JPS63132136A - Rotary viscometer - Google Patents

Rotary viscometer

Info

Publication number
JPS63132136A
JPS63132136A JP27833386A JP27833386A JPS63132136A JP S63132136 A JPS63132136 A JP S63132136A JP 27833386 A JP27833386 A JP 27833386A JP 27833386 A JP27833386 A JP 27833386A JP S63132136 A JPS63132136 A JP S63132136A
Authority
JP
Japan
Prior art keywords
fluid
viscosity
elastic member
shaft
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27833386A
Other languages
Japanese (ja)
Inventor
Yasuhiko Saito
斉藤 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP27833386A priority Critical patent/JPS63132136A/en
Publication of JPS63132136A publication Critical patent/JPS63132136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To allow a detector mounted on a duct to sense the proximity of metallic member fixed to both end parts of an elastic member from the rotations of the metallic members and to detect the synchronous delay between a shaft and an internal cylinder and measure the viscosity of fluid by transmitting the constant-speed rotations of a motor to the internal cylinder in the fluid through the shaft and elastic member and generating torque proportional to the viscosity of the fluid. CONSTITUTION:The rotations of the synchronous motor 12 are reduced 13 in speed to a specific rotating speed and transmitted as a constant rotation output to the internal cylinder 3 through the watertight material 10 and elastic member 6 of the shaft 4. The internal cylinder 3 operates as a rotor to generate the viscosity torque of the fluid by the rotation of the peripheral surface. Stationary rotations are made in the state of rotary displacement to an angle where the torque and the reaction force of the elastic member 6 are balanced with each other. Further, an external cylinder 2 provided to a duct 1 cuts off the influence of the flow velocity of the fluid to the flank of the internal cylinder 3. The proximity of the 1st metallic member 7 and 2nd specific-angle metallic member 8 provided to both ends of the elastic member 6 is sensed to outputs the quantity of the rotary displacement proportional to the viscosity to the detector 11 as a time interval signal, thereby finding the viscosity from the quantity of the displacement from the relative position of the members 7 and 8.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば流体の粘度を測定する回転式粘度計、
特にプロセスプラントなどにおける流体の粘度の連続測
定に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to, for example, a rotational viscometer that measures the viscosity of a fluid;
In particular, it relates to continuous measurement of fluid viscosity in process plants and the like.

[従来の技術] 第6図は例えば従来の回転式粘度計の説明図の一例を示
す。図において、1は流体の流れる管路、5は粘度測定
機構を固定部に懸架保持するワイヤ、6はワイヤ5の捩
れと平衡する弾性部材、9−3は軸受、12は同期電動
機を用いたモータ、13はモータ12の回転速度を減速
する減速機、14は減速機の出力軸、30はワイヤ5の
捩れ量を電気信号に変換する回転変位センサ。31は管
路1内へ回転トルクを伝達する磁力を発生するマグネッ
ト、32は管路1の隔壁を介してマグネット31の回転
運動をマグネチックカップリングの方法により伝達され
るマグネット31を内蔵するロータ、33はモータ12
のケースに結合される保持棒である。
[Prior Art] FIG. 6 shows an example of an explanatory diagram of a conventional rotational viscometer, for example. In the figure, 1 is a pipe through which fluid flows, 5 is a wire that suspends and holds the viscosity measuring mechanism on a fixed part, 6 is an elastic member that balances the twist of the wire 5, 9-3 is a bearing, and 12 is a synchronous motor. 13 is a reducer that reduces the rotational speed of the motor 12; 14 is an output shaft of the reducer; 30 is a rotational displacement sensor that converts the amount of twist of the wire 5 into an electrical signal. 31 is a magnet that generates a magnetic force that transmits rotational torque into the pipe line 1; 32 is a rotor incorporating the magnet 31 to which the rotational motion of the magnet 31 is transmitted via the partition wall of the pipe line 1 by a method of magnetic coupling; , 33 is the motor 12
It is a holding rod that is connected to the case.

従来の回転式粘度計は上記のように構成され、モータ1
2より回転駆動されるマグネット31の磁力により管路
1内に矢示の方向に流れる流体中に配置されたマグネッ
ト31を内蔵する回転自在のロータ32は2個の軸受9
−3を支点として回転運動が行われ、流体の粘性トルク
が発生してその反作用によりモータ12および保持棒3
3が回転変位してワイヤ5に捩れを生ずる。捩れ量は弾
性部材6と平衡するのでワイヤ5の捩れ角度を回転変位
センサ30を用いて電気信号に変換して出力する。
A conventional rotational viscometer is configured as described above, and the motor 1
A rotatable rotor 32 containing a magnet 31 disposed in the fluid flowing in the direction of the arrow in the pipe 1 by the magnetic force of the magnet 31 rotationally driven by the magnet 31 is rotated by two bearings 9.
-3 is a fulcrum, rotational movement is performed, viscous torque of the fluid is generated, and the reaction causes the motor 12 and the holding rod 3.
3 is rotated and displaced, causing twist in the wire 5. Since the amount of twist is balanced with the elastic member 6, the twist angle of the wire 5 is converted into an electrical signal using the rotational displacement sensor 30 and output.

上記の通り管路1内の流体の粘度が電気信号にて連続的
に出力される。
As mentioned above, the viscosity of the fluid in the pipe line 1 is continuously output as an electrical signal.

第7図は例えば従来の他の回転式粘度計の説明図の一例
を示す。図において、1.12.13.30は上記従来
の回転式粘度計と同一である。2は流体内にてモータ1
2に駆動され回転する外筒、3は外筒2に同心状に配置
され外筒2の回転により回転変位する内筒、4はモータ
12の回転を伝達する軸、10は管路1に設けられ軸4
の貫通による流体の漏洩を防止する気密材、34は内筒
3を管路1へ保持するトルクチューブ、35は一端が内
筒3へ嵌着され回転変位を伝達する連結軸である。
FIG. 7 shows an example of an explanatory diagram of another conventional rotational viscometer, for example. In the figure, 1.12.13.30 are the same as those of the conventional rotational viscometer described above. 2 is the motor 1 in the fluid
2 is an outer cylinder that is driven and rotated; 3 is an inner cylinder that is arranged concentrically with the outer cylinder 2 and rotationally displaced by the rotation of the outer cylinder 2; 4 is a shaft that transmits the rotation of the motor 12; 10 is provided in the conduit 1; Rare axis 4
34 is a torque tube that holds the inner cylinder 3 to the conduit 1, and 35 is a connecting shaft whose one end is fitted into the inner cylinder 3 and transmits rotational displacement.

従来の回転式粘度計は上記のように構成され、矢示の方
向に流体が流れる管路1内にあける流れ方向と直角に外
筒2ならびに内@3の2重筒が片持ち構造にて配置され
ている。モータ]2の回転数は減速機13にて減速され
軸4により管路1内の流体の流れに直接浸漬する外筒2
を回転させる。外筒2に同心状に位置し管路1ヘトルク
チユーブ34にて保持される内筒3は外筒2の回転によ
って粘性トルクが発生して回転変位する、その変位量は
内筒3の粘性トルクとトルクチューブ34の反力との平
衡した回転角度となり、従って内筒3の回転変位は連結
軸35を介して回転変位センサ30へ伝達されトルクが
測定できる。
A conventional rotational viscometer is constructed as described above, and has a cantilever structure in which the double cylinders of the outer cylinder 2 and the inner cylinder @3 are opened at right angles to the flow direction in the pipe 1 through which the fluid flows in the direction of the arrow. It is located. The rotation speed of the motor] 2 is reduced by a reducer 13, and the outer cylinder 2 is directly immersed in the fluid flow in the conduit 1 by the shaft 4.
Rotate. The inner cylinder 3, which is located concentrically with the outer cylinder 2 and held by the torque tube 34 in the conduit 1, is rotationally displaced by the generation of viscous torque due to the rotation of the outer cylinder 2. The amount of displacement is determined by the viscosity of the inner cylinder 3. The rotation angle is such that the torque and the reaction force of the torque tube 34 are balanced, so that the rotational displacement of the inner cylinder 3 is transmitted to the rotational displacement sensor 30 via the connecting shaft 35, and the torque can be measured.

(発明が解決しようとする問題点コ 上記第6図の例に示す回転式粘度計では、マグネット3
1を用いてその磁力を利用したマグネチックカップリン
グ方式を採用しているので、測定流体が特定の流体、特
に磁性材料が含まれる磁気テープなどに用いられる塗料
には適用できない。また夾雑物として鉄分を含む流体の
場合はロータに付着した鉄分の除去の保守を要する。
(Problems to be solved by the invention) In the rotational viscometer shown in the example of Fig. 6 above, the magnet 3
1 and employs a magnetic coupling method that utilizes its magnetic force, it cannot be applied to paints where the measuring fluid is a specific fluid, especially a magnetic tape containing a magnetic material. In addition, if the fluid contains iron as a contaminant, maintenance is required to remove the iron adhering to the rotor.

上記第7図に示す従来の粘度計ではトルクチューブのば
ね剛性が大きいため内筒3の粘性トルクは大きい値が要
求されて、高粘度流体の測定に適しているが低粘度流体
の測定において回転変位センサ30の要求する変位量を
得るのがむづかしい。
In the conventional viscometer shown in Fig. 7 above, the spring rigidity of the torque tube is large, so the viscous torque of the inner cylinder 3 is required to have a large value, and is suitable for measuring high viscosity fluids, but it is suitable for measuring low viscosity fluids. It is difficult to obtain the amount of displacement required by the displacement sensor 30.

更に最近、使用箇所に適合したすり速度で計測すること
が要求されるので、特に粘度ならびにすり速度の低い値
が要求されるとずり応力が小さいため内筒3又はロータ
32の寸法が著しく大きくなければ実用できない。トル
クチューブ34を用いて低粘度を低ずり速度にて測定す
ることは困難であるという問題点があった。
Furthermore, recently, it has become necessary to measure at a sliding speed that is suitable for the location of use, so especially when low values of viscosity and sliding speed are required, the dimensions of the inner cylinder 3 or rotor 32 must be significantly large because the shear stress is small. It is not practical. There was a problem in that it was difficult to measure low viscosity at low shear rates using the torque tube 34.

この発明はかかる問題点を解決するためになされたもの
で、磁性材料が含まれる流体やその他各種の流体につい
て低粘度から高粘度までの測定レンジが確保できる回転
式粘度計を得ることを目的とする。
This invention was made in order to solve such problems, and the purpose is to obtain a rotational viscometer that can secure a measurement range from low viscosity to high viscosity for fluids containing magnetic materials and various other fluids. do.

[問題点を解決するための手段] この発明に係る回転式粘度計は、流体の流れる管路内に
取付けられた流通孔を有する外筒と、回転を管路に設け
た気密材を貫通して内部に伝達する軸を回転方向に弾性
を具える弾性部材を介して結合し外筒内に同心状に配置
され一端が管路に枢支される内筒と、弾性部材の両端部
に所定角度にて配置された第1金属部材ならびに第2金
属部材と、金属部材の近接に感応する管路に装着された
検出器と、円筒の他端中心部に軸が滑動する軸受を設け
たものである。
[Means for Solving the Problems] The rotational viscometer according to the present invention includes an outer cylinder having a circulation hole installed in a pipe through which a fluid flows, and a rotational viscometer that penetrates an airtight material provided in the pipe. The shaft for transmitting data to the inside is connected via an elastic member having elasticity in the direction of rotation, and the inner cylinder is arranged concentrically within the outer cylinder and has one end pivoted to the conduit, and the inner cylinder has a predetermined structure at both ends of the elastic member. A first metal member and a second metal member arranged at an angle, a detector attached to a conduit that senses the proximity of the metal members, and a bearing whose shaft slides at the center of the other end of the cylinder. It is.

[作用] この発明においては、モータの定速回転を軸ならびに弾
性部材を介して流体中の内筒に伝達して内筒に流体の粘
性に比例したトルクを発生させる。管路に装着した検出
器は弾性部材の両端部に固着した金属部材の回転により
その近接に感応して、軸と内筒との同期遅れが非接触に
て検知されて粘度の測定が行える。
[Operation] In the present invention, constant speed rotation of the motor is transmitted to the inner cylinder in the fluid via the shaft and the elastic member to generate a torque in the inner cylinder that is proportional to the viscosity of the fluid. The detector attached to the conduit is sensitive to the proximity of the metal member fixed to both ends of the elastic member by rotation, and the lag in synchronization between the shaft and the inner cylinder is detected without contact, and the viscosity can be measured.

[実施例] 第1図はこの発明の一実施例を示す断面図であり、図に
おいて、1〜4.6.10,12.13は上記従来装置
と同一でおる。7は軸4の回転位置の指標となる第1金
属部材、8は内筒3の回転位置の指標となる第2金属部
材、9−1.9−2は軸受、11は上記金属部材の近接
に感応して電気信号を出力する管路1に設けられた検出
器を示している。
[Embodiment] FIG. 1 is a sectional view showing an embodiment of the present invention, and in the figure, 1 to 4.6.10 and 12.13 are the same as those of the conventional device. 7 is a first metal member serving as an index of the rotational position of the shaft 4, 8 is a second metal member serving as an index of the rotational position of the inner cylinder 3, 9-1.9-2 is a bearing, and 11 is the proximity of the metal member. 1 shows a detector installed in the conduit 1 that outputs an electrical signal in response to the

上記のように構成された回転式粘度計においては、例え
ば同期電動機を用いたモータ12の回転を減速機12に
より所定回転数に減速し、一定回転出力は軸4の管路1
の貫通位置に設けられた気密材10を経て弾性部材6を
介して内筒3に伝達される。内筒3の上面中心部に軸4
の軸受9−2と保持金具17を設は内筒3の下面中心部
は摩擦の小ざいピボットにて枢支される軸受9−1によ
り内筒3はロータとして作用し、その周面には回転によ
る流体の粘性トルクが発生し、このトルクと弾性部材6
の反力が平衡した角度に回転変位した状態で定常回転を
行う。管路1内に設けられた外筒2は内筒3の側面への
流体の流速の影響を遮蔽し、外筒2と内筒3の間に測定
流体が滞留せずに常時入れ換るようにその周面端部に流
通孔を有している。
In the rotational viscometer configured as described above, the rotation of the motor 12 using, for example, a synchronous motor is reduced to a predetermined rotation speed by the reducer 12, and the constant rotation output is transmitted through the pipe line 1 of the shaft 4.
It is transmitted to the inner cylinder 3 via the elastic member 6 through the airtight member 10 provided at the penetrating position. A shaft 4 is attached to the center of the upper surface of the inner cylinder 3.
The inner cylinder 3 acts as a rotor due to the bearing 9-1 which is pivotally supported by a pivot with low friction at the center of the lower surface of the inner cylinder 3, and the inner cylinder 3 acts as a rotor. Viscosity torque of the fluid is generated due to rotation, and this torque and the elastic member 6
Steady rotation is performed with the rotational displacement at an angle where the reaction force is balanced. The outer cylinder 2 provided in the pipe line 1 shields the influence of the flow velocity of the fluid on the side surface of the inner cylinder 3, so that the fluid to be measured does not remain between the outer cylinder 2 and the inner cylinder 3 and is constantly exchanged. It has a communication hole at the end of its circumferential surface.

粘性に比例した回転変位の大きさは、弾性部材6の両端
に設けられた第1金属部材7と所定の角度をなす第2金
属部材8のそれぞれの近接に感応する検出器11に時間
間隔信号が発生し、回転する軸4の停止時に整定された
第1金属部材7と第2金属部材8の相対位置信号から上
記定常回転時の相対位置信号との変位量を求めこれを単
位換鋒することにより粘度が求められる。
The magnitude of the rotational displacement proportional to the viscosity is determined by a time interval signal sent to a detector 11 that is sensitive to the proximity of the first metal member 7 and the second metal member 8 provided at both ends of the elastic member 6 and forming a predetermined angle. occurs, and from the relative position signals of the first metal member 7 and the second metal member 8 that are settled when the rotating shaft 4 is stopped, the amount of displacement from the relative position signal during steady rotation is determined and converted into units. The viscosity is determined by this.

なお、この回転変位量の検出の開始時に第1金属部材7
と第2金属部材8との判別を要するが、これはフルスケ
ールの回転変位量が180°以内とし、軸4の1/2回
転周期のゲート信号を設けて、ゲート信号内に上記金属
部材に感応し検知された信号が含まれるか否かによって
運転直後に判別できる。
Note that at the start of detection of this amount of rotational displacement, the first metal member 7
It is necessary to distinguish between the metal member 8 and the second metal member 8, but the full-scale rotational displacement amount must be within 180°, and a gate signal with a 1/2 rotation period of the shaft 4 is provided, so that the metal member 8 is identified within the gate signal. It can be determined immediately after driving based on whether or not the detected signal is included.

弾性部材6は軸4の回転方向に弾性を有し、例えばコイ
ルばね、渦巻ばね、トーションワイヤ及び板ばね16な
どが使用でき、そのばね剛性を選択することにより低粘
度を低ずり速度で測定する時のフルスケールトルクの小
さい場合でも所定の変位量を確保することができる。
The elastic member 6 has elasticity in the direction of rotation of the shaft 4, and can be, for example, a coil spring, a spiral spring, a torsion wire, or a leaf spring 16. By selecting the spring stiffness, low viscosity can be measured at a low shear rate. A predetermined amount of displacement can be secured even when the full-scale torque is small.

第2図は内筒の上面図の一例を示し、軸4が内筒3の中
心部に設けられた複数の保持棒にて保持される軸受15
に嵌入されている。
FIG. 2 shows an example of a top view of the inner cylinder, and shows a bearing 15 in which the shaft 4 is held by a plurality of holding rods provided at the center of the inner cylinder 3.
has been incorporated into.

第3図はこの発明の他の実施例を示す断面図、第4図は
弾性部材の一例を示す上面図で複数の曲げられた板ばね
16を使用する。この例では軸4に嵌着された板ばね1
6の他端は内筒3上部に設けられているが、軸4と内筒
3間に弾性部材6を配置している構造は第1図に示す実
施例と同一である。この実施例では内筒3上品の半径方
向の位置拘束力は低下するが、上部軸受9−2を使用し
ないので摩擦が非常に小さくなる効果が得られる。
FIG. 3 is a sectional view showing another embodiment of the present invention, and FIG. 4 is a top view showing an example of an elastic member in which a plurality of bent leaf springs 16 are used. In this example, a leaf spring 1 fitted to the shaft 4
The other end of the elastic member 6 is provided above the inner cylinder 3, but the structure in which the elastic member 6 is disposed between the shaft 4 and the inner cylinder 3 is the same as the embodiment shown in FIG. In this embodiment, the radial position restraining force of the inner cylinder 3 is reduced, but since the upper bearing 9-2 is not used, the effect of significantly reducing friction can be obtained.

検出器11の一例として高周波発信型の近接スイッチを
用い、第1金属部材7及び第2金属部材8を近接スイッ
チの検出部体としてそれぞれ近接スイッチとの近接時に
微小間隙をなすよう配置すると、近接スイッチは各金属
部材の回転時の近接辷感応して電気信号を出力するので
非接触にて正確に上記時間間隔の測定が行え変位量が求
められる。
If a high-frequency oscillation type proximity switch is used as an example of the detector 11, and the first metal member 7 and the second metal member 8 are arranged as detection parts of the proximity switch so as to form a small gap when approaching the proximity switch, it is possible to Since the switch outputs an electric signal in response to the proximity of each metal member during rotation, the time interval can be accurately measured without contact, and the amount of displacement can be determined.

また測定流体が磁性流体でなく且つ鉄粉などの夾雑物を
含んでいなければ検出器11は例えば磁気抵抗素子を用
いた近接スイッチにより第1金属部材7及び第2金属部
材8に強磁性材料を用いても検知できる。この場合近接
スイッチはステンレス等非磁性金属より成る管路1の外
面に装着して使用することができる。
In addition, if the fluid to be measured is not a magnetic fluid and does not contain impurities such as iron powder, the detector 11 detects the presence of ferromagnetic material in the first metal member 7 and the second metal member 8 using a proximity switch using a magnetoresistive element, for example. It can also be detected using In this case, the proximity switch can be used by being attached to the outer surface of the conduit 1 made of non-magnetic metal such as stainless steel.

第5図は本発明の他の実施例としてタンク内流体の粘度
測定の一例を示す。第1図における管路1に代わり外筒
2を用いて、弾性部材6が軸4の上部空間位置に配置さ
れ、第1金属部材7及び第2金属部材8をそれぞれ弾性
部材6の両端部に所定の角度を形成するように固着する
FIG. 5 shows an example of measuring the viscosity of a fluid in a tank as another embodiment of the present invention. An outer tube 2 is used instead of the conduit 1 in FIG. Fix to form a predetermined angle.

17は軸4を内筒3の回転中心位置に保持する保持金具
17であり中心部に軸受9−2が設けられている。内筒
3をタンク内流体中に確実に浸漬する位置に設置して軸
4を回転するとタンク内流体の粘度の測定が行える。タ
ンク内には流体の流れがあり、外筒2に設けられた流通
孔によって外筒2と内筒3の間の測定流体の入れ換わり
が行える。
Reference numeral 17 denotes a holding fitting 17 for holding the shaft 4 at the rotational center position of the inner cylinder 3, and a bearing 9-2 is provided at the center thereof. The viscosity of the fluid in the tank can be measured by installing the inner cylinder 3 in a position where it is reliably immersed in the fluid in the tank and rotating the shaft 4. There is a fluid flow inside the tank, and the fluid to be measured can be exchanged between the outer cylinder 2 and the inner cylinder 3 through the communication holes provided in the outer cylinder 2.

また密閉された加圧容器内にて使用するときも構成品は
加圧力の影響を受けないので正確に粘度測定が行える。
Furthermore, even when used in a sealed pressurized container, the components are not affected by the pressurizing force, so viscosity can be measured accurately.

本発明は流体中にて粘性トルクを発生する内筒3を回転
駆動する弾性部材6の両端に第1金属部材7及び第2金
属部材8を所定角度を形成するように配置し、第1及び
第2の金属部材の相対回転位置の検出が磁性流体など各
種の流体に対し非接触にて作動する検出器11を用いて
行え、更に弾性部材6のばね剛性の選択により特に低粘
度の測定が行えるので高粘度まで広い測定レンジが確保
できる。
In the present invention, a first metal member 7 and a second metal member 8 are arranged to form a predetermined angle at both ends of an elastic member 6 that rotationally drives an inner cylinder 3 that generates viscous torque in a fluid. The relative rotational position of the second metal member can be detected using a detector 11 that operates in a non-contact manner with respect to various fluids such as magnetic fluid, and furthermore, by selecting the spring stiffness of the elastic member 6, it is possible to measure particularly low viscosity. This allows for a wide measurement range up to high viscosities.

内筒3の回転中心は軸受9−1の摩擦の小さいピボット
にて枢支され、その他信号変換のために摺動構造の部品
を使用していないので摩擦トルクが非常に小さく高精度
にて粘度の連続測定が行え、内筒3は軸受9−2と軸4
の保持金具17にてその回転中心が保持されるので撮動
ならびに取付姿勢に対し安定した動作を行う。
The center of rotation of the inner cylinder 3 is pivoted by the low-friction pivot of the bearing 9-1, and since no other sliding parts are used for signal conversion, the friction torque is extremely small and the viscosity can be adjusted with high precision. The inner cylinder 3 is connected to the bearing 9-2 and the shaft 4.
Since the center of rotation is held by the holding fitting 17, stable operation can be achieved with respect to photographing and mounting postures.

[発明の効果] この発明は以上説明した通り、軸の回転を弾性部材を介
して流体中の外筒と同心状に配置された内筒に伝達し、
弾性部材の両端に内筒の粘性トルクによる捩れを検出す
る第1及び第2金属部材を備え、この金属部材の近接に
感応する検出器を設けるという簡単な構造により、プロ
セスプラントなどの流体の流れる管路内や加圧タンク内
の磁性流体などの各種流体の粘度測定がオンラインで連
続して行え、弾性部材のばね剛性の選択により低粘度か
ら高粘度まで測定レンジが確保でき、軸により駆動され
る内筒は軸と軸受による枢支によりその回転中心が保持
されるので、撮動及び取付姿勢などの影響が小さく、高
精度にて安定して粘度の広い測定レンジに屋り連続測定
が行えるという効果がある。
[Effects of the Invention] As explained above, the present invention transmits the rotation of the shaft via the elastic member to the inner cylinder arranged concentrically with the outer cylinder in the fluid,
A simple structure in which first and second metal members are provided at both ends of the elastic member to detect twisting caused by viscous torque in the inner cylinder, and a detector that is sensitive to the proximity of the metal members is provided, which allows for easy detection of fluid flow in process plants, etc. The viscosity of various fluids such as magnetic fluids in pipes and pressurized tanks can be measured continuously online. By selecting the spring stiffness of the elastic member, a measurement range from low to high viscosity can be secured. The center of rotation of the inner cylinder is held by a shaft and a bearing, so it is less affected by photography and mounting orientation, allowing continuous continuous measurement over a wide measurement range of viscosity with high accuracy and stability. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す断面図、第2図は内
向の上面図の一例、第3図はこの発明の他の実施例を示
す断面図、第4図は弾性部材の一例を示す上面図、第5
図はこの発明の他の実施例を示す断面図、第6図は従来
の回転粘度計を示す説明図、第7図は従来の他の回転粘
度計を示す説明図である。 図において、1は管路、2は外筒、3は内筒、4は軸、
6は弾性部材、7は第1金属部材、8は第2金属部材、
9−1.9−2は軸受、10は気密材、11は検出器、
12はモータ、13は減速機である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is an example of an inward top view, Fig. 3 is a sectional view showing another embodiment of the invention, and Fig. 4 is an example of an elastic member. Top view showing 5th
FIG. 6 is a sectional view showing another embodiment of the present invention, FIG. 6 is an explanatory view showing a conventional rotational viscometer, and FIG. 7 is an explanatory view showing another conventional rotational viscometer. In the figure, 1 is a pipe, 2 is an outer cylinder, 3 is an inner cylinder, 4 is a shaft,
6 is an elastic member, 7 is a first metal member, 8 is a second metal member,
9-1.9-2 is a bearing, 10 is an airtight material, 11 is a detector,
12 is a motor, and 13 is a speed reducer. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)流体の流れる管路内に取付けられた流通孔を有す
る外筒と、回転を上記管路に設けられた気密材を貫通し
て上記管路内部に伝達する軸を回転方向に弾性を具える
弾性部材を介して結合され且つ上記外筒内に同心状に配
置され一端が上記管路に枢支される内筒と、上記弾性部
材の両端部に所定角度にて配置された第1金属部材なら
びに第2金属部材と、上記金属部材の近接に感応する上
記管路に装着された検出器と、上記内筒の他端中心部に
設けられ上記軸が滑動する軸受より成ることを特徴とす
る回転式粘度計。
(1) An outer cylinder having a circulation hole installed in a pipe through which fluid flows, and a shaft that transmits rotation to the inside of the pipe through an airtight material provided in the pipe with elasticity in the direction of rotation. an inner cylinder that is coupled via an elastic member, is arranged concentrically within the outer cylinder, and has one end pivoted to the pipe; and a first cylinder that is arranged at a predetermined angle at both ends of the elastic member. It is characterized by comprising a metal member, a second metal member, a detector attached to the conduit that is sensitive to the proximity of the metal member, and a bearing provided at the center of the other end of the inner cylinder and on which the shaft slides. Rotational viscometer.
(2)弾性部材を内筒上端に取り付け中心部に軸を嵌着
したことを特徴とする特許請求の範囲第1項記載の回転
式粘度計。
(2) The rotational viscometer according to claim 1, characterized in that an elastic member is attached to the upper end of the inner cylinder and a shaft is fitted in the center.
JP27833386A 1986-11-21 1986-11-21 Rotary viscometer Pending JPS63132136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27833386A JPS63132136A (en) 1986-11-21 1986-11-21 Rotary viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27833386A JPS63132136A (en) 1986-11-21 1986-11-21 Rotary viscometer

Publications (1)

Publication Number Publication Date
JPS63132136A true JPS63132136A (en) 1988-06-04

Family

ID=17595867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27833386A Pending JPS63132136A (en) 1986-11-21 1986-11-21 Rotary viscometer

Country Status (1)

Country Link
JP (1) JPS63132136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529517A (en) * 2013-08-28 2016-09-23 ビクトリア リンク リミテッド Rheology measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117073A (en) * 1974-08-01 1976-02-10 Arumenna Ingenierusubyuroon Ab
JPS5913943A (en) * 1982-07-14 1984-01-24 Mitsui Toatsu Chem Inc Measuring device for viscosity and density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117073A (en) * 1974-08-01 1976-02-10 Arumenna Ingenierusubyuroon Ab
JPS5913943A (en) * 1982-07-14 1984-01-24 Mitsui Toatsu Chem Inc Measuring device for viscosity and density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529517A (en) * 2013-08-28 2016-09-23 ビクトリア リンク リミテッド Rheology measuring device

Similar Documents

Publication Publication Date Title
US4668911A (en) Apparatus for making non-contact angular deflection measurements
US20120234107A1 (en) Non-contact torque measurement apparatus and methd
US2624198A (en) Flowmeter
EP2817608B1 (en) Apparatus and method for constant shear rate and oscillatory rheology measurements
JPS61280523A (en) Device for weighing flow of bulky substance
KR19990070275A (en) Apparatus and method for measuring mass moment of inertia and center of gravity
US3426593A (en) Vibrating transducer for flow and related measurements
US9243882B2 (en) Low friction rheometer
US3608374A (en) Mass flowmeter
US6705171B1 (en) Torque measuring device for a device measuring the flow of material
US3812706A (en) Consistometer
US4499753A (en) Rotational viscometer for high-pressure high-temperature fluids
US6776028B1 (en) Induction sensor viscometer
WO2013138425A1 (en) Viscosity testing system and method of using the same
JPS63132136A (en) Rotary viscometer
CN2854571Y (en) On-line investigating viscometer
JPS63179236A (en) Rotary viscometer
CN1124481C (en) Support system with radially rigid wire sustension
WO2013177332A1 (en) Non-contact torque measurement apparatus and method
JPH0455250B2 (en)
US2891403A (en) Specific gravity meter
CN216433100U (en) Mass flowmeter
JPH0344536A (en) Rotary viscometer with damping
SU1068714A1 (en) Flowmeter
JPS6347630A (en) Apparatus for measuring specific gravity of fluid