JPS63130714A - Annealing method for iron core - Google Patents

Annealing method for iron core

Info

Publication number
JPS63130714A
JPS63130714A JP27662586A JP27662586A JPS63130714A JP S63130714 A JPS63130714 A JP S63130714A JP 27662586 A JP27662586 A JP 27662586A JP 27662586 A JP27662586 A JP 27662586A JP S63130714 A JPS63130714 A JP S63130714A
Authority
JP
Japan
Prior art keywords
iron core
induction heating
core
frequency
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27662586A
Other languages
Japanese (ja)
Inventor
Kenji Ishihara
石原 憲志
Naoto Wakai
若井 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27662586A priority Critical patent/JPS63130714A/en
Publication of JPS63130714A publication Critical patent/JPS63130714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly heat the whole iron core and to prevent the development of deteriorated iron core by piling many pieces of steel sheets for ion core of small capacity motor in an induction heating apparatus, laying blocks for compensating heat-treatment, made of magnetic substance at both ends and setting frequency of the induction current to the specific range at the time of annealing by induction heat. CONSTITUTION:Many pieces of punching-worked annular iron core sheets 4a are piled in the cylindrical induction heating apparatus 3 burying oil 2 for induction heating into the side wall and at upper and lower sides thereof, the blocks 5, 5 for compensating heat-treatment, made of magnetic substance, such as ferrite series stainless steel, etc., are laid. Under this condition, DC current having 300-500Hz number of frequency is applied to the coil 2 for induction heating and the iron core 2 is heated to about 800 deg.C by the induction current, to anneal. The whole steel sheets for iron core is uniformly heated and also the iron core without any deterioration of insulating film caused by over-heating and iron-loss characteristic caused by low temp. is obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は積層状態の鉄心を誘導加熱装置にて焼鈍する鉄
心の焼鈍方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an iron core annealing method for annealing a laminated iron core using an induction heating device.

(従来の技術) 一般に小形電動機の鉄心は、鋼板を打抜き加工したもの
を多数積層して製造されるが、その打抜き加工の折りに
発生する残留応力により鉄心の磁気特性か劣化すること
が知られており、この対策として、鉄心の焼鈍が行なわ
れる。
(Prior art) Iron cores for small electric motors are generally manufactured by stacking a large number of punched steel plates, but it is known that the magnetic properties of the core deteriorate due to residual stress generated during the punching process. As a countermeasure to this problem, annealing of the iron core is performed.

而して従来、その焼鈍には、電気抵抗発熱による熱やガ
スもしくは燃焼による熱を伝導や輻射により鉄心に加え
て、鉄心を加熱する方法が採られている。ところがこの
方法では、加熱効率が悪く設備か大形化する欠点がある
。このため、近年、加熱効率を向上させるべく誘導加熱
により鉄心を加熱する方法が考えられており、例えば特
開昭58−104125号に示すようなものがある。そ
れは、誘導コイルを配設した誘導加熱装置の内部に積層
状態の鉄心を収納配置し、この状態で誘導加熱により鉄
心を加熱するものである。この場合、その誘導加熱時に
おける誘導電流の周波数は、1゜4  [KHzコ乃至
1.8  [KHzコで行なうようにしている。又この
場合、鉄心の加熱温度は、打抜き時の残留応力を除去す
るため最低温度としてはT2O[’C]を確保し、一方
、鉄心飼料に施した層間絶縁被膜の耐熱性を考慮して最
高温度としては通常800[℃]、最高でも850[℃
コまでが良いとされており、従って鉄心の加熱温度は、
通常750[’Cコ乃至11100[’c]の範囲が良
いとされている。
Conventionally, the method of annealing has been to heat the iron core by adding heat generated by electrical resistance, gas, or combustion to the iron core by conduction or radiation. However, this method has the drawback of poor heating efficiency and increased equipment size. For this reason, in recent years, methods of heating the iron core by induction heating have been considered in order to improve the heating efficiency, and for example, there is a method as shown in JP-A-58-104125. In this method, a laminated iron core is housed inside an induction heating device equipped with an induction coil, and the iron core is heated by induction heating in this state. In this case, the frequency of the induced current during induction heating is 1°4 [KHz] to 1.8 [KHz]. In this case, the heating temperature of the iron core is set at T2O ['C] as the minimum temperature in order to remove the residual stress during punching, and on the other hand, the maximum temperature is set in consideration of the heat resistance of the interlayer insulation coating applied to the iron core feed. The temperature is usually 800[℃], maximum 850[℃]
Therefore, the heating temperature of the iron core is
Generally, a range of 750 ['C] to 11100 ['C] is considered to be good.

ところで、誘導加熱装置による鉄心の焼鈍方法の一つと
して特願昭60−251656号に示される方法が既に
出願されている。それは、小ロッI・の鉄心を焼鈍する
ため所謂バッチ生産方式の形態を採るもので、第1図に
示すように、上面が閉塞された円筒状をなす加熱炉1の
側壁に誘導コイル2を埋設して誘導加熱装置3を構成し
、この誘導加熱装置3内(ご、積層状態の鉄心4及びこ
の積層鉄心4の上、丁酉端部分に熱処理補償ブロック5
.5を配置した状態で収納し、この状態で誘導加熱を行
なうようにしたものである。本発明者は、今回、この方
法において、積層鉄心4に1000[Hzlの周波数を
加えて誘導加熱を行なって約10分間で800[’C]
に加熱する実験を行なった。この際に、積層鉄心4の高
さ方向の中央部位Aと積層鉄心4端部の熱処理補償ブロ
ック5近傍部位Bの各鉄心板4aについて、第2図に示
すように外周部部位a、スロット底部部位す及び内周部
部位Cの各温度を熱電対により計測したところ、下記の
表1で示す結果を得た。
Incidentally, as one method of annealing an iron core using an induction heating device, a method disclosed in Japanese Patent Application No. 60-251656 has already been filed. This method employs a so-called batch production method for annealing iron cores in small lots.As shown in FIG. The induction heating device 3 is constructed by embedding the core 4 in a laminated state and a heat treatment compensation block 5 at the top of the laminated core 4.
.. 5 is arranged and stored, and induction heating is performed in this state. In this method, the present inventor applied induction heating to the laminated iron core 4 by applying a frequency of 1000 [Hzl, and heated it to 800 ['C] in about 10 minutes.
An experiment was conducted in which the material was heated to . At this time, as shown in FIG. 2, for each core plate 4a in the central part A in the height direction of the laminated core 4 and the part B near the heat treatment compensation block 5 at the end of the laminated core 4, the outer peripheral part a, the slot bottom part When the temperatures of the portion C and the inner peripheral portion C were measured using thermocouples, the results shown in Table 1 below were obtained.

この表1から理解されるように、積層鉄心4の高さ方向
の中央部位Aにおいての温度差は10[’C]であるの
に対し、熱処理補償ブロック5近傍部位Bにおいての温
度差は55[℃] と大きい。
As can be understood from Table 1, the temperature difference at the central portion A in the height direction of the laminated core 4 is 10 ['C], while the temperature difference at the portion B near the heat treatment compensation block 5 is 55°C. It is as large as [℃].

従ってこの場合、積層鉄心4においては特に熱処理補償
ブロック5近傍部位は磁束の流れに乱れが生じ易いこと
を考えると、誘導電流の周波数が1000[H4F以」
二のときには」1記温度差が50[’C]を越える虞が
あり、このため、加熱温度の最低温度が750[°C]
以下のときには鉄損の回復が不十分となり、一方、最高
温度が800[℃]を大きく越えたときには層間絶縁被
膜が劣化する虞があるという欠点がある。
Therefore, in this case, considering that in the laminated core 4, the magnetic flux flow is likely to be disturbed especially in the vicinity of the heat treatment compensation block 5, the frequency of the induced current is 1000 [H4F or higher].
In the case of 2, there is a possibility that the temperature difference in 1 may exceed 50 [°C], so the minimum heating temperature is 750 [°C].
In the following cases, recovery of iron loss becomes insufficient, and on the other hand, when the maximum temperature significantly exceeds 800 [° C.], there is a drawback that there is a possibility that the interlayer insulation coating may deteriorate.

(発明が解決しようとする問題点) 」二連したように、積層鉄心4の両端部分に熱処理補償
ブロック5を配置した状態で誘導加熱を行なうようにし
たものにおいて、誘導電流の周波数が1000 [H,
z]以」二の場合には、積層鉄心4の特に熱処理補償ブ
ロック5近傍部位における径方向での温度差が大きく、
不良品が発生する虞があった。
(Problems to be Solved by the Invention) In a device in which induction heating is performed with heat treatment compensation blocks 5 arranged at both ends of a laminated iron core 4 in a double series, the frequency of the induced current is 1000 [ H,
In the second case, the temperature difference in the radial direction of the laminated core 4 is large, especially in the vicinity of the heat treatment compensation block 5.
There was a risk that defective products would occur.

本発明は」二足事情に鑑みてなされたものであり、従っ
てその目的は、鉄心全体をより均一な温度で加熱できて
、不良品の発生をなくし得る鉄心の焼鈍方法を提供する
にある。
The present invention has been made in view of the two circumstances, and therefore, its purpose is to provide an iron core annealing method that can heat the entire iron core at a more uniform temperature and eliminate the occurrence of defective products.

[発明の構成] (問題点を解決するための手段) 本発明は、積層鉄心を誘導加熱装置により焼鈍するに際
し、その誘導加熱装置内の前記鉄心両端の部分に磁性体
製の熱処理補償ブロックを配置した状態でその誘導加熱
を行なうようにした方法において、その誘導加熱を、誘
導電流の周波数を300[Hzコ乃至500[Hzコの
範囲に設定して行なうようにしたところに特徴を有する
[Structure of the Invention] (Means for Solving the Problems) The present invention provides, when annealing a laminated core using an induction heating device, a heat treatment compensation block made of a magnetic material is provided at both ends of the core in the induction heating device. This method is characterized in that the induction heating is performed by setting the frequency of the induced current in the range of 300 Hz to 500 Hz.

(作用) 一般に、誘導加熱装置により鉄心を加熱する場合、鉄心
全体を均一に加熱するには、誘導加熱時における昇温速
度を遅くすることが考えられるが、加熱時間か長くなり
加熱効率が悪い。ところで、このような誘導加熱におい
ては、誘導電流の周波数fに対する電流浸透度δが次の
式で表わされることが知られている。
(Function) Generally, when heating the iron core with an induction heating device, in order to uniformly heat the entire iron core, it is possible to slow down the temperature increase rate during induction heating, but the heating time becomes longer and the heating efficiency is poor. . By the way, in such induction heating, it is known that the current penetration degree δ with respect to the frequency f of the induced current is expressed by the following equation.

δ=5030  ψ (μ・f) 但し、ψ:被加熱物の固有抵抗[00m ]μ:被加熱
物の比透磁率 f:周波数[Hzコ この式から理解されるように、周波数fが小さくなるに
従って電流浸透度δが大きくなるものであり、従って加
熱時間を同一とした場合には、周波数fが小さくなるに
従って被加熱物である鉄心かより均一に加熱される傾向
かある。
δ=5030 ψ (μ・f) However, ψ: Specific resistance of the heated object [00m] μ: Relative magnetic permeability of the heated object f: Frequency [Hz] As can be understood from this equation, the frequency f is small. As the frequency f decreases, the current penetration degree δ increases. Therefore, if the heating time is the same, there is a tendency for the iron core, which is the object to be heated, to be heated more uniformly as the frequency f decreases.

本発明者はこの点に着目し、その誘導加熱時における誘
導電流の周波数を、」一連したように300[Hzl乃
至500[Hzlの範囲に設定することで、加熱効率を
低下させることなく鉄心をより均一に加熱できるように
した。
The present inventor focused on this point, and by setting the frequency of the induced current during induction heating in the range of 300 [Hzl to 500 [Hzl], the iron core can be heated without reducing the heating efficiency. Allows for more even heating.

(実施例) 以下本発明の一実施例につき第1図乃至第3図を参照し
て説明する。但し、第1図及び第2図においては、従来
構成と同一であり、従って3は誘導加熱装置で、これは
」二面が閉塞された円筒状をなす加熱炉1の側壁に誘導
コイル2を埋設して構成している。4は鋼板を打抜き加
工した環状の鉄心板4aを多数積層してなる積層鉄心で
ある。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. However, in FIGS. 1 and 2, the configuration is the same as the conventional one, so 3 is an induction heating device. It is constructed by burying it. Reference numeral 4 denotes a laminated core formed by laminating a large number of annular core plates 4a formed by punching steel plates.

そして、5は熱処理補償ブロックで、鉄心4と略同じ磁
気特性を有する磁性材料例えばフェライト系ステンレス
材よりなる。この場合、上記誘導加熱装置3における加
熱炉1は、その外径寸法が320[mm]、内径寸法が
280[mml、内部有効高さ寸法が800[mmlよ
りも若干大となるように設定され、又、積層鉄心4は、
その外径寸法が190[mm]、積層高さ寸法が400
[mm]に設定され、更に熱処理補償ブロック5は、そ
の外径寸法は積層鉄心4と同一で、高さ寸法が200[
mn+]に設定されている。
A heat treatment compensation block 5 is made of a magnetic material having substantially the same magnetic properties as the iron core 4, such as a ferritic stainless steel material. In this case, the heating furnace 1 in the induction heating device 3 is set so that its outer diameter is 320 mm, its inner diameter is 280 mm, and its internal effective height is slightly larger than 800 mm. , and the laminated iron core 4 is
Its outer diameter is 190 [mm] and the stacking height is 400 mm.
Furthermore, the heat treatment compensation block 5 has the same outer diameter as the laminated core 4 and a height of 200 [mm].
mn+].

さて、」−記積層鉄心4を焼鈍するには、まず、誘導加
熱装置3の加熱炉1内に、積層鉄心4及びこの積層鉄心
4の」二、千両端部分に熱処理補償ブロック5,5を配
置した状態で収納する。そして、この状態で誘導加熱装
置3を運転し、積層鉄心4の誘導加熱を、この場合その
誘導電流の周波数を500[Hzコにて行ない、積層鉄
心4を約10分間で800ビC]に加熱する。この際に
、従来と同様に、積層鉄心4の高さ方向の中央部位Aと
積層鉄心4端部の熱処理補償ブロック5近傍部位Bの各
鉄心板4aについて、外周部部位a、スロット底部部位
す及び内周部部位Cの各温度を熱雷対により計測したと
ころ、下記の表2で示す結果を得た。
Now, in order to anneal the laminated core 4, first heat treatment compensation blocks 5, 5 are placed on the laminated core 4 and both end portions of the laminated core 4 in the heating furnace 1 of the induction heating device 3. Store it in the arranged state. Then, in this state, the induction heating device 3 is operated to inductively heat the laminated iron core 4, in this case, the frequency of the induced current is 500 [Hz], and the laminated iron core 4 is heated to 800 BiC in about 10 minutes. Heat. At this time, as in the conventional case, for each core plate 4a of the central part A in the height direction of the laminated core 4 and the part B near the heat treatment compensation block 5 at the end of the laminated core 4, the outer peripheral part a and the slot bottom part are all The temperatures of the inner circumferential portion C were measured using a thermal lightning pair, and the results shown in Table 2 below were obtained.

高さ方向の中央部位Aにおける温度差及び熱処理補償ブ
ロック5近傍部位Bにおける温度差は、共に50[’C
]以内という良好な結果を得ることができた。
The temperature difference at the central portion A in the height direction and the temperature difference at the portion B near the heat treatment compensation block 5 are both 50 ['C
] We were able to obtain good results within .

又、上述と同様の方法で、誘導加熱装置3における加熱
炉lは、その外径寸法が280[mm]、内径寸法が1
55[mm]、内部有効高さ寸法が300[mm]とな
るように設定し、又、積層鉄心4は、その外径寸法が1
25[m+nl、積層高さ寸法が100[mn+:lと
なるように設定し、更に熱処理補償ブロック5は、その
高さ寸法が100[+nmコとなるように設定する。そ
して、その誘導加熱装置3の加熱炉1内に、積層鉄心4
及びこの積層鉄心4の」二、千両端部分に熱処理補償ブ
ロック5゜5を配置した状態で収納し、積層鉄心4の誘
導加熱を、その誘導電流の周波数を309[Hz]にて
行ない、積層鉄心4を約12分間で800[’C]に加
熱した。この際にも、積層鉄心4の各部位についての温
度を熱雷対により計測したところ、下記の表3で示す結
果を得た。
In addition, in the same manner as described above, the heating furnace l in the induction heating device 3 has an outer diameter of 280 [mm] and an inner diameter of 1.
55 [mm], and the internal effective height dimension is set to 300 [mm], and the outer diameter of the laminated core 4 is set to 1.
25[m+nl, and the stacking height dimension is set to be 100[mn+:l, and further, the heat treatment compensation block 5 is set so that its height dimension is 100[+nm]. Then, a laminated iron core 4 is placed in the heating furnace 1 of the induction heating device 3.
The laminated core 4 is housed with heat treatment compensation blocks 5゜5 arranged at both end portions, and the laminated core 4 is heated by induction at a frequency of 309 [Hz] of the induced current. The iron core 4 was heated to 800['C] for about 12 minutes. At this time as well, when the temperature of each part of the laminated core 4 was measured using a thermal lightning pair, the results shown in Table 3 below were obtained.

= 9− 表3  温度測定結果       (’C’)この場
合、この表3から理解されるように、積層鉄心4の高さ
方向の中央部位Aにおける温度差及び熱処理補償ブロッ
ク5近傍部位Bにおける温度差は、共に50[’C]以
内という良好な結果を得ることができた。
= 9- Table 3 Temperature measurement results ('C') In this case, as understood from this Table 3, the temperature difference at the center part A in the height direction of the laminated core 4 and the temperature at the part B near the heat treatment compensation block 5 Good results were obtained in which the difference was within 50['C] in both cases.

これらの結果に基づいて、周波数fと積層鉄心4におけ
る温度差Δtとの関係の特性線図を第3図に示す。この
場合、特性線Cは、積層鉄心4の高さ方向の中央部位A
の特性線を示し、又、特性線りは、積層鉄心4端部の熱
処理補償ブロック5近傍部位Bの特性線を示している。
Based on these results, a characteristic diagram of the relationship between the frequency f and the temperature difference Δt in the laminated core 4 is shown in FIG. In this case, the characteristic line C corresponds to the central portion A in the height direction of the laminated core 4.
Also, the characteristic line shows a characteristic line of a portion B near the heat treatment compensation block 5 at the end portion of the laminated core 4.

尚、破線は温度差Δtの許容範囲の目安を示している。Incidentally, the broken line indicates a guideline for the allowable range of the temperature difference Δt.

この第3図から理解されるように、特性線Cについては
、周波数fか300[Hzコ、500 [Hz]、10
00[Hz]の何れにおいても温度差Δtは50[’C
]以ドであって、各周波数fに対する温度差Δtのばら
つきは小さい。これに対して、特性線りについては、周
波数fが1000[Hz1以上では温度差Δtが50[
’C]を越え、周波数が小さくなるに従って温度差Δt
が減少する傾向となっている。よって、この特性線りを
基準にすると、周波数fが小さくなるに従って温度差Δ
tは小さくなるものであるが、300[Hz]未満につ
いては昇温速度が遅く加熱効率が悪くなる不具合が予想
され、一方、温度差Δtを50[℃]以内とした場合、
周波数fの」1限は、約800[Hzlまで許容範囲に
入るが、設定条件等による温度のばらつきを考慮すると
500[Hz:lまでが望ましいと考えられる。従って
これらの結果がら、加熱効率を低下させることなく積層
鉄心4を均一に加熱するには、誘導加熱時における誘導
電流の周波数fは300[Hzl乃至500[Hzコの
範囲が望ましいと考えられる。
As can be understood from Fig. 3, for the characteristic line C, the frequency f is 300 [Hz], 500 [Hz], 10
00[Hz], the temperature difference Δt is 50['C]
], and the variation in temperature difference Δt for each frequency f is small. On the other hand, regarding the characteristic line, when the frequency f is 1000 [Hz1 or more, the temperature difference Δt is 50 [Hz] or more.
'C] and as the frequency decreases, the temperature difference Δt
is on the decline. Therefore, using this characteristic line as a reference, as the frequency f becomes smaller, the temperature difference Δ
Although t is small, if it is less than 300 [Hz], it is expected that the temperature increase rate will be slow and the heating efficiency will be poor. On the other hand, if the temperature difference Δt is within 50 [℃],
The first limit of the frequency f is within the permissible range up to about 800 Hz, but considering temperature variations due to setting conditions, etc., it is considered desirable to have a frequency up to 500 Hz:l. Therefore, based on these results, in order to uniformly heat the laminated iron core 4 without reducing the heating efficiency, it is considered that the frequency f of the induced current during induction heating is preferably in the range of 300 [Hz] to 500 [Hz].

このように本実施例によれば、積層鉄心4の両端部分に
熱処理補償ブロック5を配置した状態で誘導加熱を行な
うようにしたものにおいて、その誘導加熱を、誘導電流
の周波数を300[Hzl乃至50.0[Hz]の範囲
に設定して行なうようにしたことにより、加熱効率を低
下させることなく積層鉄心4をより均一に加熱すること
ができて、不良品の発生をなくすことができる。
As described above, according to this embodiment, the induction heating is performed with the heat treatment compensation blocks 5 disposed at both ends of the laminated iron core 4, and the induction heating is performed by changing the frequency of the induced current to 300 [Hzl. By setting the heating frequency within the range of 50.0 [Hz], the laminated core 4 can be heated more uniformly without reducing the heating efficiency, and the generation of defective products can be eliminated.

[発明の効果] 以上の記述にて明らかなように本発明は、積層鉄心を誘
導加熱装置により焼g、tiするに際し、その誘導加熱
装置内の前記鉄心両端の部分に磁性体製の熱処理補償ブ
ロックを配置した状態でその誘導加熱を行なうようにし
た方法において、その誘導加熱を、誘導電流の周波数を
300[Hzl乃至500[Hzlの範囲に設定して行
なうようにしたことにより、加熱効率を低下させること
なく鉄心の全体をより均一に加熱することができて、不
良品の発生をなくし得るという優れた効果を奏する。
[Effects of the Invention] As is clear from the above description, the present invention provides heat treatment compensation made of magnetic material at both ends of the core in the induction heating device when sintering and tying the laminated iron core using an induction heating device. In the method in which induction heating is performed with the blocks placed, heating efficiency is improved by setting the frequency of the induced current in the range of 300 [Hzl to 500 [Hzl]. This has the excellent effect of being able to heat the entire core more uniformly without lowering the temperature, thereby eliminating the occurrence of defective products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明及び従来における全体の縦断面図、第2
図は鉄心板の平面図、第3図は周波数と積層鉄心におけ
る温度差との関係の特性線図である。 図面中、2は誘導コイル、3は誘導加熱装置、4は積層
鉄心、5は熱処理補償ブロックを示す。 代理人 弁理士  則 近 憲 佑 同        三  俣  弘  文第1図 第2図
Fig. 1 is a longitudinal sectional view of the entire structure according to the present invention and the conventional method;
The figure is a plan view of the core plate, and FIG. 3 is a characteristic diagram of the relationship between frequency and temperature difference in the laminated core. In the drawings, 2 is an induction coil, 3 is an induction heating device, 4 is a laminated core, and 5 is a heat treatment compensation block. Agent Patent Attorney Noriyuki Chika Yudo Hiroshi Mitsumata Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、積層鉄心を誘導加熱装置により焼鈍するに際し、そ
の誘導加熱装置内の前記鉄心両端の部分に磁性体製の熱
処理補償ブロックを配置した状態でその誘導加熱を行な
うようにした方法において、その誘導加熱を、誘導電流
の周波数を300[Hz]乃至500[Hz]の範囲に
設定して行なうようにしたことを特徴とする鉄心の焼鈍
方法。
1. When annealing a laminated iron core using an induction heating device, in a method in which induction heating is performed with heat treatment compensation blocks made of magnetic material arranged at both ends of the core in the induction heating device, A method for annealing an iron core, characterized in that heating is performed by setting the frequency of an induced current in the range of 300 [Hz] to 500 [Hz].
JP27662586A 1986-11-21 1986-11-21 Annealing method for iron core Pending JPS63130714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27662586A JPS63130714A (en) 1986-11-21 1986-11-21 Annealing method for iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27662586A JPS63130714A (en) 1986-11-21 1986-11-21 Annealing method for iron core

Publications (1)

Publication Number Publication Date
JPS63130714A true JPS63130714A (en) 1988-06-02

Family

ID=17572047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27662586A Pending JPS63130714A (en) 1986-11-21 1986-11-21 Annealing method for iron core

Country Status (1)

Country Link
JP (1) JPS63130714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046482A (en) * 2006-08-18 2008-02-28 Fujinon Corp Lens device
JP2019115107A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Core annealing method, core annealing system, and stator core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046482A (en) * 2006-08-18 2008-02-28 Fujinon Corp Lens device
JP2019115107A (en) * 2017-12-21 2019-07-11 日本製鉄株式会社 Core annealing method, core annealing system, and stator core

Similar Documents

Publication Publication Date Title
CA1231292A (en) Local heat treatment of electrical steel
US4355221A (en) Method of field annealing an amorphous metal core by means of induction heating
JPS6161510B2 (en)
JPS63130714A (en) Annealing method for iron core
JP4895606B2 (en) Transformer
WO2004064228A1 (en) Stator for motor and process for producing the same
US4500366A (en) Process for producing a grain-oriented electromagnetic steel strip or sheet
JP2003342637A (en) Process and device for magnetic field annealing of motor core
US4602969A (en) Method for annealing a core blank used in electric machinery and devices
JPS6393826A (en) Method for annealing iron core
JPS61214746A (en) Annealing method of core for electric device
JPS6342333A (en) Annealing method for iron core
JPS6350431A (en) Annealing method for iron core
JP3668036B2 (en) Cylindrical metal coil heating device
JP2965948B2 (en) Electromagnetic induction heating method and apparatus for laminate
JPH01198433A (en) Method for annealing iron core
JP4296785B2 (en) Bell type annealing furnace
JPH04276019A (en) Method for annealing laminated iron cores
US2040760A (en) Heating method and apparatus
JPH0219612B2 (en)
JP2003319587A (en) Small core loss inner rotor motor and its manufacturing method
JPS60245724A (en) Heat treatment of iron core
JPS6342331A (en) Production of low iron loss grain oriented electrical steel sheet
JPS6323913Y2 (en)
JPS6074418A (en) Induction heating method for laminated iron core and apparatus therefor