequent target transmitted beam current becomes the difference between the target transmitted beam current that enables proper welding and the stored transmitted beam current.

[作   用] ビーム電流を徐々に上昇させつつ電子ビーム溶接を開始
したら、継手部分を透過する透過ビーム電流と円筒体の
円周方向位置が記憶器に記憶され、透過ビーム電流が予
め求めておいた適正な溶接のできる目標透過ビーム電流
になったら以降はこれを一定に保持して溶接が行われ、
−周して元の位置まで戻ったら以降は目標透過ビーム電
流を前記目標透過ビーム電流と記憶されていた透過ビー
ム電流の差に保持して溶接が行われる。従って、円筒体
への入熱量は円筒体円周方向の何れの位置でも略等しく
なり、軸線方向収縮量も略均−になる。
[Function] When electron beam welding is started while gradually increasing the beam current, the transmitted beam current passing through the joint and the circumferential position of the cylinder are stored in the memory, and the transmitted beam current is calculated in advance. Once the target transmitted beam current reaches the target that allows for proper welding, welding is performed while keeping this constant.
- Once the target transmitted beam current returns to the original position, welding is performed while maintaining the target transmitted beam current at the difference between the target transmitted beam current and the stored transmitted beam current. Therefore, the amount of heat input to the cylindrical body is approximately equal at any position in the circumferential direction of the cylindrical body, and the amount of contraction in the axial direction is also approximately equal.

[実 施 例] 以下、本発明の実施例を添付図面を参照しつつ説明する
[Example] Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図及び第2図は本発明の一実施例で、図中6は円筒
体1.2の継手部分3を溶接する電子ビーム溶接機、7
は円筒体1,2を支持すると共に円筒体1.2を回転す
るための駆動ローラ、8は駆動ローラ7に接続され円筒
体1.2の円周方向位置(角度)を検出する位置検出器
、9は電子ビーム溶接機6から投射され継手部分3へ入
った入射ビーム電流■INのうち継手部分3を通って円
筒体1.2の内周側へ透過した透過ビーム電流!。、1
を検出するための透過ビーム電流検出器、IOは測定し
た透過ビーム電流を成る時間で平均化するための信号処
理装置、11は溶接開始時透過ビーム電流I。U、が目
標値(後述の目標透過ビーム電流■。UT(S))にな
るまで入射ビーム電流IINを徐々に上昇させて行く際
に、位置検出器8で検出した円筒体1.2の円周方向位
IK−1,2,3,・・・、nと透過ビーム電流検出器
9で検出した円周方向位置に対応した位置での透過ビー
ム電流■   を記憶させる記憶0UT(K) 器、12は予め実験等で求めておいた適正な溶接ができ
る目標透過ビーム電流I   を設定すOUT (S) るための設定器、13は信号処理装置lOから与えられ
た透過ビーム電流■。、1と設定器12により設定され
た目標透過ビーム電流I   とを比OUT (S) 較し、透過ビーム電流偏差を求める演算器、14は記憶
器11から与えられた透過ビーム電流’ 0UT(K)
と設定器12により設定された目標透過ビーム電流! 
  とを比較し溶接終了時にビOUT (S) 一ム電流を徐々に下降させる際に必要な目標透過ビーム
電流I′   を求める演算器、15は0UT(S) 位置検出器8で検出された円筒体1.2の円周方向位置
により切換えられ並列接続された接点16゜17に対し
オン、オフし得るようにした切換えスイッチ、18は演
算器13からの透過ビーム電流信号に対応した入射ビー
ム電流■INを求め電子ビーム溶接機6から投射される
電子ビームの入射ビーム電流■INを制御する制御器で
ある。
1 and 2 show an embodiment of the present invention, in which 6 is an electron beam welder for welding the joint portion 3 of the cylindrical body 1.2;
8 is a drive roller that supports the cylindrical bodies 1 and 2 and rotates the cylindrical body 1.2, and 8 is a position detector that is connected to the drive roller 7 and detects the position (angle) in the circumferential direction of the cylindrical body 1.2. , 9 is the transmitted beam current transmitted through the joint part 3 to the inner circumferential side of the cylindrical body 1.2 out of the incident beam current ■IN projected from the electron beam welding machine 6 and entering the joint part 3! . ,1
IO is a signal processing device for averaging the measured transmitted beam current over time; 11 is the transmitted beam current I at the start of welding; The circle of the cylindrical body 1.2 detected by the position detector 8 when the incident beam current IIN is gradually increased until U reaches the target value (target transmitted beam current ■.UT(S) described later). A memory 0UT(K) for storing the circumferential positions IK-1, 2, 3, . . . n and the transmitted beam current at a position corresponding to the circumferential position detected by the transmitted beam current detector 9; Reference numeral 12 indicates a setting device for setting a target transmitted beam current I which has been determined in advance through experiments or the like and allows proper welding, and 13 indicates a transmitted beam current given from the signal processing device IO. , 1 and the target transmitted beam current I set by the setting device 12, OUT (S), and calculate the transmitted beam current deviation. )
and the target transmitted beam current set by the setting device 12!
15 is 0UT (S).The cylinder detected by the position detector 8 is A switch 1.2 is configured to turn on and off contacts 16 and 17 connected in parallel depending on the position in the circumferential direction of the body 1.2, and 18 is an incident beam current corresponding to the transmitted beam current signal from the calculator 13. This is a controller that determines (1)IN and controls the incident beam current (2)IN of the electron beam projected from the electron beam welding machine 6.

溶接開始時には、切換えスイッチ15は接点IBに対し
オンになり、接点17に対してはオフになっているため
、設定器12と演算器13か接続状態にあり、設定器1
2及び演算器14と演算器13は遮断状態にある。
At the start of welding, the changeover switch 15 is turned on to the contact IB and turned off to the contact 17, so the setting device 12 and the computing device 13 are connected, and the setting device 1
2, the arithmetic unit 14, and the arithmetic unit 13 are in a cutoff state.

設定器12により適正な溶接を行うに必要な目標透過ビ
ーム電流工   を演算器13に与え、0UT(S) 駆動ローラ7を駆動して円筒体1.2を回転させ、溶接
を開始すると、演算器13からは制御器18へ目標透過
ビーム電流!   が加えられ、制御0UT(S) 器18では目標透過ビーム電流■   に対応し0UT
(S) た入射ビーム電流IINが求められ、制御器18から入
射ビーム電流■INの指令が電子ビーム溶接機6へ与え
られ、電子ビーム溶接機6から投射されて継手部分3に
入射される入射ビーム電流■INは、徐々に上昇して行
く (第3図(イ)参照)。
The setter 12 gives the target transmission beam current required for proper welding to the calculator 13, and when the 0UT(S) drive roller 7 is driven to rotate the cylindrical body 1.2 and welding is started, the calculation is performed. The target transmitted beam current is sent from the device 13 to the controller 18! is added, and the control 0UT(S) unit 18 sets 0UT corresponding to the target transmitted beam current.
(S) The incident beam current IIN is determined, and a command for the incident beam current IIN is given to the electron beam welding machine 6 from the controller 18, and the incident beam projected from the electron beam welding machine 6 and incident on the joint portion 3 is The beam current ■IN gradually rises (see Figure 3 (a)).

入射ビーム電流■INを徐々に上昇させて行くと、第3
図(ロ)に示すように、継手部分3を透過した透過ビー
ム電流■。8.は成る時間遅れをもって徐々に上昇を開
始する。この透過ビーム電流■。、1は透過ビーム電流
検出器9で円筒体l。
As the incident beam current ■IN is gradually increased, the third
As shown in figure (b), the transmitted beam current ■ transmitted through the joint part 3. 8. It starts to rise gradually with a time delay. This transmitted beam current ■. , 1 is a transmitted beam current detector 9 and a cylindrical body l.

2の円周方向位置に−1,2,3,・・・、nに対応し
検出されて信号処理装置lOで平均化され、演算器13
ヘフイードバツクされ、演算器13で透過ビーム電流差
が求められる。而して、透過ビーム電流差が零になると
、すなわち透過ビーム電流■  が目標透過ビーム電流
I   になOUT            OUT 
(S)ると、以降は透過ビーム電流I。U、と目標透過
ビーム電流I   の偏差が零になるよう制御0UT(
S) 器18により入射ビーム電流IINの制御器いては透過
ビーム電流I。Uアの一定値制御が行われる(第3図0
)(ロ)参照)。
-1, 2, 3, .
The transmitted beam current difference is determined by the arithmetic unit 13. Therefore, when the transmitted beam current difference becomes zero, that is, the transmitted beam current ■ becomes the target transmitted beam current I OUT OUT
(S) Then, from now on, the transmitted beam current I. Control 0UT(
S) A controller 18 controls the incident beam current IIN and the transmitted beam current I. Constant value control of Ua is performed (Fig. 3 0)
) (see b)).

一方、上述のように、入射ビーム電流’INを徐々に上
昇させて行く際には、位置検出器8により検出した円筒
体1.2の円周方向位置に−1゜2.3.−、nと該円
周方向位置に−1,2゜3、・・・、nに対応して透過
ビーム電流検出器9で検出され信号処理装置10で平均
化された透過ビーム電流1oUT(K)(K−1,2,
3,−・・、n)は記憶器11に記憶される。
On the other hand, as described above, when the incident beam current 'IN is gradually increased, the position in the circumferential direction of the cylindrical body 1.2 detected by the position detector 8 is -1°2.3. -, n and the circumferential position -1, 2° 3, ..., n, the transmitted beam current detected by the transmitted beam current detector 9 and averaged by the signal processing device 10 is ) (K-1, 2,
3, -..., n) are stored in the memory 11.

透過ビーム電流検出器9で検出した透過ビーム電流I。A transmitted beam current I detected by a transmitted beam current detector 9.

UTを信号処理装置lOで平均化するのは次の理由によ
る。すなわち、透過ビーム電流l0UTは第3図(ロ)
では直線的に示しであるが、実際には第4図に示すよう
に波形状であるため、例えば′円筒体1.2の円周方向
位置rr3−1.m。
The reason why UT is averaged by the signal processing device IO is as follows. In other words, the transmitted beam current l0UT is as shown in Figure 3 (b).
Although it is shown as a straight line in FIG. 4, it actually has a wave shape as shown in FIG. m.

m+1における透過ビーム電流l0UT自体を用いると
誤差が大きくなる。そこで微少時間Atごとに透過ビー
ム電流!。8.を求めてこれを円筒体1.2の位置が例
えばnからn+1に達する時間よりも短かい時間tの間
積分し、積分値をtで除して平均化すれば測定誤差が小
さくなり、正確な制御ができるためである。
If the transmitted beam current l0UT itself at m+1 is used, the error will be large. Therefore, the transmitted beam current every minute time At! . 8. If you calculate this, integrate it for a time t that is shorter than the time the position of the cylinder 1.2 reaches, for example, from n to n+1, and average it by dividing the integrated value by t, the measurement error will be small and accurate. This is because it allows for better control.

信号処理装置lOから出力される透過ビーム電流■  
が目標透過ビーム電流I   になるOUT     
       0UT(S)と、以降は円筒体1.2の
円周方向位置及び透過ビーム電流■OUTは記憶器11
に記憶されない。
Transmitted beam current output from signal processing device IO■
OUT becomes the target transmitted beam current I
0UT(S), hereafter the circumferential position of the cylinder 1.2 and the transmitted beam current ■OUT is the memory 11
is not memorized.

円筒体1.2が溶接されて1周し、円周方向位置に−1
に戻ると、位置検出器8でに−1か検出されると共にに
−1の検出信号を基に切換え、スイッチ15が切換えら
れ、接点18から離れて接点17に対してオンになる。
The cylindrical body 1.2 is welded and goes around once, and the position in the circumferential direction is −1.
When it returns to , the position detector 8 detects -1, and the switch 15 is switched based on the -1 detection signal, leaving the contact 18 and turning on the contact 17.

而して、以降は位置検出器8で検出された円周方向位置
に−1,2゜3、・・・、nに対応して記憶器11に記
憶されていた透過ビーム電流1     (K−1,2
,3゜0UT(K) ・・・、n)が順次記憶器11から演算器14へ送られ
、演算器14で溶接終了前の目標透過ビーム電流I′が 0UT(S) OUT(S)  0UT(S) −1OUT(K)V 
   −■ (K= 1. 2. 3.−−・、n) ・・・(Dに
より求められ、この目標透過ビーム電流” 0UT(S
)は演算器14から出力され、演算器13を介して制御
器18へ送られ、制御器18からは目標透過ビーム電流
I′   に対応した入射ビ0UT(S) 一ム電流IINの指令が電子ビーム溶接機6へ与えられ
、電子ビーム溶接機6からは入射ビーム電流IINが継
手部分3に加えられて溶接が行われる。
Thereafter, the transmitted beam current 1 (K- 1,2
, 3゜0UT(K) ..., n) are sequentially sent from the memory 11 to the computing unit 14, and the computing unit 14 calculates the target transmitted beam current I' before the end of welding as 0UT(S) OUT(S) 0UT. (S) -1OUT(K)V
-■ (K= 1. 2. 3.--., n) ...(D, this target transmitted beam current "0UT(S
) is output from the arithmetic unit 14 and sent to the controller 18 via the arithmetic unit 13, and from the controller 18, a command for the incident beam current IIN corresponding to the target transmitted beam current I' is sent to the electronic An incident beam current IIN is applied from the electron beam welding machine 6 to the joint portion 3 to perform welding.

第3図(ロ)では溶接開始時しばらくの間は透過ビーム
電流1OUTか生じないため、’ 0UT(K)は零で
あり、従って、円筒体1.2が1周して円周方向位置に
−1に戻って来てもしばらくは0UT(’;)   0
UT(S)の信号が制御器18に与えI′      
■I られ、透過ビーム電流■。、1一定の制御が行われる。
In Fig. 3 (b), since only a transmitted beam current of 1 OUT is generated for a while at the start of welding, '0UT (K) is zero, and therefore the cylinder 1.2 makes one revolution and reaches the position in the circumferential direction. Even if it returns to -1, it remains 0UT(';) 0 for a while.
The signal of UT(S) is given to the controller 18 and I'
■I and transmitted beam current■. , 1 constant control is performed.

しかし、溶接開始時に透過ビーム電流l0IJTが上昇
し始めた位置からは、適正に溶接が行われる場合の目標
透過ビーム電流I。UT(S)から溶接開始時の透過ビ
ーム電流■   を引0UT(K) いた目標透過ビーム電流■′   になるよう0UT(
S) 制御が行われつつ溶接がなされる。溶接開始時透過ビー
ム電流■OUTは徐々に上昇しているため、溶接終了時
の目標透過ビーム電流I′0UT(S)は円筒体1.2
の円周方向位置により徐々に下降する。
However, from the position where the transmitted beam current l0IJT begins to rise at the start of welding, the target transmitted beam current I when welding is performed properly. Subtract the transmitted beam current at the start of welding from UT(S) to 0UT(K).
S) Welding is performed under control. Since the transmitted beam current ■OUT at the start of welding is gradually rising, the target transmitted beam current I'0UT (S) at the end of welding is 1.2 for the cylindrical body.
gradually descends depending on the circumferential position of

溶接終了時に、上述の(1)式を満たすようにして透過
ビーム電流を制御するのは次の理由によ。
The reason why the transmitted beam current is controlled to satisfy the above equation (1) at the end of welding is as follows.

る。すなわち、(+)式は I   讃I′ 0UT(S)   0UT(S) +10LIT(K)
(K−1,2,3,・−、n)−・・Ci)と変形でき
、溶接開始時の透過ビーム電流Io、ア(K)と溶接終
了時の目標透過ビーム電流” 0UT(S)の和が適正
な溶接を行うのに必要な目標透過ビーム電流I   に
一致するように0UT(S) すれば、良好な溶接を行うことができるためである。
Ru. In other words, the formula (+) is I san I' 0UT(S) 0UT(S) +10LIT(K)
(K-1,2,3,...,n)-...Ci), and the transmitted beam current Io at the start of welding, a(K) and the target transmitted beam current at the end of welding"0UT(S) This is because if 0UT(S) is set so that the sum of 0UT(S) matches the target transmitted beam current I necessary for proper welding, good welding can be performed.

以上のようにして溶接を行うと、第3図(イ)(ロ)の
範囲θ′の部分も、トータル的には他の領域 Δと略同
じ透過ビーム電流となるよう溶接が行われるため、円筒
体1.2の軸線方向への収縮量は第5図の線Aに示すよ
うに、円筒体1.2の円周方向の何れの位置でも略同じ
になり、従って円筒体1.2か屈曲することを防止でき
る。
When welding is performed in the manner described above, welding is performed so that the transmitted beam current in the range θ' in Fig. 3 (a) and (b) is approximately the same in total as in the other areas Δ. The amount of contraction of the cylindrical body 1.2 in the axial direction is approximately the same at any position in the circumferential direction of the cylindrical body 1.2, as shown by line A in FIG. Can prevent bending.

なお、本発明の実施例では、信号処理装置を設けて透過
ビーム電流を平均化する場合について説明したが、信号
処理装置はなくとも実施できること、円筒体は回転させ
ず溶接機を円筒体周方向へ回動させても実施できること
、その他、本発明の要旨を逸脱しない範囲内で種々変更
を加え得ること、等は勿論である。
In the embodiments of the present invention, a case has been described in which a signal processing device is provided to average the transmitted beam current, but it should be noted that it can also be carried out without a signal processing device, and that the welding machine is moved in the circumferential direction of the cylinder without rotating the cylinder. It goes without saying that the present invention can be implemented even by rotating the present invention, and that various other changes can be made without departing from the gist of the present invention.

[発明の効果] 本発明の電子ビーム溶接方法によれば、円筒体周方向の
何れの位置においても透過ビーム電流が等しくなるよう
溶接しているため、溶接後の円筒体軸線方向への収縮量
は略均−となり、従って円筒体は屈曲せず、良好な製品
を得ることができる、等種々の優れた効果を奏し得る。
[Effects of the Invention] According to the electron beam welding method of the present invention, since welding is performed so that the transmitted beam current is equal at any position in the circumferential direction of the cylinder, the amount of contraction in the axial direction of the cylinder after welding is reduced. is substantially uniform, so the cylindrical body does not bend, and various excellent effects can be achieved, such as being able to obtain a good product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子ビーム溶接方法を行うための電子
ビーム溶接装置の一例の説明図、第2図は円筒体の電子
ビーム溶接を行っている状態の説明図、第3図(イ)は
本発明の方法における円筒体の円周方向位置と入射ビー
ム電流との関係を示すグラフ、第3図(ロ)は同円筒体
の円周方向位置と透過ビーム電流との関係を示すグラフ
、第4図は本発明の方法で透過ビーム電流を平均化する
理由の説明図、第5図は本発明の方法と従来の方法によ
り円筒体軸線方向に生じる収縮量を説明するためのグラ
フ、第6図は従来の方法による円筒体の円周方向位置と
入射ビーム電流との関係を示すグラフ、第7図は電子ビ
ーム溶接の一般的な説明図である。 図中1.2は円筒体、3は継手部分、4は電子ビーム、
5は溶接ビード、6は電子ビーム溶接機、8は位置検出
器、9は透過ビーム電流検出器、lOは信号処理装置、
11は記憶器、12は設定器、13.14は演算器、1
5は切換えスイッチ、18は制御器を示す。
Fig. 1 is an explanatory diagram of an example of an electron beam welding apparatus for performing the electron beam welding method of the present invention, Fig. 2 is an explanatory diagram of a state in which electron beam welding of a cylindrical body is performed, and Fig. 3 (A) is a graph showing the relationship between the circumferential position of the cylindrical body and the incident beam current in the method of the present invention, and FIG. 3 (b) is a graph showing the relationship between the circumferential position of the cylindrical body and the transmitted beam current, FIG. 4 is an explanatory diagram of the reason why the transmitted beam current is averaged by the method of the present invention, and FIG. FIG. 6 is a graph showing the relationship between the circumferential position of the cylindrical body and the incident beam current according to the conventional method, and FIG. 7 is a general explanatory diagram of electron beam welding. In the figure, 1.2 is a cylindrical body, 3 is a joint part, 4 is an electron beam,
5 is a welding bead, 6 is an electron beam welder, 8 is a position detector, 9 is a transmitted beam current detector, IO is a signal processing device,
11 is a storage device, 12 is a setting device, 13.14 is an arithmetic unit, 1
5 is a changeover switch, and 18 is a controller.

Claims (1)

【特許請求の範囲】[Claims] 1)2つの円筒体の端面を対向させ該対向部全周を、溶
接機と円筒体を相対的に円周方向へ移動させつつ電子ビ
ームにより溶接する電子ビーム溶接方法において、溶接
開始時に、溶接機から投射されるビーム電流を徐々に上
昇させ、円筒体継手部分を通って溶接機の配設されてな
い側へ透過する透過ビーム電流を円筒体円周方向位置に
対応して記憶器に記憶させ、前記透過ビーム電流が予め
求めておいた適正な溶接のできる目標透過ビーム電流に
なったら該目標透過ビーム電流を一定に保持して円筒体
の円周方向の溶接を行い、溶接が一周して前記溶接開始
時の透過ビーム電流が零でない位置まで来たら、以降の
目標透過ビーム電流を前記適正な溶接のできる目標透過
ビーム電流と前記記憶させておいた透過ビーム電流の差
になるよう溶接することを特徴とする電子ビーム溶接方
法。
1) In an electron beam welding method in which the end surfaces of two cylindrical bodies are opposed and the entire circumference of the opposed parts is welded with an electron beam while the welding machine and the cylindrical body are moved relative to each other in the circumferential direction, at the start of welding, the welding The beam current projected from the welding machine is gradually increased, and the transmitted beam current that passes through the joint part of the cylinder to the side where the welding machine is not installed is stored in a memory corresponding to the position in the circumferential direction of the cylinder. When the transmitted beam current reaches a predetermined target transmitted beam current that allows proper welding, the target transmitted beam current is held constant and welding is performed in the circumferential direction of the cylindrical body, and the welding is completed once. When the transmitted beam current at the start of welding reaches a position where it is not zero, welding is performed such that the subsequent target transmitted beam current is the difference between the target transmitted beam current that allows proper welding and the stored transmitted beam current. An electron beam welding method characterized by:
JP28035686A 1986-11-25 1986-11-25 Electron beam welding method Pending JPS63132785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28035686A JPS63132785A (en) 1986-11-25 1986-11-25 Electron beam welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28035686A JPS63132785A (en) 1986-11-25 1986-11-25 Electron beam welding method

Publications (1)

Publication Number Publication Date
JPS63132785A true JPS63132785A (en) 1988-06-04

Family

ID=17623864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28035686A Pending JPS63132785A (en) 1986-11-25 1986-11-25 Electron beam welding method

Country Status (1)

Country Link
JP (1) JPS63132785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502859A (en) * 2006-09-12 2010-01-28 エスエイチダブリュー キャスティング テクノロジーズ ゲーエムベーハー Roller body manufacturing method and roller body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502859A (en) * 2006-09-12 2010-01-28 エスエイチダブリュー キャスティング テクノロジーズ ゲーエムベーハー Roller body manufacturing method and roller body

Similar Documents

Publication Publication Date Title
JPH0857647A (en) Weld line tracking method using laser beam sensor
JP2012521894A (en) Welding method for welding based on calculated welding distortion, welding apparatus equipped with detection unit for detecting defect position of workpiece, and composite
JPH0147249B2 (en)
JP5198255B2 (en) Member welding method and system
JPH0452175B2 (en)
JPS63132785A (en) Electron beam welding method
JPH0234275B2 (en)
JPS6397376A (en) Electron beam welding method
JPH0195875A (en) Crater treating method for circular welding equipment
JPH03155414A (en) Device for correcting shape of tube body
JPS59112209A (en) Measuring method of shape of steel tube weld zone
JPS6087989A (en) Laser welding device
JPS62118976A (en) Groove seam profiling method
JPS59215273A (en) Method for controlling welding position of spiral steel pipe
CN112621049B (en) Welding control method, welding control device, and computer-readable storage medium
JPH03226313A (en) Correcting method for pipe
JP2003236614A (en) Device for correcting tubular body and device for forming groove
JPH08197248A (en) Tracking control method for multi-layer welding
JPH0857667A (en) Seam profiling control method for beam welded pipe and seam profiling controller
JPH0875895A (en) Fuel rod circumference welding apparatus
JPS59114406A (en) Automatic measurement of shape of tube end
JPH03230867A (en) Automatic welding apparatus
JP2000225467A (en) Welding method for flange and rib to tube
JPH0462829B2 (en)
JPS60240381A (en) Controlling device of welding robot