JPS63130551A - Production of 4-pentenal compound - Google Patents

Production of 4-pentenal compound

Info

Publication number
JPS63130551A
JPS63130551A JP61274599A JP27459986A JPS63130551A JP S63130551 A JPS63130551 A JP S63130551A JP 61274599 A JP61274599 A JP 61274599A JP 27459986 A JP27459986 A JP 27459986A JP S63130551 A JPS63130551 A JP S63130551A
Authority
JP
Japan
Prior art keywords
pentenal
alumina
compound
solid acid
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61274599A
Other languages
Japanese (ja)
Other versions
JPH0749380B2 (en
Inventor
Kazuhiro Okura
大蔵 和弘
Masaaki Kubo
正昭 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP61274599A priority Critical patent/JPH0749380B2/en
Publication of JPS63130551A publication Critical patent/JPS63130551A/en
Publication of JPH0749380B2 publication Critical patent/JPH0749380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the titled compound useful as a raw material for perfume, drugs, etc., in a relatively high yield and industrially, by heating a readily obtainable diallylacetal compound in the presence of a specific solid catalyst by using an ordinary device. CONSTITUTION:A diallylacetal compound (e.g. butylaldehydodiallylacetal, etc.) shown by formula I (R1 and R2 are H or 1-7C alkyl) is heated at about 100-200 deg.C in the presence of a solid acid catalyst obtained by calcining sulfate ion and alumina or sulfate ion, phosphate ion and alumina to give a 4-pentenal compound (e.g. 2-ethyl-4-pentenal, etc.) shown by formula II. Preferably the atomic ratio of the atoms constituting the solid acid catalyst is S/Al of 0.01-0.06 in the case of the sulfate ion and alumina and (P+S)/Al of 0.02-0.2 and S/P of 0.02-0.8 in the case of the sulfate ion, phosphate ion and alumina.

Description

【発明の詳細な説明】 の1 本発明は、4−ペンテナール化合物の新規な製造方法に
関するものである。本発明によって得られる4−ペンテ
ナール化合物は、香料、農薬、医薬品等の合成原料とし
て有用であり、例えばセスキテルペン類、ジャスモン等
の骨格形成に用いることができる。
DETAILED DESCRIPTION OF THE INVENTION Part 1: The present invention relates to a novel method for producing a 4-pentenal compound. The 4-pentenal compound obtained by the present invention is useful as a synthetic raw material for fragrances, agricultural chemicals, pharmaceuticals, etc., and can be used, for example, to form the skeleton of sesquiterpenes, jasmone, etc.

差速!1支韮− アルデヒドの一般的な製造方法としては、オレフィンの
オキソ化法、アルコールの脱水素法およびオルトリン酸
エステルのグリニヤール反応等が知られている。これら
の方法では、副反応が多いため製品の純度が悪くなりや
すく原料に制限があったり、高温下での反応のため異性
化が起こりやすくなったり、さらに工業的には高価な原
L(を必要とするなど多くの困難や不利益がある。
Different speed! As general methods for producing monoaldehydes, olefin oxation methods, alcohol dehydrogenation methods, and Grignard reactions of orthophosphoric acid esters are known. In these methods, the purity of the product tends to deteriorate due to many side reactions, there are restrictions on raw materials, isomerization is likely to occur due to the reaction at high temperatures, and the raw material L (which is expensive for industrial purposes) is There are many difficulties and disadvantages, such as the need for

さらに4−ペンテナール(ヒ合物の製造方法としては、
従来アリール転位を利用する方法が知られており、例え
ばに、C,Brannock、 J、A+n、Chem
、SOC,。
Furthermore, as a method for producing 4-pentenal (hypolysate),
Conventionally, methods using aryl rearrangement are known, for example, C, Brannock, J, A+n, Chem.
,SOC,.

81、3379−83.(I959>および P、C,
SIagnus st、al、。
81, 3379-83. (I959> and P, C,
SIagnus st, al.

5ynth、 Commun、、 It)(4)、 2
73−8.(I981))の報告がある。しかしこれら
の方法は、いずれら均一系の酸触媒を用いるため、工業
的には耐酸性の反応装置が必要となるうえ後処理ら複雑
となっている。
5ynth, Commun,, It) (4), 2
73-8. (I981)) has been reported. However, since these methods use a homogeneous acid catalyst, they require an acid-resistant reactor and are complicated in post-treatment.

また2−エチル−4−ペンテナールなどの2位に水素原
子の残っているアルデヒドを合成する場合は著しく収率
が低下する。
Furthermore, when an aldehyde having a hydrogen atom remaining at the 2-position, such as 2-ethyl-4-pentenal, is synthesized, the yield decreases significantly.

その池の4−ペンテナール(ヒ合拘の製造方法としては
、アリルブロマイドとイソブチルアルデヒド3アルカリ
の存在下反応させる方法(V、G、P!J−roh已 
iL、  al、、  Chl!m、  Ind、、 
 (I8)、  731−2.(I97!り)が知られ
ているが、この方法は収率が低く4−ペンテナール化合
物の工業的製造方法としては好ましくない。
The method for producing 4-pentenal (Higatsu) is a method of reacting allyl bromide with isobutyraldehyde in the presence of 3-alkali (V, G, P! J-roh
iL, al,, Chl! m, Ind,,
(I8), 731-2. (I97!ri) is known, but this method has a low yield and is not preferred as an industrial method for producing 4-pentenal compounds.

日が  しようとする口題占 本発明は、通常の反応装置を用い、持に2位に水素原子
のある4−ペンテナール化合物を比較的高収率で工業的
に製造する方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention aims to provide a method for industrially producing a 4-pentenal compound having a hydrogen atom at the 2-position in a relatively high yield using a conventional reaction apparatus. purpose.

本発明は、一般式(■ン 0\/バ〉 〔式中R1、R2は水素原子または炭素数1ないし7の
アルモル基を表し、R1とR2は互いに同一でも相異な
っていてもよい〕 で示さ2’Lるジアリルアセタール化合物を固体酸触媒
の存在下に加熱することを特徴とする一般式(〔式中R
1、R2は前記定義に同じ〕 で示される4−ペンテナール化合物の製造方法に関する
ものである。
The present invention has the following general formula: The general formula ([in the formula, R
1 and R2 are the same as defined above] The present invention relates to a method for producing a 4-pentenal compound represented by the following.

本発明の出発物質となるジアリルアセタール化合物は、
前記一般式(I)で示される化合物であり、例えばプロ
ピオンアルデヒド、ブチルアルデヒド、イソブチルアル
デヒド、n−バレルアルデヒド、2−エチル−ヘキサナ
ール、2−メチルオクナタールなどのアルデヒドのジア
リルアセタール化合物が挙げられる。
The diallyl acetal compound serving as the starting material of the present invention is
Examples of the compound represented by the general formula (I) include diallylacetal compounds of aldehydes such as propionaldehyde, butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethyl-hexanal, and 2-methylocnatal.

一般式(I)のジアリルアセタール1ヒ合物は、アルデ
ヒドをアリルアルコールでアセタール化することにより
容易に得られる。なお、原料のジアリルアセタール中に
はアセタール化反応の未反応物であるアリルアルコール
やアルデヒドが残留していてもよい。
The diallyl acetal compound of general formula (I) can be easily obtained by acetalizing an aldehyde with allyl alcohol. Note that allyl alcohol and aldehyde, which are unreacted products of the acetalization reaction, may remain in the diallyl acetal as a raw material.

本発明の目的1ヒ合物の4−ペンテナール(ヒ金物は一
般式(n)で示される化合物であり、例えば2−メチル
−4−ペンテナール、2−エチル−4=ペンテナール、
2,2−ジメチル−4−ペンテナール、2−プロピル−
4−ペンテナール、2−エチル−2−ブチル−4−ペン
テナール、2−メチル−2−ヘキシル−4−ペンテナー
ルなどがある。
Objects of the present invention 1. 4-pentenal compounds (Arsenal compounds are compounds represented by the general formula (n), such as 2-methyl-4-pentenal, 2-ethyl-4=pentenal,
2,2-dimethyl-4-pentenal, 2-propyl-
Examples include 4-pentenal, 2-ethyl-2-butyl-4-pentenal, and 2-methyl-2-hexyl-4-pentenal.

本発明方法において触媒として用いられる固体酸は、[
酸イオンおよびアルミナまたは硫酸イオン、リン酸イオ
ンおよびアルミナを焼成して得られるものである。固体
酸を構成する各原子の比率は、硫酸イオンおよびアルミ
ナの場合、S /’ A t;が0.01ないし0.0
6で、硫酸イオン、リン酸イオンおよびアルミナの場合
、(P+S)、/AQが0.02ないし0.2、S 、
/ Pが0.02ないし0.8である。
The solid acid used as a catalyst in the method of the present invention is [
It is obtained by firing acid ions and alumina or sulfate ions, phosphate ions and alumina. In the case of sulfate ions and alumina, the ratio of each atom constituting the solid acid is S/'A t; 0.01 to 0.0.
6, in the case of sulfate ion, phosphate ion and alumina, (P+S), /AQ is 0.02 to 0.2, S,
/P is 0.02 to 0.8.

本発明方法において用いる固体酸の使用量は、−i式(
I)のジアリルアセクール化合物に対して0.1ないし
20重量%、好ましくは0.5ないし10重量%である
。固体酸の使用量が20重量%を超えると分解、重合が
生じやすくなり、また選択率も低下する、0.5重量%
未満では反応が遅くなる。
The amount of solid acid used in the method of the present invention is determined by the formula -i (
The amount is 0.1 to 20% by weight, preferably 0.5 to 10% by weight, based on the diallylacecure compound I). If the amount of solid acid used exceeds 20% by weight, decomposition and polymerization will easily occur, and the selectivity will also decrease, 0.5% by weight
If it is less than that, the reaction will be slow.

本発明の固体酸を調製するには、硫酸、リン酸あるいは
それらのアルミニウム塩またはアンモニウム塩などを水
に溶解して得な硫酸イオンまたはリン酸イオンを含む水
溶液にアルミナを加えてよく混合し、乾燥後焼成すれば
よい。焼成温度は300゛C以上、好ましくは500な
いし900℃であり、焼成時間は工ないし10時間、好
ましくは2ないし4時間が適当である。得られた固体酸
はそのまま、もしくは2ないし10倍量の水で煮沸!、
fSl’A :’、@過水、先して反応に用いる。なお
、固体酸に用いるアルミナは特に限定されないが、英用
上扮木またはビーズ状の2・−アルミナが好ましい6本
発明の反応温度は、100ないし200 ’Cが好まし
く、100°C未満では反応が進行せず、また2 00
 Cを超足ると副反応が生じやすくなる。
To prepare the solid acid of the present invention, alumina is added to an aqueous solution containing sulfate ions or phosphate ions obtained by dissolving sulfuric acid, phosphoric acid, or their aluminum or ammonium salts in water, and the mixture is thoroughly mixed. It can be fired after drying. The firing temperature is 300°C or higher, preferably 500 to 900°C, and the firing time is approximately 1 to 10 hours, preferably 2 to 4 hours. The obtained solid acid can be used as is or boiled with 2 to 10 times the amount of water! ,
fSl'A:', @perfused water, used in the reaction first. The alumina used for the solid acid is not particularly limited, but 2-alumina in the form of English-grade wood or beads is preferred.6 The reaction temperature in the present invention is preferably 100 to 200'C, and the reaction temperature is less than 100°C. did not progress and 200
If too much C is added, side reactions are likely to occur.

不発明の反応は、以下に示すように脱アリルアルコール
と熱転位反応により目的の4−ペンテナール(ヒ合物が
得られるものである。
The uninvented reaction is one in which the desired 4-pentenal (hypolysate) is obtained by a thermal rearrangement reaction with deallylated alcohol, as shown below.

八〇 上記反応器つ)ら明ら71)なように本発明の方法では
、目的の4−ペンテナール化合物の他にアリルアルコー
ルが副成するので、反応生成物からアリルアルコールを
除く操作が必要となる。本発明における好ましい実施態
様を以下に示すが、この方法に限定されるものではない
80 As shown in the above-mentioned reactor71), in the method of the present invention, allyl alcohol is produced as a by-product in addition to the target 4-pentenal compound, so an operation to remove allyl alcohol from the reaction product is required. Become. Preferred embodiments of the present invention are shown below, but the present invention is not limited to this method.

原料となるジアリルアセタールと固体酸を充填塔を取り
付けた反応器に仕込み、加熱、攪拌を行い、充填塔より
反応生成物を留出させる。目的の4−ペンテナール化合
物がアリルアルコールと共沸する場合は、反応時に反応
器へ連続的にジアリルアセタールを供給する連続法によ
っても反応させることができる。4−ペンテナール化合
物とアリルアルコールが共沸して留出した場合は、留出
物を精留することにより目的の4−ペンテナール化合物
が得られ、また4−ペンテナール化合物が反応装置中に
残っている場合には、固体酸を濾別した後に蒸留するこ
と仲より目的の4−ペンテナール化合物が得られる。反
応装置に取り付ける充填塔は、原料のジアリルアセター
ルと副成するアリルアルコールとを分離できるものであ
ればよい。
The raw materials, diallyl acetal and solid acid, are charged into a reactor equipped with a packed column, heated and stirred, and the reaction product is distilled out from the packed column. When the target 4-pentenal compound is azeotropic with allyl alcohol, the reaction can also be carried out by a continuous method in which diallyl acetal is continuously supplied to the reactor during the reaction. When a 4-pentenal compound and allyl alcohol are azeotropically distilled, the desired 4-pentenal compound can be obtained by rectifying the distillate, and the 4-pentenal compound remains in the reaction apparatus. In some cases, the desired 4-pentenal compound can be obtained by filtering off the solid acid and then distilling it. The packed column attached to the reaction apparatus may be any type as long as it can separate diallyl acetal as a raw material and allyl alcohol as a by-product.

すなわち、反応時に生成するアリルアルコールもしくは
アリルアルコールと4−ペンテナール化合物を留出させ
、原料ジアリルアセタールを反応器内に留まるようにさ
せればよい。
That is, allyl alcohol or the allyl alcohol and 4-pentenal compound produced during the reaction may be distilled off, and the raw material diallyl acetal may remain in the reactor.

制御 本発明の方法によって効率よく4−ペンテナール化合物
が得られる詳細な作用機構は不明であるが、以下のよう
な理由によるものと思われる。
Control Although the detailed mechanism of action by which a 4-pentenal compound is efficiently obtained by the method of the present invention is unknown, it is believed to be due to the following reasons.

すなわち、本発明方法の固体酸がルイス酸として働き、
適度な温度つまり熱転位の進行しやすい温度で脱アリル
アルコールが起こることから、重合しゃすいα−不飽和
エーテル1の濃度を常に低く保ち、重合を防ぐと同時に
速やかに目的の4=ペンテナ一ル化合物へ転位させるた
めと思われる。
That is, the solid acid of the method of the present invention acts as a Lewis acid,
Since deallylated alcohol occurs at a moderate temperature, that is, a temperature at which thermal rearrangement tends to proceed, the concentration of the polymerizable α-unsaturated ether 1 is always kept low to prevent polymerization and at the same time quickly convert the desired 4=pentenal ether. This seems to be due to rearrangement into compounds.

以下に本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

実」[例」− 留出部にガラスピーズを約ioam充填した塔を装着し
たIQのフラスコに、アリルアルコールを含む純度82
.6%のブチルアルデヒドジアリルアセタール500g
と、固体酸く5重量%の硫酸イオンと10重量%のリン
酸イオンを担持したγ−アルミナ)10gを仕込み加熱
攪拌を行い、塔頂の温度が100〜110°Cの範囲で
留出させると同時に留出量と等量の原料を反応フラスコ
内に滴下した。反応時間55時間で原料を3579.9
5g使用し、留出液量は313394gとなり留出液中
には2−エチル−4−ペンテナール、アリルアルコール
の他に少量のヘキサンおよびブチルアルデヒドジアリル
アセタール、2−ブテニルアリルエーテル等が含まれて
いた。この留出液を精留して2−エチル−4−ペンテナ
ール1533.11g〈理論収率89.7%)を得た。
[Example] - An IQ flask equipped with a column filled with about ioam of glass beads in the distillation section contains allyl alcohol with a purity of 82.
.. 6% butyraldehyde diallyl acetal 500g
and 10 g of solid acid (gamma-alumina carrying 5% by weight of sulfate ions and 10% by weight of phosphate ions) are charged, heated and stirred, and distilled while the temperature at the top of the column is in the range of 100 to 110°C. At the same time, an amount of raw material equivalent to the distilled amount was dropped into the reaction flask. 3579.9% raw material in 55 hours reaction time
5 g was used, and the amount of distillate was 313,394 g. The distillate contained 2-ethyl-4-pentenal, allyl alcohol, and small amounts of hexane, butyraldehyde diallyl acetal, 2-butenyl allyl ether, etc. Ta. This distillate was rectified to obtain 1533.11 g of 2-ethyl-4-pentenal (theoretical yield: 89.7%).

実施例2 約30cmの充填塔(ガラス製のスパイラル状充填物を
詰めたもの)を取り付けたICの四ツロフラスコに、ブ
チルアルデヒドジアリルアセタール425gと、固体酸
く5重量%の硫酸イオンと10%のリン酸イオンを担持
したγ−アルミナ)30gを仕込み、加熱攪拌を行い、
充填塔の塔頂の温度が95〜115°Cになるように保
ち、生成物を留出させた。このときの反応液の温度は、
15O〜185°Cであった。
Example 2 425 g of butyraldehyde diallyl acetal, 5% by weight of solid acid sulfate ions, and 10% of 30 g of γ-alumina (supporting phosphate ions) was charged, heated and stirred,
The temperature at the top of the packed column was maintained at 95 to 115°C, and the product was distilled out. The temperature of the reaction solution at this time is
The temperature was 150 to 185°C.

留出液中には、アリルアルコール、2−ブテニルアリル
エーテルおよび2−エチル−4−ペンテナールが含まれ
ており、これを精留して、2−エチル−4−ペンテナー
ルを無色透明な液(*(沸点137〜140°C)とし
て175g(理論収率62.5%)得た。
The distillate contains allyl alcohol, 2-butenyl allyl ether and 2-ethyl-4-pentenal, which is rectified to produce 2-ethyl-4-pentenal as a colorless and transparent liquid ( *(boiling point 137-140°C) 175g (theoretical yield 62.5%) was obtained.

1哩纏肱1 本発明方法の固体酸を用いることにより、耐酸性でない
通常の反応装置を使用して4−ペンテナール化合物(特
に2位に水素原子の残っている4−ペンテナール(ヒ合
拘)を選択的に高収率かつ工業的に有利に製造すること
ができる。
1 By using the solid acid of the method of the present invention, 4-pentenal compounds (especially 4-pentenal with a hydrogen atom remaining at the 2-position) can be prepared using a conventional reaction apparatus that is not acid-resistant. can be selectively produced in high yield and industrially advantageously.

Claims (1)

【特許請求の範囲】 1、一般式( I ) ▲数式、化学式、表等があります▼( I ) 〔式中R_1、R_2は水素原子または炭素数1ないし
7のアルキル基を表し、R_1とR_2は互いに同一で
も相異なっていてもよい〕 で示されるジアリルアセタール化合物を、硫酸イオンお
よびアルミナ、または硫酸イオン、リン酸イオンおよび
アルミナを焼成して得られる固体酸の存在下に加熱する
ことを特徴とする一般式(II) ▲数式、化学式、表等があります▼(II) 〔式中R_1、R_2は前記定義に同じ〕 で示される4−ペンテナール化合物の製造方法。 2、固体酸を構成する原子比が、硫酸イオンおよびアル
ミナの場合、S/Alが0.01ないし0.06で、硫
酸イオン、リン酸イオンおよびアルミナの場合、(P+
S)/Alが0.02ないし0.2、S/Pが0.02
ないし0.8の固体酸である特許請求の範囲第1項記載
の方法。
[Claims] 1. General formula (I) ▲There are numerical formulas, chemical formulas, tables, etc.▼(I) [In the formula, R_1 and R_2 represent a hydrogen atom or an alkyl group having 1 to 7 carbon atoms, and R_1 and R_2 may be the same or different from each other] is heated in the presence of sulfate ions and alumina, or a solid acid obtained by firing sulfate ions, phosphate ions, and alumina. A method for producing a 4-pentenal compound represented by the general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) [In the formula, R_1 and R_2 are the same as defined above]. 2. When the atomic ratio constituting the solid acid is sulfate ion and alumina, S/Al is 0.01 to 0.06, and when sulfate ion, phosphate ion and alumina are used, (P+
S)/Al is 0.02 to 0.2, S/P is 0.02
The method according to claim 1, wherein the solid acid has a concentration of 0.8 to 0.8.
JP61274599A 1986-11-18 1986-11-18 Process for producing 4-pentenal compound Expired - Lifetime JPH0749380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61274599A JPH0749380B2 (en) 1986-11-18 1986-11-18 Process for producing 4-pentenal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61274599A JPH0749380B2 (en) 1986-11-18 1986-11-18 Process for producing 4-pentenal compound

Publications (2)

Publication Number Publication Date
JPS63130551A true JPS63130551A (en) 1988-06-02
JPH0749380B2 JPH0749380B2 (en) 1995-05-31

Family

ID=17543982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61274599A Expired - Lifetime JPH0749380B2 (en) 1986-11-18 1986-11-18 Process for producing 4-pentenal compound

Country Status (1)

Country Link
JP (1) JPH0749380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984957A (en) * 1988-08-08 1991-01-15 Kubota, Ltd. Work-implement adapter for front loader
FR2661408A1 (en) * 1990-04-27 1991-10-31 Rhone Poulenc Nutrition Animal PROCESS FOR THE PREPARATION OF CITRAL.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984957A (en) * 1988-08-08 1991-01-15 Kubota, Ltd. Work-implement adapter for front loader
FR2661408A1 (en) * 1990-04-27 1991-10-31 Rhone Poulenc Nutrition Animal PROCESS FOR THE PREPARATION OF CITRAL.

Also Published As

Publication number Publication date
JPH0749380B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
Garrigues et al. Bismuth (III) chloride or triflate-catalyzed dienophilic activity of α-ethylenic aldehydes and ketones
JPH07252179A (en) Preparation of acetaldehyde diethyl acetal
US4528400A (en) Preparation of ketones
JP2002114728A (en) Continuous process for preparing acetal
US5994598A (en) Method of preparing perillyl alcohol and perillyl acetate
US4133836A (en) Manufacture of acetals
JP3117803B2 (en) Production method of yonones
JPS63130551A (en) Production of 4-pentenal compound
EP0392579A2 (en) Improvements in and relating to aldol condensation
US3236869A (en) Allenic acids
EP0124380B1 (en) Preparation of unsaturated acids and esters
US3225102A (en) Allenic aldehydes
Pines et al. Investigation of the Preparation of Bromides from 1-, 2-and 3-Pentanol. Synthesis of Pure Bromopentanes
JPS5833847B2 (en) Pina Colon no Seihou
US2451350A (en) Preparation of unsaturated ketones
JPS61151152A (en) Production of alkenylidene diacetate
US4136124A (en) Manufacture of dialkyl-ketals
JPS62164647A (en) Synthesis of ester
JPS5929623A (en) Manufacture of beta-dicarbonyl-, beta-cyancarbonyl- and beta-dicyan compound substituted at alpha position
US3122588A (en) Process for the production of aldehydes
US2436774A (en) Method and catalysts for the production of alkenyl cyanides
US2799707A (en) Preparation of alpha-diketones
US2451351A (en) Production of unsaturated ketones
JPS6256141B2 (en)
US2294955A (en) Process for the manufacture of unsaturated aldehydes