JPS63131470A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS63131470A
JPS63131470A JP61276561A JP27656186A JPS63131470A JP S63131470 A JPS63131470 A JP S63131470A JP 61276561 A JP61276561 A JP 61276561A JP 27656186 A JP27656186 A JP 27656186A JP S63131470 A JPS63131470 A JP S63131470A
Authority
JP
Japan
Prior art keywords
air
fuel
pressure
valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61276561A
Other languages
Japanese (ja)
Inventor
Masanori Yamaguchi
山口 雅教
Takeo Kuwabara
桑原 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61276561A priority Critical patent/JPS63131470A/en
Publication of JPS63131470A publication Critical patent/JPS63131470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve reliability of an operating system by inputting a fuel gas flow rate and an air flow rate, and by performing an operation of these flow rates and opening/closing a fuel release pressure valve and an air release pressure valve based on the operational results so that a difference pressure between the fuel gas pressure and the air pressure is controlled to be constant. CONSTITUTION:When emergent interruption occurs in a plant, a large difference pressure is generated between an air pressure and a fuel gas pressure. Then, a fuel air controlling device 12 inputs an air flow rate and a gas flow rate and determines that either an air release pressure valve 10 or a fuel release pressure valve 11 should be opened based on these flow rates, and this device 12 outputs a controlling signal in conformity with the determination, so that one of the release pressure valves is opened and the difference pressure is controlled to be constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to fuel cells.

〔従来の技術〕[Conventional technology]

従来の燃料電池において、燃料極の燃料ガス圧と空気極
の空気圧との差圧を制御するときは、例えば特開昭60
−198064号公報に開示されてるように、両極間の
差圧がある値に達したとき、両極の系統に並列された調
節弁を開閉して制御する方式%式% 〔発明が解決しようとする問題点〕 上述したように、従来の燃料電池でガス圧と空気圧の差
圧を制御する場合は、差圧がある値に達したとき調節弁
を開いて制御するのであるが、調節弁の動作遅れにより
、プラントの緊急遮断のように差圧の変動が速い場合は
一定に制御することが困難となる。この場合、調節弁の
動作遅れを考慮して差圧の設定値を下げると、定常状態
でも調節弁が動作する不安定状態を生じ、いわゆるハン
チング動作が発生して燃料電池システム全体の信・\ 岐性を低下させる嫌いがあった。
In conventional fuel cells, when controlling the differential pressure between the fuel gas pressure at the fuel electrode and the air pressure at the air electrode, for example,
- As disclosed in Publication No. 198064, when the differential pressure between the two poles reaches a certain value, the control valves connected in parallel to the two poles are opened and closed. Problem] As mentioned above, when controlling the differential pressure between gas pressure and air pressure in conventional fuel cells, the control valve is opened when the differential pressure reaches a certain value, but the operation of the control valve is Due to the delay, it becomes difficult to control the differential pressure to a constant level when the differential pressure fluctuates quickly, such as during an emergency shutdown of a plant. In this case, if the set value of the differential pressure is lowered in consideration of the delay in the operation of the control valve, an unstable state will occur in which the control valve will operate even in a steady state, resulting in a so-called hunting operation, which will reduce the reliability of the entire fuel cell system. There was a dislike for lowering one's ability to develop.

本発明の目的は、運転系統の信頼性を向上する燃料電池
を提供することにある。
An object of the present invention is to provide a fuel cell that improves the reliability of an operating system.

〔問題点を解決するための゛手段〕[Means for solving problems]

本発明は、燃料極と、この燃料極に燃料ガスを供給する
燃料系統と、この燃料系統に接続され燃料ガス圧を調整
する燃料放圧弁と、空気極と、この空気極に空気を供給
する空気系統と、この空気系統に接続され空気圧を調整
する空気放圧弁とを備えてなる燃料電池において、前記
燃料ガスおよび前記空気の流量を入力して演算し、その
演算結果に基づいて前記燃料放圧弁および前記空気放圧
弁を開閉して燃料ガス圧と空気圧との差圧を一定に制御
する燃料空気制御装置が設けてあることを特徴とし、燃
料電池の運転時における信頼性が向上するようにして上
記目的の達成を計ったものである。
The present invention provides a fuel electrode, a fuel system that supplies fuel gas to the fuel electrode, a fuel relief valve that is connected to the fuel system and adjusts fuel gas pressure, an air electrode, and supplies air to the air electrode. In a fuel cell comprising an air system and an air pressure relief valve connected to the air system to adjust air pressure, the flow rates of the fuel gas and the air are input and calculated, and the fuel release is performed based on the calculation results. The fuel cell is characterized by being provided with a fuel air control device that opens and closes a pressure valve and the air pressure relief valve to control the differential pressure between the fuel gas pressure and the air pressure at a constant level, thereby improving reliability during operation of the fuel cell. The aim is to achieve the above objectives.

〔作用〕[Effect]

本発明の燃料電池では、燃料ガス圧と空気圧の差圧を制
御する場合は、燃料空気制御装置により、燃料ガスと空
気の流量を入力して演算し、この演算結果に基づいてい
ずれかの極の放圧弁を開放して制御するようにしである
ので、調節弁を開閉して制御する場合に比べ、差圧を小
さくするような制御動作が得られるので、燃料電池の運
転特性を安定にし、遮断時に生ずる電池損傷などの事故
を防止することができる。
In the fuel cell of the present invention, when controlling the differential pressure between the fuel gas pressure and the air pressure, the fuel air control device inputs and calculates the flow rates of the fuel gas and air, and based on the calculation results, either pole is controlled. Since the control is performed by opening the pressure relief valve of the fuel cell, it is possible to obtain a control operation that reduces the differential pressure compared to the case where control is performed by opening and closing the control valve, thereby stabilizing the operating characteristics of the fuel cell. Accidents such as battery damage that occur when the circuit is cut off can be prevented.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の燃料電池の一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the fuel cell of the present invention.

図において、1は電池容器、2は空気極部、3は燃料極
部を示す。
In the figure, 1 is a battery container, 2 is an air electrode portion, and 3 is a fuel electrode portion.

4は流量調節弁で、電池容器1に流入する窒素を調節す
る。5は差圧調節弁で、電池容器1、空気極部2の出口
側差圧を調節する。6はリホーマ燃焼部で改質ガスを発
生するプロセスに接続される。7は流量調節弁で、空気
極部2に流入する空気を調節する。8は流量調節弁で、
リホーマ6のプロセス側で発生した改質ガスを流入し、
その流量を調節する。9は差圧調節弁で、燃料極部3の
出口側に接続され、定常状態における空気極部2と燃料
極部3の間に生ずる差圧を調節する。
Reference numeral 4 denotes a flow control valve for regulating nitrogen flowing into the battery container 1. Reference numeral 5 denotes a differential pressure regulating valve, which regulates the differential pressure between the battery container 1 and the air electrode section 2 on the outlet side. 6 is connected to a process for generating reformed gas in a reformer combustion section. Reference numeral 7 denotes a flow control valve for regulating the air flowing into the air electrode section 2. 8 is a flow control valve;
The reformed gas generated on the process side of Reformer 6 flows in,
Adjust its flow rate. Reference numeral 9 denotes a differential pressure regulating valve, which is connected to the outlet side of the fuel electrode section 3 and adjusts the differential pressure generated between the air electrode section 2 and the fuel electrode section 3 in a steady state.

10は空気放圧弁、11は燃料放圧弁で、差圧調節弁9
による制御だけでは不十分な場合、いずれか圧力の高い
方の放圧弁を開いて差圧を制御する場合に用いられる。
10 is an air pressure relief valve, 11 is a fuel pressure relief valve, and a differential pressure control valve 9
This is used to control the differential pressure by opening the relief valve with the higher pressure when control alone is insufficient.

12は燃料空気制御装置で、流量調節弁7および8を通
る空気および燃料ガスの流量と、差圧調節弁9を通る出
力側ガスの流量とを入力し、これらの諸量に基づいて空
気放圧弁10および燃料放圧弁11を制御する出力信号
を発生するものである。
Reference numeral 12 denotes a fuel/air control device which inputs the flow rates of air and fuel gas passing through the flow rate control valves 7 and 8 and the flow rate of output side gas passing through the differential pressure control valve 9, and controls the air release based on these quantities. It generates an output signal that controls the pressure valve 10 and the fuel relief valve 11.

13および14は燃交換器等による圧力損失要素を表わ
すものである。
13 and 14 represent pressure loss elements due to a fuel exchanger and the like.

この実施例の燃料電池では、電池容器1の入口側には流
量調節弁4を通って窒素ガスが流入し、出口側には差圧
調節弁5が接続され、リホーマ燃焼部6に接続される。
In the fuel cell of this embodiment, nitrogen gas flows into the inlet side of the cell container 1 through the flow control valve 4, and the differential pressure control valve 5 is connected to the outlet side, which is connected to the reformer combustion section 6. .

空気極部2には流量調節弁7を通って空気が流入し、こ
こで電流発生に必要な酸素が消費され。
Air flows into the air electrode section 2 through the flow control valve 7, and oxygen necessary for generating current is consumed here.

出口側に排出される。その後は熱交換器等の圧力損失要
素13を経てリホーマ燃焼部6に流入する。
It is discharged to the exit side. Thereafter, it flows into the reformer combustion section 6 through a pressure loss element 13 such as a heat exchanger.

燃料極部3にはリホーマ燃料部6のプロセス側で生じた
改質ガスが流量調節弁8を通って流入し、ここで発電に
必要な水素が消費される。排出ガスは出口側の差圧調節
弁9を通り、熱交換器等の圧力損失要素14を経てり示
−マ燃焼部6に流入するようになっている。
Reformed gas generated on the process side of the reformer fuel section 6 flows into the fuel electrode section 3 through a flow control valve 8, where hydrogen necessary for power generation is consumed. The exhaust gas passes through a differential pressure regulating valve 9 on the outlet side, passes through a pressure loss element 14 such as a heat exchanger, and then flows into the indicator combustion section 6.

このような状態でプラントの緊急遮断などが生ずると、
空気圧および燃料ガス圧の間には大きな差圧が発生する
ことになる。
If an emergency shutdown of the plant occurs under such conditions,
A large pressure difference will occur between the air pressure and the fuel gas pressure.

このとき燃料空気制御袋[12は、空気流量およびガス
流量などを入力し、これらの諸量を基に空気放圧弁10
および燃料放圧弁11のいずれを開放すべきかを測定し
、この判定により制御信号を出力して一方の放圧弁を開
放し、差圧を一定に制御することになる。
At this time, the fuel air control bag [12 inputs the air flow rate, gas flow rate, etc., and based on these various quantities, the air pressure valve 10
and which of the fuel pressure relief valves 11 should be opened, and based on this determination, a control signal is output to open one of the pressure relief valves, thereby controlling the differential pressure to be constant.

以上、本実施例を用することにより、燃料ガスノ圧と空
気圧との差圧の制御偏差が小さくなり、系統を安定に制
御することができるので、燃料電池運転における信頼性
を向上することができる。
As described above, by using this embodiment, the control deviation of the differential pressure between the fuel gas pressure and the air pressure is reduced, and the system can be controlled stably, so that reliability in fuel cell operation can be improved. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、運転系統の信頼性を向上する燃料電池
を提供することができる。
According to the present invention, it is possible to provide a fuel cell that improves the reliability of an operating system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池の一実施例の説明図である。 4.7.8・・・流量調節弁、10・・・空気放圧弁。 11・・・燃料放圧弁、14・・・燃料空気制御装置。 FIG. 1 is an explanatory diagram of an embodiment of the fuel cell of the present invention. 4.7.8...Flow control valve, 10...Air pressure relief valve. 11...Fuel pressure relief valve, 14...Fuel air control device.

Claims (1)

【特許請求の範囲】[Claims] 1、燃料極と、該燃料極に燃料ガスを供給する燃料系統
と、該燃料系統に接続され燃料ガス圧を調整する燃料放
圧弁と、空気極と、該空気極に空気を供給する空気系統
と、該空気系統に接続され空気圧を調整する空気放圧弁
とを備えてなる燃料電池において、前記燃料ガスおよび
前記空気の流量を入力して演算し、その演算結果に基づ
いて前記燃料放圧弁および前記空気放圧弁を開閉して前
記燃料ガス圧と前記空気圧との差圧を一定に制御する燃
料空気制御装置が設けてあることを特徴とする燃料電池
1. A fuel electrode, a fuel system that supplies fuel gas to the fuel electrode, a fuel relief valve that is connected to the fuel system and adjusts the fuel gas pressure, an air electrode, and an air system that supplies air to the air electrode. and an air pressure relief valve connected to the air system to adjust the air pressure, the flow rates of the fuel gas and the air are input and calculated, and based on the calculation results, the fuel pressure valve and the air pressure relief valve are connected to the air system. A fuel cell characterized in that a fuel air control device is provided that opens and closes the air pressure relief valve to control the differential pressure between the fuel gas pressure and the air pressure to be constant.
JP61276561A 1986-11-21 1986-11-21 Fuel cell Pending JPS63131470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61276561A JPS63131470A (en) 1986-11-21 1986-11-21 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276561A JPS63131470A (en) 1986-11-21 1986-11-21 Fuel cell

Publications (1)

Publication Number Publication Date
JPS63131470A true JPS63131470A (en) 1988-06-03

Family

ID=17571205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276561A Pending JPS63131470A (en) 1986-11-21 1986-11-21 Fuel cell

Country Status (1)

Country Link
JP (1) JPS63131470A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166670A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Pressure control method of fuel cell
JPS6086772A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Differential pressure control of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166670A (en) * 1982-03-27 1983-10-01 Kansai Electric Power Co Inc:The Pressure control method of fuel cell
JPS6086772A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Differential pressure control of fuel cell

Similar Documents

Publication Publication Date Title
JP2003151593A (en) Fuel cell system
EP3021397B1 (en) Fuel cell system, and control method for fuel cell system
JP4642432B2 (en) Fuel cell system
JPS6030062A (en) Output controller of fuel cell
JP4828078B2 (en) Method for controlling oxidant flow rate in fuel cell system
JPS6229869B2 (en)
JPH0652665B2 (en) Fuel cell operation method
JPS63131470A (en) Fuel cell
JPS5918577A (en) Control system of fuel cell power generating plant
JPS58166672A (en) Operation control method of fuel cell
JP2007165162A (en) Fuel cell system and mobile body
JP7272320B2 (en) Fuel cell system and method for controlling fuel cell
JPH079812B2 (en) Fuel cell
JPH03266367A (en) Fuel system control unit of fuel cell system
JP2004178898A (en) Fuel cell system
JPS59111270A (en) Control device for fuel-cell power generating system
JPS5951478A (en) Power generation system of fuel battery
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPH09237634A (en) Fuel cell generating device
JPH01176667A (en) Fuel cell power generating system
JPS6030061A (en) Output controller of fuel cell
JPS5975572A (en) Controller for pressure difference across the electrodes of fuel cell
JPS58133776A (en) Control system of fuel cell power generating system
JPH0381967A (en) Fuel cell
JPS60154471A (en) Air and fuel control system of fuel cell