JPS63129835A - Permanent-magnet rotor for rotary electric machine - Google Patents

Permanent-magnet rotor for rotary electric machine

Info

Publication number
JPS63129835A
JPS63129835A JP61273412A JP27341286A JPS63129835A JP S63129835 A JPS63129835 A JP S63129835A JP 61273412 A JP61273412 A JP 61273412A JP 27341286 A JP27341286 A JP 27341286A JP S63129835 A JPS63129835 A JP S63129835A
Authority
JP
Japan
Prior art keywords
permanent magnet
demagnetization
permanent
sides
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61273412A
Other languages
Japanese (ja)
Inventor
Shigeyasu Nishiyama
西山 恵康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61273412A priority Critical patent/JPS63129835A/en
Publication of JPS63129835A publication Critical patent/JPS63129835A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To enhance the working efficiency of permanent magnet material and improve characteristic and miniaturize a device and reduce the cost, by composing both the sides of a field pole in the peripheral direction, of the permanent magnet material of a coercive fore greater than that on the center of the field pole. CONSTITUTION:So far as permanent magnets 14 at both the ends of a field pole 13 are concerned, the residual magnetic flux density Br is equal to that of a central permanent magnet 15 and the coercive force is set to be great. Accordingly, surface magnetic-flux density B1 is uniformed over all the sphere of the field pole 13 in the peripheral direction, and the demagnetization curve is trapezoidal-wave-distributed. However, demagnetization-resisting quantity is Hd1 at the central permanent magnet 15, but at the permanent magnets 14 on both the sides, the quantity is Hd2 which is greater than Hd1. Accordingly, even if a great demagnetizing field is worked at both the side sections of the field pole 13 with armature reaction, the demagnetization- resisting quantity Hd2 at the sections is great and so the characteristic of a rotary electric machine can be improved by the component. Otherwise, if the demagnetization- resisting quantity Hd2 of the permanent magnets 14 is set to be equal to a conventional one, the using quantity of permanent magnet material is reduced by the component.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は電機子と対向して設けられる界磁磁極を永久磁
石により構成した回転電機の永久磁石式回転子に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a permanent magnet rotor for a rotating electric machine in which field magnetic poles provided opposite to an armature are made of permanent magnets.

(従来の技術) 回転界磁形とした永久磁石式回転子の一例を第7図に示
す。ここで、1はロータヨーク、2は永久磁石により(
1が成した界磁磁極で、これは全体が均質な永久磁石材
料により形成され、周方向の全域にわたり厚さ寸法が一
定である。この永久磁石2の表面磁束密度B1は、厚さ
寸法をC1空隙長をgとすると、第8図に示すこの永久
磁石材料の減磁曲線(B−H曲線の第2象限)とパーミ
アンス係数p岬(/gを傾きとした直線Pとの交点Qか
ら求められ、そのときの空隙磁束分布は第9図のように
なる。また、この場合における永久磁石2の減磁耐mH
d1は、第8図において直線H−−Bと、減磁曲線の屈
曲点Rを通る傾き−pの直線P゛との交点SのH成分(
Hd 1)により示される。そして、第7図に示した永
久磁石2の形状では、厚さ寸法iは一定であるから、各
部の減磁耐量Hd1は均一となる。
(Prior Art) An example of a permanent magnet rotor of rotating field type is shown in FIG. Here, 1 is the rotor yoke, 2 is the permanent magnet (
The field magnetic pole 1 is made entirely of a homogeneous permanent magnet material and has a constant thickness over the entire circumferential area. The surface magnetic flux density B1 of this permanent magnet 2 is determined by the demagnetization curve (second quadrant of the B-H curve) of this permanent magnet material shown in FIG. 8 and the permeance coefficient p, assuming that the thickness dimension is C1 and the air gap length is g. It is determined from the intersection Q with the straight line P whose slope is cape (/g), and the air gap magnetic flux distribution at that time is as shown in Fig. 9. Also, the demagnetization resistance mH of the permanent magnet 2 in this case
d1 is the H component (
Hd 1). In the shape of the permanent magnet 2 shown in FIG. 7, since the thickness dimension i is constant, the demagnetization resistance Hd1 of each part is uniform.

ところが、電機子コイルに負荷電流が流れて生ずる電機
子反作用は横軸、即ち極間に最大値を宵するため、永久
磁石2の周方向の両側はど減磁界が強く発生するという
事情がある。このため、従来の永久磁石式回転子では、
永久磁石2の周方向両側を基弗に減磁耐量を考慮し、そ
の分、中央部における減磁耐量に余裕を残しながら永久
磁石材料を多く使用せざるを得す;、永久磁石材料の使
用効率が低いという問題があった。これは、回転電機の
小形化を阻害し、特に希土類磁石等の高価な永久磁石材
料を使用する場合には、製造コストを大幅に上昇させる
要因となる。
However, since the armature reaction generated when a load current flows through the armature coil reaches its maximum value on the horizontal axis, that is, between the poles, a strong demagnetizing field is generated on both sides of the permanent magnet 2 in the circumferential direction. . For this reason, in conventional permanent magnet rotors,
Considering the demagnetization resistance on both sides in the circumferential direction of the permanent magnet 2, it is necessary to use a large amount of permanent magnet material while leaving a margin for the demagnetization resistance in the center. There was a problem with low efficiency. This impedes the downsizing of rotating electric machines and becomes a factor that significantly increases manufacturing costs, especially when expensive permanent magnet materials such as rare earth magnets are used.

また、空隙磁束密度分布の改答のため、第10図に示す
ように永久磁石2の周方向両側を斜面状に加工したり、
第11図に示すように外周面の曲率を電機子内周の曲率
と異ならせたりする場合がある。この場合には、永久磁
石2の中心部における厚さ寸法C1及び空隙長g1と、
両端部における厚さ寸/At2及び空隙長g2とが異な
るため、空隙磁束密度分布は第12図のように正弦波に
近付くか、減磁耐量は第11図に示すように中央部でH
d 1 、両端部でHd2となり、両端部における減磁
耐量が中央部よりも小さくなってしまう。
In addition, in order to revise the air gap magnetic flux density distribution, both sides of the permanent magnet 2 in the circumferential direction are processed into a sloped shape as shown in FIG.
As shown in FIG. 11, the curvature of the outer circumference may be made different from the curvature of the inner circumference of the armature. In this case, the thickness dimension C1 and the gap length g1 at the center of the permanent magnet 2,
Since the thickness/At2 and the gap length g2 are different at both ends, the gap magnetic flux density distribution approaches a sine wave as shown in Figure 12, or the demagnetization resistance becomes H at the center as shown in Figure 11.
d 1 becomes Hd2 at both ends, and the demagnetization resistance at both ends becomes smaller than that at the center.

このため、電機子反作用に対処するには永久磁石材料の
使用量が更に増大して使用効率が一層低下するという問
題を生ずる。
Therefore, in order to cope with the armature reaction, the amount of permanent magnet material used increases further, resulting in a problem that usage efficiency further decreases.

(発明が解決しようとする問題点) 以上述べたように、従来の永久磁石界磁では、電機子反
作用により永久磁石材料の使用効率を十分に向」ニさせ
ることができず、ために回転電機の大形化やコストアッ
プを招くという問題があったのである。
(Problems to be Solved by the Invention) As stated above, in the conventional permanent magnet field, it is not possible to sufficiently improve the usage efficiency of the permanent magnet material due to the armature reaction. This resulted in problems such as an increase in size and cost.

そこで、本発明の目的は、永久磁石材料の使用効率を向
上させることができる回転電機の永久磁石式回転子を提
供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a permanent magnet rotor for a rotating electric machine that can improve the efficiency of using permanent magnet materials.

[発明の構成] (問題点を解決するだめの手段) 本発明に係る回転電機の永久磁石式回転子は、界磁磁極
の各部を形成するそれぞれの永久磁石を周方向の両側を
中央よりも保磁力が大きな永久磁石材料にて構成したと
ころに特徴を有するものである。
[Structure of the Invention] (Means for Solving the Problems) In the permanent magnet rotor of a rotating electric machine according to the present invention, the permanent magnets forming each part of the field magnetic poles are arranged so that both sides in the circumferential direction are located closer to the center. It is characterized by being made of a permanent magnetic material with a large coercive force.

(作用) 界磁磁極の各部を形成するそれぞれの永久磁石の周方向
両側は中央よりも保磁力が大きいので、電機子反作用の
最大値が極間に存在するという事情に合致して両端部の
減磁耐量を大きく確保することができる。
(Function) Since the coercive force on both circumferential sides of each permanent magnet forming each part of the field magnetic pole is larger than that at the center, the maximum value of the armature reaction exists between the poles. A large amount of demagnetization resistance can be ensured.

(実施例) 以下本発明の第1実施例につき第1図及び第2図を参照
して説明する。
(Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

11は電機子、12はこの電機子11内に設けたロータ
ヨーク、13は1極分の界磁磁極である。
11 is an armature, 12 is a rotor yoke provided within the armature 11, and 13 is one field magnetic pole.

この界磁磁極13は3個の永久磁石を周方向に一体に連
ねるようにして構成され、夫々の厚さ寸法は同一である
。そして、周方向の両側に位置する両永久磁石14は同
一特性で、中央の永久磁石15とは特性が異なるように
設定されている。即ち、両端部に位置する永久磁石14
は、中央の永久磁石15と残留磁束密度が同等で、且つ
保磁力が中央の永久磁石15よりも大となっている。
This field magnetic pole 13 is constructed by integrally connecting three permanent magnets in the circumferential direction, and each has the same thickness dimension. Both permanent magnets 14 located on both sides in the circumferential direction have the same characteristics, but are set to have different characteristics from the permanent magnet 15 in the center. That is, the permanent magnets 14 located at both ends
The residual magnetic flux density is the same as that of the central permanent magnet 15, and the coercive force is larger than that of the central permanent magnet 15.

第2図に各永久磁石14.15の減磁曲線を示す。ここ
では、中央に位置する永久磁石15の減磁曲線を実線で
描き、両端に位置する永久磁石14の減磁曲線を破線で
描いであるが、点Q1と点B「との間は実線と破線とが
重なっている。この第2図から明らかなように、両永久
磁石14.15の残留磁束密度Brを等しく選定してい
るので、表面磁束密度B1は界磁磁極13の周方向全域
において略等しく、第9図に示した従来例と同(、Qに
台形波分布となる。しかし、減磁耐量は、第2図に基づ
き従来例における説明と同様に求めると、中央の永久磁
石15にお゛いてはHdlであるが、両側の永久磁石1
4においてはHd、よりも大なるHd2となる。従って
、電機子反作用により界磁磁極13の両側部分において
大きな減磁界が作用するという事情があっても、上述の
ようにその部分の減磁耐m Hd 2を大きくできるの
で、その分、回転電機の特性向上に寄与させることがで
きる。或は、両側の減磁耐QHd 2を従来と同等に設
定することとすれば、その分、永久磁石界磁の使用量を
削減して回転電機の小形化及びコストダウンを図ること
ができる。
FIG. 2 shows the demagnetization curves of each of the permanent magnets 14 and 15. Here, the demagnetization curve of the permanent magnet 15 located at the center is drawn as a solid line, and the demagnetization curve of the permanent magnet 14 located at both ends is drawn as a broken line, but the line between point Q1 and point B is a solid line. As is clear from FIG. 2, since the residual magnetic flux densities Br of both permanent magnets 14 and 15 are selected to be equal, the surface magnetic flux density B1 is the same in the entire circumferential direction of the field magnetic pole 13. It is almost the same as the conventional example shown in FIG. The permanent magnet 1 on both sides is Hdl.
4, Hd2 becomes larger than Hd. Therefore, even if there is a situation where a large demagnetizing field acts on both sides of the field magnetic pole 13 due to armature reaction, the demagnetization resistance m Hd 2 of that part can be increased as described above, and the rotating electric machine can contribute to improving the characteristics of Alternatively, if the demagnetization resistance QHd 2 on both sides is set to be the same as the conventional one, the amount of permanent magnet field used can be reduced accordingly, and the rotating electric machine can be downsized and cost reduced.

次に、本発明の第2実施例を第3図及び第4図を参照し
て説明する。前記第1実施例との相違は、界磁磁極13
の外周面における曲率を電機子11の内周面の曲率より
も大に設定し且つ各周面の中心を11−心させることに
より、界磁磁極13の両側において中央よりも電機子1
1との間の空隙長が大きくなるようにした点にある。そ
して、界磁磁極13を周方向に連ねた3個の永久磁石か
ら構成し、両側の永久磁石15は中央の永久磁石14と
残留磁束密度Brが同等で保磁力が大きく設定されてい
る点は前記第1実施例と同様である。
Next, a second embodiment of the present invention will be described with reference to FIGS. 3 and 4. The difference from the first embodiment is that the field magnetic pole 13
By setting the curvature of the outer circumferential surface of the armature 11 to be larger than the curvature of the inner circumferential surface of the armature 11 and aligning the center of each circumferential surface with the center of the
The point is that the gap length between 1 and 1 is increased. The field magnetic pole 13 is composed of three permanent magnets connected in the circumferential direction, and the permanent magnets 15 on both sides have the same residual magnetic flux density Br as the central permanent magnet 14, and have a large coercive force. This is the same as the first embodiment.

この場合の減磁曲線は第4図に示すようになる。The demagnetization curve in this case is as shown in FIG.

ここでも、中央に位置する永久磁石15の減磁曲線を実
線で描き、両端に位置する永久磁石14の減磁曲線を破
線で描いである。この第4図に基づき界磁磁極13の各
部の表面磁束密度及び減磁耐葺を従来例における説明と
同様に求めると、両側の永久磁石14における表面磁束
密度B2は中央の永久磁石15における表面磁束密度B
、よりも小になって、空隙磁束密度分布が正弦波に近く
なることが明らかである。また、両側の永久磁石15の
減磁耐giHd2は第11図に示した従来例よりも大に
なる。従って、この(1■成でも前記第1実施例と同様
な効果を奏するものである。
Here, too, the demagnetization curve of the permanent magnet 15 located at the center is drawn with a solid line, and the demagnetization curve of the permanent magnet 14 located at both ends is drawn with a broken line. When the surface magnetic flux density and demagnetization resistance of each part of the field magnetic pole 13 are determined based on FIG. 4 in the same manner as explained in the conventional example, the surface magnetic flux density B2 of the permanent magnets 14 on both sides is Magnetic flux density B
, it is clear that the air gap magnetic flux density distribution becomes close to a sine wave. Further, the demagnetization resistance giHd2 of the permanent magnets 15 on both sides is greater than that of the conventional example shown in FIG. Therefore, even with this (1) configuration, the same effects as in the first embodiment can be achieved.

次に、本発明の第3実施例を第5図及び第6図を参照し
て説明する。界磁磁極13の構造は第1図に示した第1
実施例と同一であるが、両側の永久磁石14は中央の永
久磁石15に比べて保磁力が大きく rtつ残留磁束密
度が小になるように永久磁石材料を選定しである。この
場合、中央の永久磁石15の減磁曲線を実線で示し、両
側の永久磁石14の減磁曲線を破線で示す。そして、同
図において従来例の説明と同様に界磁磁極13の各部の
表面磁束密度及び減磁耐量を求めると、両側の永久磁石
14の表面磁束密度B1が中央の永久磁石15の表ID
 &!i束密度B1よりも小になるから、空隙磁束密度
分布は第6図に示すように正弦波分布に近くなって波形
改泌に効果があることが明らかである。また、両側の永
久磁石14における減磁耐Q Hd 2は中央の永久磁
石15の減磁耐uHd1よりも大になるから、やはり電
機子反作用により界磁磁極13の両側部分において大き
な減磁界が作用するという事情に適合して永久磁石材料
の使用効率を高めることができ、回転電機の小形化及び
コストダウンを図ることができる。
Next, a third embodiment of the present invention will be described with reference to FIGS. 5 and 6. The structure of the field magnetic pole 13 is as shown in FIG.
Although it is the same as the embodiment, the permanent magnet materials are selected so that the permanent magnets 14 on both sides have a larger coercive force and a smaller residual magnetic flux density than the permanent magnet 15 in the center. In this case, the demagnetization curve of the central permanent magnet 15 is shown by a solid line, and the demagnetization curve of the permanent magnets 14 on both sides is shown by a broken line. In the figure, when the surface magnetic flux density and demagnetization resistance of each part of the field magnetic pole 13 are determined in the same way as explained in the conventional example, the surface magnetic flux density B1 of the permanent magnets 14 on both sides is the same as the table ID of the central permanent magnet 15.
&! Since the i flux density is smaller than B1, the air gap magnetic flux density distribution becomes close to a sine wave distribution as shown in FIG. 6, and it is clear that this is effective for waveform secretion. Furthermore, since the demagnetization resistance Q Hd 2 of the permanent magnets 14 on both sides is larger than the demagnetization resistance uHd 1 of the central permanent magnet 15, a large demagnetization field acts on both sides of the field magnetic pole 13 due to the armature reaction. Accordingly, it is possible to improve the usage efficiency of the permanent magnet material and to reduce the size and cost of the rotating electric machine.

[発明の効果] 本発明は以上説明したように、界@、il!極の周方向
両側を中央よりも保磁力が大きな永久磁石材料にて(1
v、成することにより、永久磁石材料の使用効率を高め
て回転電機の特性向上ないし小形化及びコストダウンを
図ることができるという優れた効果を奏するものである
[Effects of the Invention] As explained above, the present invention is applicable to KAI@, il! Both sides of the pole in the circumferential direction are made of permanent magnetic material with a larger coercive force than the center (1
By doing so, it is possible to improve the efficiency of use of the permanent magnet material, thereby achieving an excellent effect of improving the characteristics of the rotating electric machine, making it more compact, and reducing the cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1実施例を示し、第1図
は回転電機の部分断面図、第2図は永久磁石の減磁特性
図、第3図及び第4図は本発明の第2実施例を示す第1
図及び第2図相当図、笹5図及び第6図は本発明の第3
実施例を示し、第5図は永久磁石の減磁特性図、第6図
は空隙磁束密度分布図、第7図ないし第13図は従来例
を示し、第7図は回転電機の部分断面図、第8図は永久
磁石の減磁特性図、第9図は空隙磁束密度分布図、第1
0図及び第11図は夫々異なる他の従来例を示す回転電
機の部分縦断面図、第12図は第10図及び第11図に
おける永久磁石の減磁特性図、第13図は同空隙磁束密
度分布図である。 図面中、11は電機子、13は界磁磁極、14゜15は
永久磁石である。
1 and 2 show a first embodiment of the present invention, FIG. 1 is a partial cross-sectional view of a rotating electrical machine, FIG. 2 is a demagnetization characteristic diagram of a permanent magnet, and FIGS. 3 and 4 are a diagram of the present invention. A first example showing a second embodiment of the invention
Figures and figures corresponding to Figure 2, Sasa Figures 5 and 6 are the third figures of the present invention.
An example is shown, FIG. 5 is a demagnetization characteristic diagram of a permanent magnet, FIG. 6 is an air gap magnetic flux density distribution diagram, FIGS. 7 to 13 are conventional examples, and FIG. 7 is a partial sectional view of a rotating electric machine. , Figure 8 is a permanent magnet demagnetization characteristic diagram, Figure 9 is an air gap magnetic flux density distribution diagram, and Figure 1
Fig. 0 and Fig. 11 are partial vertical cross-sectional views of rotating electric machines showing other conventional examples, respectively, Fig. 12 is a demagnetization characteristic diagram of the permanent magnet in Figs. 10 and 11, and Fig. 13 is the same air gap magnetic flux. It is a density distribution map. In the drawing, 11 is an armature, 13 is a field magnetic pole, and 14° and 15 are permanent magnets.

Claims (1)

【特許請求の範囲】[Claims] 1、電機子と対向して設けられる界磁磁極を永久磁石に
より構成したものにおいて、前記界磁磁極の各極のうち
周方向の両側を中央よりも保磁力が大きな永久磁石材料
にて構成したことを特徴とする回転電機の永久磁石式回
転子
1. Where the field magnetic poles provided facing the armature are made of permanent magnets, both sides in the circumferential direction of each pole of the field magnetic poles are made of a permanent magnet material having a larger coercive force than the center. A permanent magnet rotor for a rotating electrical machine characterized by
JP61273412A 1986-11-17 1986-11-17 Permanent-magnet rotor for rotary electric machine Pending JPS63129835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273412A JPS63129835A (en) 1986-11-17 1986-11-17 Permanent-magnet rotor for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273412A JPS63129835A (en) 1986-11-17 1986-11-17 Permanent-magnet rotor for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS63129835A true JPS63129835A (en) 1988-06-02

Family

ID=17527529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273412A Pending JPS63129835A (en) 1986-11-17 1986-11-17 Permanent-magnet rotor for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS63129835A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598920A2 (en) * 2004-05-18 2005-11-23 Sanyo Denki Co., Ltd. Permanent magnet rotary electric motor
US7408279B2 (en) * 1997-09-08 2008-08-05 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor including permanent magnet with tapered outer edges
US20100171386A1 (en) * 2007-05-28 2010-07-08 Toyota Jidosha Kabushiki Kaisha Rotor for magnet-embedded motor and magnet-embedded motor
US7999430B2 (en) * 2008-12-19 2011-08-16 Industrial Technology Research Institute Complementary permanent magnet structure capable of minimizing cogging torque for rotating electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123355A (en) * 1982-01-18 1983-07-22 Fanuc Ltd Synchronous motor
JPS617274B2 (en) * 1978-11-01 1986-03-05 Omron Tateisi Electronics Co

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617274B2 (en) * 1978-11-01 1986-03-05 Omron Tateisi Electronics Co
JPS58123355A (en) * 1982-01-18 1983-07-22 Fanuc Ltd Synchronous motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408279B2 (en) * 1997-09-08 2008-08-05 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor including permanent magnet with tapered outer edges
EP1598920A2 (en) * 2004-05-18 2005-11-23 Sanyo Denki Co., Ltd. Permanent magnet rotary electric motor
US7183684B2 (en) * 2004-05-18 2007-02-27 Sanyo Denki Co., Ltd. Permanent magnet rotary motor
EP1598920A3 (en) * 2004-05-18 2010-08-04 Sanyo Denki Co., Ltd. Permanent magnet rotary electric motor
US20100171386A1 (en) * 2007-05-28 2010-07-08 Toyota Jidosha Kabushiki Kaisha Rotor for magnet-embedded motor and magnet-embedded motor
US7999430B2 (en) * 2008-12-19 2011-08-16 Industrial Technology Research Institute Complementary permanent magnet structure capable of minimizing cogging torque for rotating electric machine

Similar Documents

Publication Publication Date Title
JP4312245B2 (en) Rotor / stator structure for electric machines
AU611835B2 (en) Direct current dynamoelectric machines utilizing high strength permanent magnets
JP4250878B2 (en) Vernier type brushless motor
JP4310611B2 (en) Permanent magnet motor
KR100609330B1 (en) Permanent Magnet Rotor Motor
EP0048966B1 (en) Field pole structure of dc motor
JPS61280744A (en) Rotor with permanent magnet
JPS6114743B2 (en)
JPH06245419A (en) Yoke for motor or generator
US4703210A (en) Miniature electric non-uniform magnetization rotating machine
JPS63500629A (en) Electric machine with commutator
JPS63129835A (en) Permanent-magnet rotor for rotary electric machine
JPH0847185A (en) Motor core
US4243903A (en) Permanent magnet stator for a DC dynamo electric machine using blocking magnets
EP1810391B1 (en) Rotor-stator structure for electrodynamic machines
CN206948062U (en) Consequent pole permanent magnet motor and its rotor
JPH1189123A (en) Motor provided with auxiliary magnetic circuit
JPH06165467A (en) Stepping motor
RU2138110C1 (en) Stator of permanent-magnet machine
JP2508093Y2 (en) Magnetizing device
JPH0522917A (en) Direct current motor
JPS6241583Y2 (en)
JPH0865973A (en) Stator core for motor
JPS645981Y2 (en)
JPS61224852A (en) Composite permanent magnet for field