JPS6312998B2 - - Google Patents

Info

Publication number
JPS6312998B2
JPS6312998B2 JP4684583A JP4684583A JPS6312998B2 JP S6312998 B2 JPS6312998 B2 JP S6312998B2 JP 4684583 A JP4684583 A JP 4684583A JP 4684583 A JP4684583 A JP 4684583A JP S6312998 B2 JPS6312998 B2 JP S6312998B2
Authority
JP
Japan
Prior art keywords
bit
matrix alloy
alloy
chip
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4684583A
Other languages
Japanese (ja)
Other versions
JPS59173480A (en
Inventor
Toshihiko Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tone Boring Co Ltd
Original Assignee
Tone Boring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tone Boring Co Ltd filed Critical Tone Boring Co Ltd
Priority to JP4684583A priority Critical patent/JPS59173480A/en
Publication of JPS59173480A publication Critical patent/JPS59173480A/en
Publication of JPS6312998B2 publication Critical patent/JPS6312998B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は掘削用ビツト及びその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a drilling bit and a method for manufacturing the same.

〔従来技術〕[Prior art]

通常さく岩用ビツトの製造方法として、次の如
き方法がある。即ち、カーボンモールドの中に超
硬合金刃先を植付け、モールド内面に表面硬装部
形成用のスケルトン粉末を展着させた後、モール
ド内にマトリツクス合金部形成用のスケルトン粉
末を充填する。次いでこのモールド内に、バイン
ダー合金の溶湯を浸透させて全体として焼結させ
るものである。
The following methods are commonly used to manufacture rock drilling bits. That is, a cemented carbide cutting edge is planted in a carbon mold, skeleton powder for forming a hard surface portion is spread on the inner surface of the mold, and then skeleton powder for forming a matrix alloy portion is filled into the mold. Next, a molten binder alloy is infiltrated into this mold and the entire mold is sintered.

第1図はこのようにして製造されたビツトの刃
先部の断面図であつて、超硬合金チツプ10がマ
トリツクス合金部12に植え付けられており、こ
のマトリツクス合金部12の表面が表面硬装部
(硬質層)14によつて被装されている。なお、
これら表面硬装部14及びマトリツクス合金部1
2は、それぞれのスケルトン粉末にバインダー合
金が溶浸されて構成されている。
FIG. 1 is a sectional view of the cutting edge of the bit manufactured in this manner, in which a cemented carbide chip 10 is planted in a matrix alloy part 12, and the surface of this matrix alloy part 12 is a surface hardened part. (hard layer) 14. In addition,
These hard surface parts 14 and matrix alloy parts 1
No. 2 is constructed by infiltrating each skeleton powder with a binder alloy.

しかるに、このようにして製造された従来のビ
ツトにおいては、重荷重掘削の使用時に超硬チツ
プの欠損が生ずる傾向が認められ、耐衝撃性が低
いという問題があつた。
However, in conventional bits manufactured in this manner, there was a problem that the carbide tips tended to break when used for heavy-duty excavation, and the impact resistance was low.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の問題点を解決
し、超硬チツプ欠損のおそれが解消され、耐衝撃
特性の優れた掘削用ビツト及びその製造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, eliminate the fear of chipping of the carbide chip, and provide a drilling bit with excellent impact resistance and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明はこの目的を達成するために次を要旨と
するものである。
In order to achieve this object, the present invention has the following gist.

即ち第1の発明は ビツト本体を構成するマトリツクス合金に超硬
チツプが植設されてなり、かつマトリツクス合金
の表面が硬質層で被装された掘削用ビツトにおい
て、前記超硬チツプの側周面と硬質層及びマトリ
ツクス合金との間には植設深さ方向に延在する間
隙が形成されていることを特徴とする掘削用ビツ
トである。
That is, the first invention is a drilling bit in which a cemented carbide tip is embedded in a matrix alloy constituting the bit body, and the surface of the matrix alloy is coated with a hard layer, which provides a side peripheral surface of the carbide tip. This drilling bit is characterized in that a gap extending in the direction of the planting depth is formed between the hard layer and the matrix alloy.

また第2の発明は ビツト本体を構成するマトリツクス合金に超硬
チツプが植設されてなり、かつマトリツクス合金
の表面が硬質層で被装された掘削用ビツトにおい
て、前記超硬チツプの周囲にレーザビームを照射
し、超硬チツプの側周面と硬質層及びマトリツク
ス合金との間に、植設深さ方向に延在する間隙を
形成することを特徴とする掘削用ビツトの製造方
法である。
A second invention is an excavation bit in which a cemented carbide tip is embedded in a matrix alloy constituting the bit body, and the surface of the matrix alloy is coated with a hard layer, in which a laser beam is applied around the carbide tip. This method of producing a drilling bit is characterized by irradiating the bit with a beam to form a gap extending in the direction of the implantation depth between the side peripheral surface of the cemented carbide tip, the hard layer, and the matrix alloy.

以下、本発明をさらに詳細に説明する。 The present invention will be explained in more detail below.

第2図は本発明の実施例に係るビツトの刃先部
の断面図である。この実施例においては、超硬チ
ツプ10側周面の表面硬装部(硬質層)14とマ
トリツクス合金部12との間には間隙16が形成
されている。このような間隙16を設けると、チ
ツプに作用するせん断力が小さくなり、チツプの
欠損が解消されるのである。この理由については
次の様に推察される。即ち、第3図に示す如く、
チツプに対して横方向の荷重Mが作用すると、表
面硬装部及びマトリツクス合金からは反作用とし
てチツプに対して反力Fが加えられる。ところ
で、ビツト製造に際しては、上記従来技術の項で
説明した如く、溶浸法が採用される。この溶浸法
に基く製造においては、バインダー合金の溶湯を
粉末間隙に流し込んで凝固させるに際し、マトリ
ツクス合金部12及び表面硬装部14には収縮が
生じ、この収縮によつて超硬チツプ10が強く締
め付けられて保持される。しかして表面硬装部1
4の硬度はマトリツクス合金12の硬度よりも高
いところから、超硬チツプ10に荷重M(第3図
参照)が作用すると、表面硬装部14における上
記反力Fが大きくなり、これによりチツプ10の
先端部分に大きなせん断力が生じ、これが所定限
度以上になるとチツプをして欠損に到らしめる。
FIG. 2 is a sectional view of the cutting edge of the bit according to the embodiment of the present invention. In this embodiment, a gap 16 is formed between a surface hardening portion (hard layer) 14 on the peripheral surface of the carbide chip 10 and the matrix alloy portion 12. Providing such a gap 16 reduces the shearing force acting on the chip and eliminates chipping. The reason for this is inferred as follows. That is, as shown in Figure 3,
When a lateral load M acts on the chip, a reaction force F is applied to the chip as a reaction from the hard surface portion and the matrix alloy. Incidentally, when manufacturing bits, the infiltration method is employed as explained in the section of the prior art described above. In manufacturing based on this infiltration method, when the molten binder alloy is poured into the powder gap and solidified, the matrix alloy part 12 and the hard surface part 14 shrink, and this shrinkage causes the cemented carbide chip 10 to shrink. It is tightly tightened and held. However, the surface hardening part 1
4 is higher than the hardness of the matrix alloy 12, so when a load M (see FIG. 3) is applied to the carbide chip 10, the reaction force F at the hard surface portion 14 becomes large, and as a result, the chip 10 A large shearing force is generated at the tip of the tip, and if this exceeds a predetermined limit, it will chip and cause damage.

しかるに、本発明の如くチツプ10の周囲に間
隙16を設けるようにすると、チツプ10に対し
て横方向荷重Mが作用した際に表層部からはチツ
プ10に対して反力Fが加えられず、従つてチツ
プ10に生ずるせん断力も小さなものとなつて欠
損が防止されるようになるのである。
However, if the gap 16 is provided around the chip 10 as in the present invention, when a lateral load M is applied to the chip 10, no reaction force F is applied to the chip 10 from the surface layer, and Therefore, the shearing force generated on the chip 10 is also reduced, and chipping is prevented.

このような空隙16の幅t及び深さlについて
の好適な値について次に説明する。まず幅tにつ
いては、発明者らが鋭意研究を重ねた結果、40〜
400μmとすると好適であることが見出された。第
4図はこの研究結果の一例を示すグラフであり、
型式、大きさ等の異なる多数のチツプについて荷
重Mを加えたときの曲げ強度を測定したものの一
例である。この第4図より、t値が40〜400μmと
りわけ80〜320μmであるときに、極めて優れた結
果を与えることが明瞭に認められる。
Preferred values for the width t and depth l of such a gap 16 will be described next. First, as for the width t, as a result of intensive research by the inventors, we found that the width t is 40~
It has been found that 400 μm is suitable. Figure 4 is a graph showing an example of the results of this research.
This is an example of measurements of bending strength when a load M is applied to a large number of chips of different types and sizes. From FIG. 4, it is clearly seen that extremely excellent results are obtained when the t value is 40 to 400 μm, especially 80 to 320 μm.

次に深さlについては超硬チツプ植え込み深さ
Lに対しl/L×100(%)値が30〜85%とりわけ
40〜80%となるようにするのが好適である。第5
図はl/L×100(%)値を種々変更した場合につ
いて荷重Mを加えたときの曲げ強度を測定したも
のの一例である。この第5図よりl/L×100
(%)値としては30〜85とりわけ40〜80(%)が好
適であることが認められる。
Next, regarding the depth l, the l/L x 100 (%) value is 30 to 85% of the carbide chip implantation depth L.
It is preferable to set it to 40 to 80%. Fifth
The figure shows an example of the bending strength measured when a load M was applied when the l/L×100 (%) value was variously changed. From this figure 5, l/L×100
It is recognized that the (%) value is preferably 30 to 85, especially 40 to 80 (%).

このように第1の発明に係るビツトは第2の発
明に係る方法に従つて製造することができる。第
6図は第2の発明の実施例を示す断面図である。
即ち、18はモールドであり、このモールド18
内面に超硬チツプ10を配置しモールド内壁面に
表面硬装部形成用のスケルトン粉末22を貼着し
た後、マトリツクス合金部形成用のスケルトン粉
末24を充填する。そして湯道26から溶湯を注
入し、凝固せしめた後、脱型し、まずビツトをほ
ぼ完成品形状として作製するのである。しかる
後、第7図に示す如く超硬チツプ10の周囲にレ
ーザビーム30を照射し、超硬チツプ10の側周
面と表面硬装部(硬質層)14及びマトリツクス
合金部12との間に、植設深さ方向に延在する間
隙16を形成させるのである。この際レーザビー
ムの強度、照射時間などの諸条件を選定すること
により、所望幅及び所望深さの間隙16を形成す
ることが可能である。第7図中32はレーザ加工
機のノズルである。
Thus, the bit according to the first invention can be manufactured according to the method according to the second invention. FIG. 6 is a sectional view showing an embodiment of the second invention.
That is, 18 is a mold, and this mold 18
After arranging the carbide chips 10 on the inner surface and pasting skeleton powder 22 for forming a hard surface portion on the inner wall surface of the mold, skeleton powder 24 for forming a matrix alloy portion is filled. Then, molten metal is injected through the runner 26, solidified, and then removed from the mold to produce a bit in an almost finished shape. Thereafter, as shown in FIG. 7, a laser beam 30 is irradiated around the carbide chip 10 to create a gap between the side peripheral surface of the carbide chip 10, the hard surface portion (hard layer) 14, and the matrix alloy portion 12. , a gap 16 extending in the planting depth direction is formed. At this time, by selecting various conditions such as the intensity of the laser beam and the irradiation time, it is possible to form the gap 16 with a desired width and depth. 32 in FIG. 7 is a nozzle of a laser processing machine.

この第2の発明において、硬質層形成用スケル
トン粉末としては、各種のものが採用可能であ
り、各種の硬質の金属(合金を含む)、硬質の金
属炭化物、これらを組み合わせたものなどが好適
である。具体的には例えば、WCとCoとの混合粉
末、W,WC,W2C,Cr3C2などが挙げられる。
In this second invention, various types of skeleton powder for forming the hard layer can be used, and various types of hard metals (including alloys), hard metal carbides, and combinations thereof are preferable. be. Specific examples include a mixed powder of WC and Co, W, WC, W 2 C, Cr 3 C 2 , and the like.

この硬質粉末をモールド内面に貼着させるに際
しては水溶性高分子樹脂などの接着剤を用いるよ
うにしても良い。
When adhering this hard powder to the inner surface of the mold, an adhesive such as a water-soluble polymer resin may be used.

マトリツクス合金形成用スケルトン粉末として
も、各種の金属(合金を含む)、金属炭化物、金
属・炭素複合物、これらを組み合わせたもの、な
どが採用可能であり、さらにこれらに炭素を加え
るようにしても良い。例えば、Fe,Ni,Co,
W,炭素鋼、ステンレス鋼、Fe・Mn合金、WC,
W2C,Cr3C2,TaC,TiC,VC,NbCなどを単
独でもしくは組み合わせて用いることができる。
Various metals (including alloys), metal carbides, metal/carbon composites, and combinations of these can be used as skeleton powders for forming matrix alloys, and carbon can also be added to these. good. For example, Fe, Ni, Co,
W, carbon steel, stainless steel, Fe/Mn alloy, WC,
W 2 C, Cr 3 C 2 , TaC, TiC, VC, NbC, etc. can be used alone or in combination.

バインダー合金としては、スケルトン粉末より
も低い融点を有しており、機械的強度、耐摩耗
性、耐食性に優れ、高温における強度低下の小さ
いものが好適である。具体的にはMn−Ni−Cu系
合金、Mn−Ni−Cu−Si系合金、アルミニウム青
銅、高力黄銅、Mn−Co−Cu系合金、Mn−Ni−
Cu−Si−Li系合金、Ni−Sn−Cu系合金、Ni−Si
合金、Ni−Be合金、Cu−Be合金、Ni−B−Si
−Fe−C系合金、Pd−Ni−Mn系合金、Mn−Ni
系合金、Mn−Ni−Co系合金、Ni−Cr−Si系合
金、Mn−Ni−Cu−Co系合金などが挙げられる。
The binder alloy is preferably one that has a lower melting point than the skeleton powder, has excellent mechanical strength, abrasion resistance, and corrosion resistance, and has a small decrease in strength at high temperatures. Specifically, Mn-Ni-Cu alloy, Mn-Ni-Cu-Si alloy, aluminum bronze, high-strength brass, Mn-Co-Cu alloy, Mn-Ni-
Cu-Si-Li alloy, Ni-Sn-Cu alloy, Ni-Si
Alloy, Ni-Be alloy, Cu-Be alloy, Ni-B-Si
-Fe-C alloy, Pd-Ni-Mn alloy, Mn-Ni
Examples include Mn-Ni-Co-based alloys, Ni-Cr-Si-based alloys, Mn-Ni-Cu-Co-based alloys, and the like.

また、本発明においては超硬チツプもその形
状、材質、大きさなどに制限はなく、例えば、ボ
タン型、コニカル型、チゼル型など各種形状のも
のが採用可能である。
Further, in the present invention, there are no restrictions on the shape, material, size, etc. of the carbide tip, and various shapes such as a button shape, a conical shape, and a chisel shape can be employed.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 第6図に示されるモールド18を用いて掘削用
ビツトを製造した。まず超硬チツプ10(材質
WC−Co系超硬合金)をモールド18内に配置し
た。次いで、モールド18の内壁面に表面硬装部
(硬質層)形成用のスケルトン粉末として、W粉
末(粒径;325メツシユ以上200メツシユ以下)50
重量部とWC粉末(粒径;300メツシユ以上150メ
ツシユ以下)50重量部との混合粉末を用い、これ
をモールド18内壁面20に貼着した。なお、こ
の貼着に際しては水溶性高分子樹脂からなる接着
剤を少量使用した。
Example 1 A drilling bit was manufactured using the mold 18 shown in FIG. First, carbide tip 10 (material
WC-Co-based cemented carbide) was placed in the mold 18. Next, 50 W powder (particle size: 325 meshes or more and 200 meshes or less) is used as a skeleton powder for forming a hard surface part (hard layer) on the inner wall surface of the mold 18.
A mixed powder of 50 parts by weight of WC powder (particle size: 300 mesh or more and 150 mesh or less) was used and was adhered to the inner wall surface 20 of the mold 18. In this attachment, a small amount of adhesive made of water-soluble polymer resin was used.

次いでマトリツクス合金部形成用のスケルトン
粉末として、Fe粉末(粒径;100メツシユ以下)
85重量部とNi粉末(粒径200メツシユ以下)15重
量部との混合粉末をモールド18内に装入した。
その後バインダー合金の溶湯を湯道26からモー
ルド18内に流し込み、冷却して凝固させた。な
おバインダー合金の組成は、Mn25wt%、
Ni15wt%、Cu60wt%である。
Next, Fe powder (particle size: 100 mesh or less) was used as the skeleton powder for forming the matrix alloy part.
A mixed powder of 85 parts by weight and 15 parts by weight of Ni powder (particle size of 200 mesh or less) was charged into the mold 18.
Thereafter, the molten binder alloy was poured into the mold 18 through the runner 26, cooled, and solidified. The composition of the binder alloy is Mn25wt%,
Ni is 15wt% and Cu is 60wt%.

しかる後モールド18を脱型し、内容物即ちほ
ぼ完成品形状とされたビツトを取り出した。そし
てその超硬チツプ10の周囲にレーザビーム30
を照射し間隙16を形成した。レーザビームの強
度、焦点深度、照射時間を種々変更することによ
り、幅t及び深さlの異なる多数種類のビツトを
製造した。なお超硬合金チツプの材質はWC−Co
系超硬合金であり、直径d=12mm、植え込み深さ
L=9mmである。
Thereafter, the mold 18 was demolded and the contents, ie, the bits in the shape of an almost finished product, were taken out. A laser beam 30 is placed around the carbide chip 10.
was irradiated to form a gap 16. By varying the intensity, depth of focus, and irradiation time of the laser beam, many types of bits with different widths t and depths l were manufactured. The material of the cemented carbide chip is WC-Co.
It is made of cemented carbide, with a diameter d = 12 mm and an implantation depth L = 9 mm.

このようにして製造された、第2図の如き刃先
部を有するビツトについて、第3図に示す如き荷
重Mを超硬チツプ10に加え、欠損に到るまでの
曲げ強度を測定した。その結果の一例を第4図及
び第5図に示す。
For the thus manufactured bit having the cutting edge portion as shown in FIG. 2, a load M as shown in FIG. 3 was applied to the carbide tip 10, and the bending strength until breakage was measured. An example of the results is shown in FIGS. 4 and 5.

第4図には間隙16の深さl=6mmと一定に
し、その幅tを0〜500μm(t/d×100(%)で
0〜4.2%)で変えた場合の曲げ強度が示されて
いる。
Figure 4 shows the bending strength when the depth l of the gap 16 is constant at 6 mm and the width t is varied from 0 to 500 μm (0 to 4.2% in t/d x 100 (%)). There is.

第5図には間隙16の幅t=200μmと一定に
し、その深さlを0〜9mmの範囲(l/L×100
(%)で0〜100%)で変えた場合の曲げ強度が示
されている。なおマトリツクス合金部の硬度
(HRB)は88.4、表面硬装部の硬度(HRC)は
34.0であつた。
In FIG. 5, the width t of the gap 16 is constant at 200 μm, and the depth l is in the range of 0 to 9 mm (l/L×100 μm).
The bending strength is shown when it is changed in (%) from 0 to 100%). The hardness of the matrix alloy part (H R B) is 88.4, and the hardness of the hard surface part (H R C) is
It was 34.0.

実施例 2 マトリツクス合金部形成用スケルトン粉末とし
て、Fe粉末(粒径;100メツシユ以下)70重量部
とCo粉末(粒径;100メツシユ以下325メツシユ
以上)との混合粉末を用いると共に、バインダー
合金としてMn40wt%、Ni30wt%、Cu30wt%の
ものを用いた以外は実施例1と同様にして試験を
行なつたところ、実施例1と同様の結果が得られ
た。なお、マトリツクス合金部の硬度(HRB)
は95.2、表面硬装部の硬度(HRC)は42.7であつ
た。
Example 2 A mixed powder of 70 parts by weight of Fe powder (particle size: 100 mesh or less) and Co powder (particle size: 100 mesh or less, 325 mesh or more) was used as the skeleton powder for forming the matrix alloy part, and as a binder alloy. A test was conducted in the same manner as in Example 1 except that Mn was 40 wt%, Ni was 30 wt%, and Cu was 30 wt%, and the same results as in Example 1 were obtained. In addition, the hardness of the matrix alloy part (H R B)
was 95.2, and the hardness (H R C) of the hard surface part was 42.7.

実施例1によつて製造されたビツトを備えたト
リコンビツト(75/8インチ、IJ−10メタルイン サート型トリコンビツト)を用いて岩石掘削試験
を行なつた。ビツト荷重を種々変えて掘削速度を
求めた。結果を第8図に示す。なおビツト回転数
は50R.P.M.、送水は清水を用い、800l/minの送
水量とした。岩石は甲府安山岩及び塩山花崗岩で
ある。
A rock drilling test was conducted using a tricomb bit (75/8 inch, IJ-10 metal insert type tricomb bit) equipped with the bit manufactured in accordance with Example 1. The excavation speed was determined by varying the bit load. The results are shown in FIG. The bit rotation speed was 50 R.PM, and fresh water was used for water supply, with a water flow rate of 800 l/min. The rocks are Kofu andesite and Enzan granite.

比較例として従来品トリコンビツト(第1図の
構成のもの)を用いて同様の掘削試験を行なつ
た。その結果を併せて第8図に示す。第8図よ
り、本発明品が従来品に比べて、特に強い衝撃の
加えられる高ビツト荷重領域における掘削性に優
れていることが認められる。
As a comparative example, a similar excavation test was conducted using a conventional tricomb bit (configured as shown in Figure 1). The results are also shown in FIG. From FIG. 8, it can be seen that the product of the present invention is superior to the conventional product in excavation performance particularly in the high bit load region where strong impact is applied.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、超硬チツプ欠損
のおそれなどのない、耐衝撃特性に優れた掘削用
ビツトが得られる。
As described above, according to the present invention, it is possible to obtain a drilling bit with excellent impact resistance and no fear of chipping of the carbide chip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のビツト刃先部の断面図、第2図
は本発明の実施例に係るビツト刃先部の断面図、
第3図はチツプに加えられる外力を示す図、第4
図は軟質層の幅員とチツプ曲げ強度との関係を示
すグラフ、第5図は軟質層の深さとチツプ曲げ強
度との関係を示すグラフ、第6図は本発明の製造
方法を示すモールド断面図、第7図は本発明の製
造方法を示すレーザ照射時の刃先部断面図、第8
図はビツト荷重と掘削速度との関係を示すグラフ
である。 10……超硬チツプ、12……マトリツクス合
金、14……表面硬装部(硬質層)、16……間
隙、18……モールド、30……レーザビーム。
FIG. 1 is a cross-sectional view of a conventional bit cutting edge, and FIG. 2 is a cross-sectional view of a bit cutting edge according to an embodiment of the present invention.
Figure 3 shows the external force applied to the chip, Figure 4 shows the external force applied to the chip.
The figure is a graph showing the relationship between the width of the soft layer and the chip bending strength. Figure 5 is a graph showing the relationship between the depth of the soft layer and the chip bending strength. Figure 6 is a cross-sectional view of a mold showing the manufacturing method of the present invention. , FIG. 7 is a sectional view of the cutting edge during laser irradiation, showing the manufacturing method of the present invention, and FIG.
The figure is a graph showing the relationship between bit load and excavation speed. DESCRIPTION OF SYMBOLS 10... Carbide chip, 12... Matrix alloy, 14... Surface hardening part (hard layer), 16... Gap, 18... Mold, 30... Laser beam.

Claims (1)

【特許請求の範囲】 1 ビツト本体を構成するマトリツクス合金に超
硬チツプが植設されてなり、かつマトリツクス合
金の表面が硬質層で被装された掘削用ビツトにお
いて、前記超硬チツプの側周面と硬質層及びマト
リツクス合金との間には植設深さ方向に延在する
間隙が形成されていることを特徴とする掘削用ビ
ツト。 2 ビツト本体を構成するマトリツクス合金に超
硬チツプが植設されてなり、かつマトリツクス合
金の表面が硬質層で被装された掘削用ビツトにお
いて、前記超硬チツプの周囲にレーザビームを照
射し、超硬チツプの側周面と硬質層及びマトリツ
クス合金との間に、植設深さ方向に延在する間隙
を形成することを特徴とする掘削用ビツトの製造
方法。
[Scope of Claims] 1. A drilling bit in which a cemented carbide tip is embedded in a matrix alloy constituting the bit body, and the surface of the matrix alloy is coated with a hard layer, wherein the side periphery of the carbide tip is A drilling bit characterized in that a gap extending in the direction of the planting depth is formed between the surface, the hard layer, and the matrix alloy. 2. In a drilling bit in which a carbide chip is embedded in a matrix alloy constituting the bit body, and the surface of the matrix alloy is coated with a hard layer, irradiating the periphery of the carbide chip with a laser beam, A method for producing a drilling bit, characterized by forming a gap extending in the direction of the implantation depth between the side peripheral surface of the carbide tip, the hard layer, and the matrix alloy.
JP4684583A 1983-03-18 1983-03-18 Bit for excavation and manufacture thereof Granted JPS59173480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4684583A JPS59173480A (en) 1983-03-18 1983-03-18 Bit for excavation and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4684583A JPS59173480A (en) 1983-03-18 1983-03-18 Bit for excavation and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59173480A JPS59173480A (en) 1984-10-01
JPS6312998B2 true JPS6312998B2 (en) 1988-03-23

Family

ID=12758674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4684583A Granted JPS59173480A (en) 1983-03-18 1983-03-18 Bit for excavation and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59173480A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE534206C2 (en) * 2009-10-05 2011-05-31 Atlas Copco Secoroc Ab Carbide pins for a drill bit for striking rock drilling, drill bit and method of grinding a cemented carbide pin

Also Published As

Publication number Publication date
JPS59173480A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US4884477A (en) Rotary drill bit with abrasion and erosion resistant facing
US4919013A (en) Preformed elements for a rotary drill bit
US3882594A (en) Method of forming a hard facing on the body of a tool
JP5961194B2 (en) Method for producing a member for use in a cutting tool or a drilling tool, comprising at least one block of dense material comprising hard particles dispersed in a binder phase as a component
US5051112A (en) Hard facing
US8317893B2 (en) Downhole tool parts and compositions thereof
US20080149397A1 (en) System, method and apparatus for hardfacing composition for earth boring bits in highly abrasive wear conditions using metal matrix materials
US8069936B2 (en) Encapsulated diamond particles, materials and impregnated diamond earth-boring bits including such particles, and methods of forming such particles, materials, and bits
DE3315125C1 (en) Wear-resistant composite body and method for its production
US20220127909A1 (en) Polycrystalline Diamond Cutting Elements Having Lead or Lead Alloy Additions
CA2593951A1 (en) Diamond impregnated bits using a novel cutting structure
US10232493B2 (en) Polycrystalline diamond cutting elements having non-catalyst material additions
JP2000225506A (en) Cutting insert and manufacture thereof
US8381845B2 (en) Infiltrated carbide matrix bodies using metallic flakes
CA2704068C (en) Casted in cemented carbide components
CN109722582A (en) The metal matrix composite material of increasing material manufacturing for downhole tool
JPS6312998B2 (en)
CA1336387C (en) Rod for applying hard surfacing to a surface and method of making same
US20140144712A1 (en) Eruption control in thermally stable pcd products by the addition of transition metal carbide
US11136835B2 (en) Methods to attach highly wear resistant materials to downhole wear components
JPS635548B2 (en)
WO2017011415A1 (en) Infiltrated cutting tools and related methods
CA1311234C (en) Earth boring drill bit with matrix displacing material
JPS59173479A (en) Bit for excavation and manufacture thereof
JPS5874586A (en) Hard composite sintered body for tool