JPS6313017A - Optical amplitude and phase modulator - Google Patents

Optical amplitude and phase modulator

Info

Publication number
JPS6313017A
JPS6313017A JP15725686A JP15725686A JPS6313017A JP S6313017 A JPS6313017 A JP S6313017A JP 15725686 A JP15725686 A JP 15725686A JP 15725686 A JP15725686 A JP 15725686A JP S6313017 A JPS6313017 A JP S6313017A
Authority
JP
Japan
Prior art keywords
phase
amplitude
modulation
branch
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15725686A
Other languages
Japanese (ja)
Inventor
Katsumi Emura
克己 江村
Yoshiro Komatsu
啓郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15725686A priority Critical patent/JPS6313017A/en
Publication of JPS6313017A publication Critical patent/JPS6313017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve frequency utilization efficiency greatly by imposing optical amplitude phase modulation wherein amplitude modulation and phase modulation are performed simultaneously. CONSTITUTION:An amplitude modulation part 2 composed of a Y-branch type interference optical modulator imposes binary amplitude modulation upon input light 1 firstly. At this time, the branch ratio of an input-side Y branch 3 is set to a 1:(2-3<1/2>) amplitude ratio and branch angles of output-side Y branches 3 and 4 are adjusted. Then, an electrode 7 is added to a waveguide 5 which is smaller in the quantity of branch light between the 1st and the 2nd waveguides 5 and 6 branched at the Y branch 3, and the light shift in phase by pi with a voltage applied to the electrode 7. The composite wave output at the branch 4 varies with the voltage applied to the electrode 7. Here, a phase modulation part 8 imposes binary phase modulation on output light by applying a phase modulating electrode 9 with a voltage which makes a pi shift.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコヒーレント光通信等で用いられる光位相変調
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical phase modulation device used in coherent optical communications and the like.

〔従来の技術〕[Conventional technology]

光の位相偏移変調(PSK変調)を用いるコヒーレント
光通信方式は、現行の直接検波方式やコヒーレント光通
信方式のうちでも周波数偏移変調(FSK変調)や振幅
偏移変調(ASK変調)を用いる方式に比べ高い受信悪
魔を実現できるという特徴を有しており注目されている
Coherent optical communication systems that use optical phase shift keying (PSK modulation) use frequency shift keying (FSK modulation) and amplitude shift keying (ASK modulation) among the current direct detection and coherent optical communication systems. It is attracting attention because it has the feature of being able to achieve higher reception accuracy than other methods.

このPSK変調を用いるコヒーレント光受信に関しては
、これまでいくつかの実験報告がなされ、前述の高感度
特性も確認されている。例えば、アール・ニー・リンク
(R,^、Linke)らにより雑誌[エレクトロニク
ス レターズ(EIectron、Lett、)」22
巻1号(1986年)中に発表された文献[コヒーレン
ト・ライト・ウニイブ・トランスミッション・オーバー
・150Kmファイバ レングス・アト・400 Mb
/sアンドIMb/sデータレイト・ユージング・フェ
ーズ・モジュレーション(Coherent ligh
t wave transmission over 
150にts fibre lengths at 4
00 Mbit/s and I Mbit/5dat
a rates using phase a+odu
lation)」参照。
Several experimental reports have been made regarding coherent optical reception using PSK modulation, and the above-mentioned high sensitivity characteristics have also been confirmed. For example, in the magazine [Electronics Letters (EIectron, Lett,)] 22 by R. Linke et al.
Literature published in Volume 1 (1986) [Coherent light unique transmission over 150 km fiber length at 400 Mb]
/s and IMb/s data late using phase modulation (Coherent light
t wave transmission over
150 ts fiber lengths at 4
00 Mbit/s and I Mbit/5dat
a rate using phase a+odu
ration)”.

しかし、これまで行なわれたPSK方式の実験は、いず
れも2相PSK方式についてのものだけであり、周波数
利用効率の高い4相以上の多層PSK方式についての報
告はまだない。
However, all of the PSK system experiments that have been conducted so far have only been about two-phase PSK systems, and there have been no reports yet on multilayer PSK systems with four or more phases that have high frequency utilization efficiency.

ところで、高密度な周波数多重化が進んでいるマイクロ
波通信の現状を見てみると、さらに周波数利用効率を高
めるため多値振幅位相変調方式の開発が進められている
By the way, looking at the current state of microwave communications where high-density frequency multiplexing is progressing, development of a multilevel amplitude phase modulation method is progressing in order to further increase frequency utilization efficiency.

今後、コヒーレント光通信方式においても光ファイバの
もつ分散の影響等を回避するために、狭帯域で大量の情
報を送りたいという要望が出ると思われ、この場合には
多値振幅位相変調方式がひとつの有効な方式となる。
In the future, it is expected that there will be a desire to send large amounts of information in a narrow band in coherent optical communication systems in order to avoid the effects of dispersion of optical fibers, and in this case, multilevel amplitude phase modulation will be used. This is one effective method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この光振幅位相変調方式を実現するなめに必要
となる光振幅位相変調器はいまだ開発されるに至ってい
ない。
However, the optical amplitude phase modulator required to realize this optical amplitude phase modulation method has not yet been developed.

本発明の目的は、従来開発されていなかった光振幅位相
変調器を提供することにある。
An object of the present invention is to provide an optical amplitude phase modulator that has not been developed in the past.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光変調位相変調器の構成は、光の位相に変化を
与えずに光の強度を変調して情報を入力する振幅変調部
と、この振幅変調部の出力光に位相変調を行なって前記
光強度の情報とは独立に光の位相情報を入力する位相変
調部とを含み、これら各変調部により多値変調を行なう
ことを特徴とする。
The configuration of the optical modulation phase modulator of the present invention includes an amplitude modulation section that inputs information by modulating the intensity of light without changing the phase of the light, and a phase modulation section that performs phase modulation on the output light of this amplitude modulation section. It is characterized in that it includes a phase modulation section that inputs optical phase information independently of the light intensity information, and that each of these modulation sections performs multilevel modulation.

(作用) 以下、4値振幅位相変調器を例にとって本発明の作用原
理を説明する。
(Operation) The operation principle of the present invention will be explained below by taking a four-value amplitude phase modulator as an example.

4値振幅位相変調では、振幅に2値1位相に2値の情報
が含まれている。この振幅位相変調を実現する場合、従
来のように振幅変調あるいは位相変調のみを行なう場合
と異なり、振幅変調を行なったときに位相情報が、位相
変調を行なったときに振幅情報が保たれていなければな
らないという問題が新たに生じると考えられる。例えば
、光の振幅変調を方向性結合形の高変調器(光スィッチ
)や吸収形の光変調器等で行なうと同時に、位相も変調
されるのでこれらの変調器はこのままでは振幅位相変調
に使うことはできない。
In the four-value amplitude phase modulation, the amplitude contains binary information in one binary value and one phase. In order to achieve this amplitude phase modulation, unlike conventional cases where only amplitude modulation or phase modulation is performed, the phase information must be maintained when amplitude modulation is performed, and the amplitude information must be maintained when phase modulation is performed. It is thought that a new problem will arise: For example, when amplitude modulation of light is performed using a directional coupling type high modulator (optical switch) or an absorption type optical modulator, the phase is also modulated at the same time, so these modulators cannot be used as is for amplitude phase modulation. It is not possible.

このように位相情報に影響を与えずに振幅のみを変調す
る変調器としては、第2図に示される干渉形の光変調器
が考えられる。図中、3,4はY分岐、5,6は導波路
を示す。ここで振幅に2値の(1,2)の情報を与える
ためには、各Y分岐3.4の分岐比を調整する必要があ
る。ここでは、入力側のY分岐3の振幅分岐比は(3〜
2J2):I、出力側のY分岐4の分岐比は1:1とな
るようにした場合を考えるがこれらY分岐の分岐比は分
岐の角度あるいはガイドの大きさにより調整できる。
As a modulator that modulates only the amplitude without affecting phase information, an interferometric optical modulator shown in FIG. 2 can be considered. In the figure, 3 and 4 indicate Y branches, and 5 and 6 indicate waveguides. In order to give binary (1, 2) information to the amplitude, it is necessary to adjust the branch ratio of each Y branch 3.4. Here, the amplitude branching ratio of Y branch 3 on the input side is (3 to
2J2):I, the case where the branching ratio of the Y branch 4 on the output side is set to 1:1 will be considered, but the branching ratio of these Y branches can be adjusted by the branch angle or the size of the guide.

さらに、一本の導波路には電極7を付加し、電圧の印加
により光の位相のπシフトを行なう。 第3図は電極7
への印加電圧によって第2図中各点の振幅9位相が変化
する様子を示す波形図である。
Furthermore, an electrode 7 is added to one waveguide, and the phase of the light is shifted by π by applying a voltage. Figure 3 shows electrode 7.
FIG. 3 is a waveform diagram showing how the amplitude and nine phases of each point in FIG. 2 change depending on the voltage applied to the waveform.

この図のように、電圧7への印加電圧が0(■=0〉の
とき出力が最大透過状態になっているようにすると、位
相シフトπを与える電圧V=■πが印加された場合は、
出力はV=Oの場合の1/2となる。このとき出力の位
相は変化しないので、位相情報に影響を与えずに振幅変
調のみを行なう光振幅変調器が実現されていることにな
る。このような振幅変調器にさらに光位相変調器を組合
わせることにより、光振幅位相変調器を実現することが
できる。
As shown in this figure, when the voltage applied to voltage 7 is 0 (■ = 0>, the output is in the maximum transmission state, and when the voltage V = ■π that gives a phase shift π is applied, ,
The output is 1/2 of that when V=O. Since the phase of the output does not change at this time, an optical amplitude modulator that only performs amplitude modulation without affecting phase information is realized. By further combining such an amplitude modulator with an optical phase modulator, an optical amplitude and phase modulator can be realized.

〔実施例〕〔Example〕

次に図面により本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の第1の実施例の光振幅位相変調器を示
す模式的斜視図である。本実施例の光振幅位相変調器は
、4値の振幅位相変調を実現するもので、Ti拡散Li
NbC)3導波路により構成されている。
FIG. 1 is a schematic perspective view showing an optical amplitude phase modulator according to a first embodiment of the present invention. The optical amplitude phase modulator of this example realizes four-value amplitude phase modulation, and is made of Ti-diffused Li.
It is composed of NbC)3 waveguide.

入力光1はまずY分岐形の干渉形光変調器で構成される
振幅変調部2で2値振幅変調される。このとき入力側の
Y分岐3の分岐比は振幅比で1:2−、r3となるよう
に、また出力側のY分岐4の分岐比は1:1となるよう
に、Y分岐3.4の分岐角度が調整されている。入力側
のY分岐3で分岐されて得られた第1.第2の導波路5
,6のうち分岐光量の小さいほうの第1の導波路5には
電極7が付加されておりこの電極7への印加電圧により
、光の位相がπ変化するようになっている。
Input light 1 is first subjected to binary amplitude modulation in an amplitude modulation section 2 composed of a Y-branch type interferometric optical modulator. At this time, the Y branch 3. The branch angle has been adjusted. The first . Second waveguide 5
, 6, an electrode 7 is added to the first waveguide 5 which has a smaller amount of branched light, and the phase of the light is changed by π by applying a voltage to the electrode 7.

出力側の7分岐4での合波出力は電極7への印加電圧に
応じて変化し印加電圧がOのときは入力光より1dB小
さい出力が得られたが、光の位相にπのシフトを与える
電圧Vπ=8Vを電極7に印加した場合は印加型゛圧が
Oの場合の1/3の出力となった。
The combined output at the seven branches 4 on the output side changes depending on the voltage applied to the electrode 7, and when the applied voltage is O, an output that is 1 dB smaller than the input light is obtained, but if the phase of the light is shifted by π. When the voltage Vπ=8V was applied to the electrode 7, the output was 1/3 of that when the applied voltage was O.

ここでこの出力光を位相変調部8で位相変調する。この
位相変調は位相変調電極9に電圧を印加することで実現
される。ここでは、信号に応じて位相変調電極9にπシ
フトを与える電圧8■を印加して2値位相変調を実現し
ている。
Here, this output light is phase modulated by a phase modulation section 8. This phase modulation is realized by applying a voltage to the phase modulation electrode 9. Here, binary phase modulation is realized by applying a voltage 8■ that gives a π shift to the phase modulation electrode 9 according to the signal.

実際に信号に応じて電極7および位相変調電極9に適当
な電圧を印加することにより、10Mb7/s4値振幅
位相変調を実現することが出来な。
Actually, it is not possible to realize 10 Mb7/s four-level amplitude phase modulation by applying appropriate voltages to the electrode 7 and the phase modulation electrode 9 according to the signal.

このときの信号の配置図は、第4図に示される。The signal arrangement diagram at this time is shown in FIG.

この変調信号光をヘテロダイン検波して復調し実際に4
値の信号が復調されることを確認した。このとき前述の
ように入力側のY分岐3の分岐比が、振幅変調時の振幅
レベル比が1;3になるように調整されていたので、入
力信号の信号レベルの間隔は、第4図の信号配置からも
明らかなように、等間隔になった。このように本実施例
では4値伝送を行なったので変調速度は2値伝送の半分
に抑えることができた。
This modulated signal light is heterodyne detected and demodulated to actually produce 4
It was confirmed that the value signal was demodulated. At this time, as mentioned above, the branch ratio of the Y branch 3 on the input side was adjusted so that the amplitude level ratio during amplitude modulation was 1:3, so the interval between the signal levels of the input signal was as shown in Figure 4. As is clear from the signal arrangement, they are now equally spaced. In this way, since four-value transmission was performed in this embodiment, the modulation speed could be suppressed to half that of binary transmission.

第5図は本発明の第2の実施例の光振幅位相変調器を示
した模式的斜視図である。本実施例の光振幅位相変調器
は、16値の振幅位相変調(6QAM)を実現するため
のものである。入力光1は、分岐回路20で1:1に分
岐される。分岐された一方の光には位相シフタ21で9
0°の位相シフトが与えられる。その後それぞれの分岐
信号光には第1の実施例と同様の構成の振幅変調部2、
位相変調部8で4値の振幅位相変調が加えられる。ここ
で得られる2つの4値振幅位相変調光は互いに直交関係
であるので、これを合波部22で直交関係を保ったまま
合わせることにより16値の振幅位相変調光を得ること
ができる。
FIG. 5 is a schematic perspective view showing an optical amplitude phase modulator according to a second embodiment of the present invention. The optical amplitude phase modulator of this embodiment is for realizing 16-value amplitude phase modulation (6QAM). Input light 1 is branched at a ratio of 1:1 by branch circuit 20 . A phase shifter 21 is applied to one of the branched lights.
A phase shift of 0° is given. Thereafter, each branched signal light includes an amplitude modulation section 2 having a configuration similar to that of the first embodiment;
A phase modulation section 8 applies four-value amplitude and phase modulation. Since the two four-level amplitude phase modulated lights obtained here are orthogonal to each other, by combining them in the multiplexer 22 while maintaining the orthogonal relationship, 16-level amplitude phase modulated light can be obtained.

本実施例の光振幅位相変調器を用いることにより、第1
の実施例よりさらに狭い帯域で信号の伝送を行なうこと
ができた。
By using the optical amplitude phase modulator of this example, the first
It was possible to transmit signals in an even narrower band than in the embodiment described above.

本発明は、以上の実施例の他にも様々な変形が考えられ
る。例えば、振幅変調時に位相情報に影響を与えない干
渉形の変調器としては、Y分岐形の他に3dB結合形の
干渉形光変調器を考えることができる。このとき2値振
幅変調時の振幅レベルの比を任意に変えるには結合部の
結合比を1:1からずらしてやればよい。
The present invention may be modified in various ways in addition to the above-described embodiments. For example, as an interferometric modulator that does not affect phase information during amplitude modulation, a 3 dB coupling type interferometric optical modulator can be considered in addition to the Y-branch type. At this time, in order to arbitrarily change the ratio of amplitude levels during binary amplitude modulation, the coupling ratio of the coupling section may be shifted from 1:1.

第6図は本発明の第3の実施例の模式的斜視図で、振幅
変調時に位相も同時に変調される光結合形の変調器に制
御電極14を加えた制御部15を用いて振幅変調時の位
相変化を補償するようにした光振幅位相変調器の例を示
した例である。
FIG. 6 is a schematic perspective view of a third embodiment of the present invention, in which a control section 15 including a control electrode 14 is added to an optically coupled modulator that simultaneously modulates the phase during amplitude modulation. This is an example of an optical amplitude phase modulator that compensates for the phase change of .

この例では振幅変調部2において、光の結合度を変える
ために電極7に電圧を印加するがこのとき光の位相も変
化してしまう。そこで、この位相の変化を制御部15で
補償し位相変調部8へ入力される光の位相は常に一定に
なるようにするものである。さらに多値化を行なうには
振幅レベルを増やす必要があるが、本発明の振幅変調部
2を縦続接続してやれば位相に変化を与えずに振幅レベ
ルの多値化を行なうことが可能である。このとき、振幅
変調部と位相変調部はどのような順序で配置してもかま
わない。
In this example, in the amplitude modulation section 2, a voltage is applied to the electrode 7 in order to change the degree of coupling of light, but at this time the phase of the light also changes. Therefore, the control section 15 compensates for this phase change so that the phase of the light input to the phase modulation section 8 is always constant. Furthermore, in order to perform multi-value conversion, it is necessary to increase the amplitude level, but if the amplitude modulation sections 2 of the present invention are connected in cascade, it is possible to perform multi-value conversion of the amplitude level without changing the phase. At this time, the amplitude modulation section and the phase modulation section may be arranged in any order.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、振幅変調および
位相変調が同時にできる光振幅位相変調器を実現するこ
とができる。これにより従来より数段光の周波数利用効
率を高めることが可能になり、将来の超高密度光条°重
通信での利用が期待される。
As described above, according to the present invention, it is possible to realize an optical amplitude phase modulator that can perform amplitude modulation and phase modulation simultaneously. This makes it possible to increase the optical frequency utilization efficiency by several orders of magnitude compared to conventional methods, and is expected to be used in future ultra-high-density optical fiber communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の模式的斜視図、第2図
は本発明の詳細な説明する干渉形の光変調器の模式的斜
視図、第3図は第2図の各部における振幅1位相を示す
波形図、第4図は第1図における信号の配置を示す位相
関係図、第5図。 第6図は本発明の第2および第3の実施例の模式的斜視
図である。 1・・・入力光、2・・・振幅変調部、3.4・・・Y
分岐、7・・・電極、8・・・位相変調部、9・・・位
相変調電極、10・・・出力光、11・・・分岐回路、
12・・・位相シフタ、13・・・合波部、14・・・
制御電極、15・・・制御部。 升
FIG. 1 is a schematic perspective view of a first embodiment of the present invention, FIG. 2 is a schematic perspective view of an interferometric optical modulator for explaining the present invention in detail, and FIG. 3 is a schematic perspective view of each part of FIG. 2. FIG. 4 is a waveform diagram showing one phase of amplitude in FIG. 1, and FIG. 5 is a phase relationship diagram showing the arrangement of signals in FIG. FIG. 6 is a schematic perspective view of the second and third embodiments of the present invention. 1... Input light, 2... Amplitude modulation section, 3.4... Y
Branch, 7... Electrode, 8... Phase modulation section, 9... Phase modulation electrode, 10... Output light, 11... Branch circuit,
12... Phase shifter, 13... Multiplexer, 14...
Control electrode, 15...control unit. Masu

Claims (1)

【特許請求の範囲】[Claims] 光の位相に変化を与えずに光の強度を変調して情報を入
力する振幅変調部と、この振幅変調部の出力光に位相変
調を行なって前記光強度の情報とは独立に光の位相情報
を入力する位相変調部とを含み、これら各変調部により
多値変調を行なうことを特徴とする光振幅位相変調器。
There is an amplitude modulation section that inputs information by modulating the intensity of light without changing the phase of the light, and an amplitude modulation section that performs phase modulation on the output light of this amplitude modulation section to change the phase of the light independently of the information on the light intensity. 1. An optical amplitude phase modulator, comprising a phase modulation section into which information is input, and each of these modulation sections performs multilevel modulation.
JP15725686A 1986-07-03 1986-07-03 Optical amplitude and phase modulator Pending JPS6313017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15725686A JPS6313017A (en) 1986-07-03 1986-07-03 Optical amplitude and phase modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15725686A JPS6313017A (en) 1986-07-03 1986-07-03 Optical amplitude and phase modulator

Publications (1)

Publication Number Publication Date
JPS6313017A true JPS6313017A (en) 1988-01-20

Family

ID=15645673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15725686A Pending JPS6313017A (en) 1986-07-03 1986-07-03 Optical amplitude and phase modulator

Country Status (1)

Country Link
JP (1) JPS6313017A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259306A (en) * 1988-04-11 1989-10-17 Hitachi Ltd Waveguide type optical wavelength filter and optical multiplexer and demultiplexer
EP0565035A2 (en) * 1992-04-07 1993-10-13 Hitachi, Ltd. Optical modulator optical transmitter apparatus and optical transmission system
EP0661577A2 (en) * 1993-12-28 1995-07-05 Fujitsu Limited Optical modulator with controllable chirp
US5528413A (en) * 1993-02-12 1996-06-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor light intensity modulator
JP2005309447A (en) * 2004-04-22 2005-11-04 Lucent Technol Inc Quadrature amplitude modulation of optical carrier
WO2007026759A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Optical amplitude modulating system capable of removing high-order component
WO2007026757A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Dsb-sc modulation system capable of erasing carrier and secondary component
WO2007034766A1 (en) * 2005-09-20 2007-03-29 National Institute Of Information And Communications Technology Phase-controlled light fsk modulator
WO2008026326A1 (en) * 2006-08-30 2008-03-06 Hitachi Communication Technologies, Ltd. Optical modulator
JP2009027441A (en) * 2007-07-19 2009-02-05 Nippon Telegr & Teleph Corp <Ntt> Optical transmission circuit
US20100150495A1 (en) * 2005-12-01 2010-06-17 National Institute Of Information And Communications Technology Optical switch system using optical interference
US7936996B2 (en) 2005-08-24 2011-05-03 National Institute Of Information And Communications Technology Automatic adjusting system of frequency shift keying modulator
JP2011527026A (en) * 2008-06-30 2011-10-20 アルカテル−ルーセント ユーエスエー インコーポレーテッド Optical modulator for higher-order modulation
US10425166B2 (en) 2017-07-14 2019-09-24 Fujitsu Limited Optical transmitter, optical transmission apparatus, and optical modulation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930461A (en) * 1972-07-20 1974-03-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930461A (en) * 1972-07-20 1974-03-18

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259306A (en) * 1988-04-11 1989-10-17 Hitachi Ltd Waveguide type optical wavelength filter and optical multiplexer and demultiplexer
EP0565035A2 (en) * 1992-04-07 1993-10-13 Hitachi, Ltd. Optical modulator optical transmitter apparatus and optical transmission system
EP0565035A3 (en) * 1992-04-07 1994-12-28 Hitachi Ltd
US5515196A (en) * 1992-04-07 1996-05-07 Hitachi, Ltd. Optical intensity and phase modulators in an optical transmitter apparatus
US5528413A (en) * 1993-02-12 1996-06-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor light intensity modulator
EP0661577A2 (en) * 1993-12-28 1995-07-05 Fujitsu Limited Optical modulator with controllable chirp
EP0661577A3 (en) * 1993-12-28 1995-11-29 Fujitsu Ltd Optical modulator for producing a controllable chirp.
JP2005309447A (en) * 2004-04-22 2005-11-04 Lucent Technol Inc Quadrature amplitude modulation of optical carrier
US7873284B2 (en) 2004-04-22 2011-01-18 Alcatel-Lucent Usa Inc. Quadrature amplitude modulation of optical carriers
US7936996B2 (en) 2005-08-24 2011-05-03 National Institute Of Information And Communications Technology Automatic adjusting system of frequency shift keying modulator
EP1921486A1 (en) * 2005-08-31 2008-05-14 National Institute of Information and Communicatons Technology Dsb-sc modulation system capable of erasing carrier and secondary component
EP1921486A4 (en) * 2005-08-31 2009-05-13 Nat Inst Inf & Comm Tech Dsb-sc modulation system capable of erasing carrier and secondary component
JP4552032B2 (en) * 2005-08-31 2010-09-29 独立行政法人情報通信研究機構 Optical amplitude modulation system capable of eliminating higher-order components
US7991298B2 (en) 2005-08-31 2011-08-02 National Institute Of Information And Communications Technology DSB-SC modulation system capable of erasing carrier and secondary component
JP2007067876A (en) * 2005-08-31 2007-03-15 National Institute Of Information & Communication Technology Optical amplitude modulation system deleting high order component
EP1921485A1 (en) * 2005-08-31 2008-05-14 National Institute of Information and Communicatons Technology Optical amplitude modulating system capable of removing high-order component
JP4547552B2 (en) * 2005-08-31 2010-09-22 独立行政法人情報通信研究機構 DSB-SC modulation system capable of erasing carriers and secondary components
WO2007026757A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Dsb-sc modulation system capable of erasing carrier and secondary component
EP1921485A4 (en) * 2005-08-31 2009-09-23 Nat Inst Inf & Comm Tech Optical amplitude modulating system capable of removing high-order component
WO2007026759A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Optical amplitude modulating system capable of removing high-order component
US7711215B2 (en) 2005-08-31 2010-05-04 National Institute Of Information And Communications Technology Optical amplitude modulation system capable of cancelling high order component
JP2007065240A (en) * 2005-08-31 2007-03-15 National Institute Of Information & Communication Technology Dsb-sc modulation system capable of cancelling carrier and secondary component
US7957653B2 (en) 2005-09-20 2011-06-07 National Institute Of Information And Communications Technology Phase control optical FSK modulator
WO2007034766A1 (en) * 2005-09-20 2007-03-29 National Institute Of Information And Communications Technology Phase-controlled light fsk modulator
US20100150495A1 (en) * 2005-12-01 2010-06-17 National Institute Of Information And Communications Technology Optical switch system using optical interference
JPWO2008026326A1 (en) * 2006-08-30 2010-01-14 株式会社日立コミュニケーションテクノロジー Light modulator
WO2008026326A1 (en) * 2006-08-30 2008-03-06 Hitachi Communication Technologies, Ltd. Optical modulator
JP5215857B2 (en) * 2006-08-30 2013-06-19 株式会社日立製作所 Light modulator
JP2009027441A (en) * 2007-07-19 2009-02-05 Nippon Telegr & Teleph Corp <Ntt> Optical transmission circuit
JP2011527026A (en) * 2008-06-30 2011-10-20 アルカテル−ルーセント ユーエスエー インコーポレーテッド Optical modulator for higher-order modulation
US10425166B2 (en) 2017-07-14 2019-09-24 Fujitsu Limited Optical transmitter, optical transmission apparatus, and optical modulation method

Similar Documents

Publication Publication Date Title
US6384954B1 (en) Optical modulator
JP5215857B2 (en) Light modulator
JP4524482B2 (en) Optical SSB modulator
KR100703410B1 (en) Offset quadrature phase-shift-keying method and optical transmitter using the same
JP3027944B2 (en) Optical duobinary signal light generation method and optical transmitter
JPS6313017A (en) Optical amplitude and phase modulator
JP2758211B2 (en) Frequency direct modulation PSK method
US7873284B2 (en) Quadrature amplitude modulation of optical carriers
JPH09197354A (en) Synchronous polarization and phase modulation using periodic waveform including complicated higher harmonic for high-performance optical transmission system
US9673906B2 (en) Device for amplitude modulation of an optical signal
US20110164844A1 (en) Optical modulator
US5911016A (en) Polarization scrambler and integrated optical circuit making use thereof
EP1968215A2 (en) Apparatus and method for light intensity modulation and optical transmission system employing the same
US7277645B2 (en) High-bit-rate long-haul fiber optic communication system techniques and arrangements
GB2131567A (en) Integrated optic arrangement
DE602004001017T2 (en) Polarization-modulated duobinary optical transmitter
US20020109893A1 (en) Methods and apparatus for generating return-to-zero optically encoded data stream
US20080231933A1 (en) Optical modulator
EP1749357B1 (en) Method and apparatus for producing high extinction ratio data modulation formats
US20070047668A1 (en) Single side band modulator module and single side band modulator device using the same
US8750723B2 (en) Generation of a full-rate optical duobinary signal using half-rate electrical binary signals
US7277646B2 (en) Duobinary optical transmitter
US9425898B2 (en) Optical transmission system, optical phase modulator, and optical modulation method
JPH01185613A (en) Polyphase optical phase modulating device
JPH09181684A (en) Amplitude modulator with electroabsorption modulator