JPS63128687A - Gas laser oscillator - Google Patents

Gas laser oscillator

Info

Publication number
JPS63128687A
JPS63128687A JP27492686A JP27492686A JPS63128687A JP S63128687 A JPS63128687 A JP S63128687A JP 27492686 A JP27492686 A JP 27492686A JP 27492686 A JP27492686 A JP 27492686A JP S63128687 A JPS63128687 A JP S63128687A
Authority
JP
Japan
Prior art keywords
laser
thin film
protective frame
tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27492686A
Other languages
Japanese (ja)
Other versions
JPH0477474B2 (en
Inventor
Yutaro Yanagisawa
柳沢 雄太郎
Etsuo Iizuka
飯塚 悦夫
Toshiaki Sakai
利明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP27492686A priority Critical patent/JPS63128687A/en
Publication of JPS63128687A publication Critical patent/JPS63128687A/en
Publication of JPH0477474B2 publication Critical patent/JPH0477474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To reduce absorption loss of X-rays by a method wherein the covering material of an incident window is made of a thin film as thin as possible to seal hermetically laser medium gas, and a protective frame constructed by arranging the plural number of small incident windows is adhered closely thereto. CONSTITUTION:An X-ray incident window 5 is formed at one side part of a laser tube 3 facing to discharge electrodes 2a, 2b, and a flange 9 is formed at the outside periphery of the incident window 5. A thin film 11 is set in a hermetical condition to the flange 9 interposing a seal material 10 between them, a protective frame 13 consisting of the aggregate of small incident windows having honeycomb structure is adhered closely to the thin film 11 moreover interposing a seal material 12 between them, and a supporting frame 14 is pressed thereto to be fixed. As the protective frame 13, Al foil of 20-40#,mm thickness is used, for example. Although the film 17 of the protective frame 13 and the thin film 11 are closely adhered to be fixed, when a gap is generated at the center part, and air is contained therein, because there is the possibility of damage of the thin film 11 when the inside of the laser tube 3 is evacuated, the gap is evacuated and after then a tube for regulation of atmospheric pressure 18 is blockaded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はX線によってレーザ管内のレーザ媒質ガスを予
備イオン化しつつ、放電電極間に印加された高電圧パル
スでレーザ媒質を励起しレーザ発振を行うようにしたガ
スレーザ発振装置に関するものモある。
Detailed Description of the Invention "Industrial Application Field" The present invention pre-ionizes the laser medium gas in the laser tube with X-rays, and excites the laser medium with a high voltage pulse applied between discharge electrodes to generate laser oscillation. There is also one related to a gas laser oscillation device that performs the following.

「従来の技術」 一般に、希ガスハライドエキシマレーザやCO2レーザ
をX線で予備イオン化しつつ放電励起するガスレーザ発
振装置は第5図または第6図に示すように、X線により
予備イオン化するためのX線管(1)と、レーザ媒質ガ
スを封入しかつ放電電極(2a)(2b)を有するレー
ザ管(3)とからなる。
"Prior Art" In general, a gas laser oscillation device that excites a rare gas halide excimer laser or CO2 laser by discharge while pre-ionizing it with X-rays, as shown in FIG. It consists of an X-ray tube (1) and a laser tube (3) which encloses a laser medium gas and has discharge electrodes (2a) and (2b).

このうち、第5図に示す装置では、X線管(1)に、高
電圧パルス回路(4)で発生した高電圧パルスを印加す
ると、X線管(1)の加速電子をタンタル箔からなるX
線とり出し窓(1a)に衝突させてパルス状のX線を発
生させる。このX線はレーザ管(3)のマイラーやアル
ミニウム板からなるX線入射窓(5)の被覆材(6)を
通過してレーザ管(3)の内に入射する。また、第6図
に示す装置では、X線管(1)の加速電子をタンタル箔
からなるX線とり出し窓(1a)に衝突させてX線を発
生させる。この発生したX線は一方の電極(2a)を通
過してレーザ管(3)の内に入射する。これら第5図お
よび第6図において、入射したX線は1対の放電電極(
2a)(2b)間を通り、レーザ媒質ガスを電離する。
Among these, in the apparatus shown in Fig. 5, when a high voltage pulse generated by a high voltage pulse circuit (4) is applied to the X-ray tube (1), the accelerated electrons of the X-ray tube (1) are X
Pulsed X-rays are generated by colliding with the radiation extraction window (1a). The X-rays pass through the covering material (6) of the X-ray entrance window (5) made of Mylar or aluminum plate of the laser tube (3) and enter the laser tube (3). In the apparatus shown in FIG. 6, accelerated electrons from an X-ray tube (1) collide with an X-ray extraction window (1a) made of tantalum foil to generate X-rays. The generated X-rays pass through one electrode (2a) and enter the laser tube (3). In these figures 5 and 6, the incident X-rays are transmitted through a pair of discharge electrodes (
2a) and 2b to ionize the laser medium gas.

このとき、放電電極(2a) (2b)間に高電圧パル
スが印加されると、前記電離した媒質ガスを予備イオン
としてレーザ媒質ガスが励起されレーザ発振が生じる。
At this time, when a high voltage pulse is applied between the discharge electrodes (2a) and (2b), the laser medium gas is excited using the ionized medium gas as preliminary ions, and laser oscillation occurs.

しかるに、前記のように、X線によってレーザ媒質ガス
を効率よく予備イオン化させるには、X線管(1)で発
生したX線を、1対の電極(2a) (2b)までの間
にある物質(例えば第5図では入射窓の被覆材(6)や
空気また第6図では一方の電極(2a))による吸収損
失をできるだけ少なくして放電電極(2a) (2b)
間に照射しなければならない。
However, as mentioned above, in order to efficiently pre-ionize the laser medium gas with X-rays, the X-rays generated in the X-ray tube (1) must be directed to the Discharge electrodes (2a) (2b) are minimized to minimize absorption loss due to substances (for example, the entrance window coating (6) and air in Figure 5, and one electrode (2a) in Figure 6).
must be irradiated in between.

このような目的のため、従来は第5図の例では、入射窓
(5)の被覆材(6)として可能な限り薄いマイラーや
アルミニウム板が使用されていた。また、第6図の例で
はレーザ管(3)の入射窓被覆材を兼用した一方の電極
(2a)は、可能な限り肉薄(例えば1〜2m厚)のア
ルミニウム板が使用されていた。
For this purpose, conventionally, in the example shown in FIG. 5, the thinnest Mylar or aluminum plate possible was used as the covering material (6) for the entrance window (5). Further, in the example shown in FIG. 6, one electrode (2a) which also serves as the entrance window covering material of the laser tube (3) is made of an aluminum plate as thin as possible (for example, 1 to 2 m thick).

「発明が解決しようとする問題点」 できるだけ、X線の加速電圧を低くして、X線管の負担
を減らすとともに、レーザ発振のための効率のよい予備
イオン化が可能なように、入射窓被覆材の厚さを薄くし
、入射窓被覆材によるX線の吸収損失を少なくしようと
している。しかし、レーザ媒質ガスが高気圧(たとえば
3〜4気圧)のとき入射窓被覆材が破壊する危険を有す
るため薄くするのに限界がある。また、破壊の危険防止
のため、入射窓の面積も小さくせざるを得す、X線で1
対の放電電極間を均一に予備イオン化するというX線予
備電離方式の長所を達成することが難しくかつ放電電極
間の体積も大きくすることが困難となる(たとえば1対
の放電電極間51以上あると困難となる)、ちなみに、
従来の技術ではX線入射窓被覆材として巾5aaのアル
ミニウム板を使用して、放電電極間が5〜10個の大体
積を予備イオン化しようとすると、レーザ管の内外の気
圧差が2気圧、安全係数を3倍として、アルミニウムの
厚さが2〜3mは必要となり、X線吸収損失が大きくな
り大型X線管が必要となる。
``Problems to be solved by the invention'' In order to reduce the load on the X-ray tube by lowering the X-ray acceleration voltage as much as possible, and to enable efficient pre-ionization for laser oscillation, the entrance window must be coated. Efforts are being made to reduce the absorption loss of X-rays by the entrance window covering material by reducing the thickness of the material. However, when the laser medium gas is at high pressure (for example, 3 to 4 atmospheres), there is a risk that the entrance window covering material will be destroyed, so there is a limit to how thin it can be. In addition, in order to prevent the risk of destruction, the area of the entrance window must be made small.
It is difficult to achieve the advantage of the X-ray preionization method of uniformly preionizing the space between a pair of discharge electrodes, and it is also difficult to increase the volume between the discharge electrodes (for example, if the space between a pair of discharge electrodes is 51 or more ), by the way,
In the conventional technology, when trying to pre-ionize a large volume with 5 to 10 discharge electrodes using an aluminum plate with a width of 5 aa as the X-ray entrance window covering material, the pressure difference between the inside and outside of the laser tube is 2 atm. If the safety factor is tripled, the thickness of aluminum will need to be 2 to 3 meters, which will increase the X-ray absorption loss and require a large X-ray tube.

さらに上記入射窓被覆材の材質(たとえばマイラーやア
ルミニウム)がレーザ管に封入されたレーザ媒質ガス(
たとえばハロゲンガス)によって侵され易く、レーザ媒
質ガス中の活性ガス(たとえばハロゲンガス)が入射窓
と反応してレーザ媒質ガスが変質しレーザ発振寿命が縮
まるという問題点があった。また、第6図の例では、入
射窓被覆材として兼用している一方の電極(2a)が肉
薄のため、レーザ発振による発熱で電極温度が上昇し易
い。レーザを繰返し動作させるとさらに電極温度の上昇
が大きくなる。このため、レーザ発振の安定性が悪くな
るばかりか、レーザ発振が本来のグロー放電からアーク
放電になり易いという問題があった。
Furthermore, the material of the entrance window covering material (for example, Mylar or aluminum) is the laser medium gas sealed in the laser tube (
For example, the active gas (for example, halogen gas) in the laser medium gas reacts with the entrance window, changing the quality of the laser medium gas and shortening the laser oscillation life. Furthermore, in the example shown in FIG. 6, one electrode (2a), which also serves as the entrance window covering material, is thin, so that the electrode temperature tends to rise due to heat generated by laser oscillation. When the laser is operated repeatedly, the electrode temperature increases further. For this reason, there is a problem that not only the stability of laser oscillation deteriorates, but also that the laser oscillation tends to change from an original glow discharge to an arc discharge.

「問題点を解決するための手段」 本発明は上述のような問題点を解決するためになされた
もので、1対の放電電極を設けたレーザ管に、外部のX
線管よりレーザ管の入射窓の被覆材を通してX線を入射
して内部に封入されたレーザ媒質ガスを予備イオン化し
つつレーザ発振をするようにした装置において、前記入
射窓の被覆材はレーザ媒質ガスを密封する可及的に薄い
薄膜に、小さな入射窓を多数並べた構造の保護枠を密着
してなるものである。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and includes a laser tube provided with a pair of discharge electrodes.
In a device in which laser oscillation is performed while pre-ionizing a laser medium gas sealed inside by injecting X-rays from a ray tube through a coating material of an entrance window of a laser tube, the coating material of the entrance window is a laser medium. It consists of a protective frame with a structure consisting of many small entrance windows arranged in close contact with the thinnest possible thin film that seals the gas.

「作用」 X線管からのX線は保護枠のそれぞれの小さな入射窓を
通り、さらに薄膜を通過してレーザ管に入射しレーザ管
内のレーザ媒質ガスを電離する。
"Operation" X-rays from the X-ray tube pass through each small entrance window of the protective frame, further pass through the thin film, enter the laser tube, and ionize the laser medium gas within the laser tube.

ハニカム構造の保護枠は小さな入射窓を多数並べた構造
であるため、薄膜が可及的に薄くても入射窓全体の面積
は大きくでき、したがって放電電極間の体積を大きくと
ることができる。なお、構造上、薄膜と保護枠との間を
密着できずに隙間が生じる場合には、この隙間とレーザ
管内の圧力との気圧差で薄膜が破壊するおそれがあるた
め、隙間を真空にする。
Since the honeycomb-structured protective frame has a structure in which many small entrance windows are lined up, the area of the entire entrance window can be increased even if the thin film is as thin as possible, and therefore the volume between the discharge electrodes can be increased. Furthermore, if a gap occurs due to the structure of the thin film and the protective frame not being able to be in close contact with each other, the thin film may be destroyed due to the pressure difference between this gap and the pressure inside the laser tube, so make sure to vacuum the gap. .

「実施例」 以下、本発明の一実施例を第1図および第2図に基づき
説明する。なお、第4図と同一部分は同一符号とする。
"Example" An example of the present invention will be described below with reference to FIGS. 1 and 2. Note that the same parts as in FIG. 4 are given the same reference numerals.

第1図において、(3)はレーザ管で、このレーザ管(
3)内には、互いに所定間隔をもった1対の放電電極(
2a) (2b)と、内部のレーザ媒質ガスを循環させ
るためのブロア(7)が設けられ、前記電極(2a) 
(2b)はレーザ管(3)外の高圧電源回路(8)に結
合されている。また、このレーザ管(3)には図示しな
いが、レーザ媒質ガスを冷却するための装置が設けられ
ている。さらに、レーザ管(3)には、レーザ媒質ガス
を封入する際、内部を真空にするためのポンプと、レー
ザ媒質ガス(例えばハロゲンガス)を注入するためのボ
ンベがそれぞれバルブを介して結合される。
In Figure 1, (3) is a laser tube, and this laser tube (
3) A pair of discharge electrodes (
2a) (2b) and a blower (7) for circulating the laser medium gas inside the electrode (2a).
(2b) is coupled to a high voltage power supply circuit (8) outside the laser tube (3). Although not shown, the laser tube (3) is provided with a device for cooling the laser medium gas. Further, the laser tube (3) is connected via a valve to a pump for creating a vacuum inside the laser tube (3) and a cylinder for injecting the laser medium gas (for example, halogen gas). Ru.

このレーザ管(3)の1個部には前記放電電極(2a)
(2b)に対向してX線入射窓(5)が形成され、この
入射窓(5)の外周にはフランジ(9)が形成されてい
る。このフランジ(9)にはシール材(10)を介して
薄膜(11)が密閉状態に取付けられ、この¥fJ[l
l(11)にはさらにシール材(12)を介してハニカ
ム構造の小さな入射窓の集合体からなる保護枠(13)
が密着され、これら薄膜(11)と保護枠(13)は支
持枠(14)を当てがいねじ(15)によって固着され
ている。この薄膜(11)と保護枠(13)とによりX
線入射窓被覆材(6)が構成されている。
One part of this laser tube (3) is provided with the discharge electrode (2a).
An X-ray entrance window (5) is formed opposite to (2b), and a flange (9) is formed on the outer periphery of this entrance window (5). A thin film (11) is attached to this flange (9) in a sealed manner via a sealing material (10), and this ¥fJ[l
l (11) is further provided with a protective frame (13) consisting of a collection of small entrance windows in a honeycomb structure via a sealing material (12).
The thin film (11) and the protective frame (13) are fixed to the support frame (14) by retaining screws (15). This thin film (11) and protective frame (13)
A line entrance window covering (6) is constructed.

前記薄膜(11)はレーザ媒質ガスに対して耐腐食性を
有するテフロンなどからなり、中央部分は予1iffi
離イオン用X線が効率よく通過するのに充分な薄さく例
えば50〜lOOμ鳳)と広さを有し、また外周端部(
lla)は取付けのため肉厚とする。前記保護枠(13
)は、第2図に示すように1例えば20〜40μmのア
ルミニウム箔を用いて1個の巾が3−5閣、長さが5−
LoImの6角筒体(16)の小さな入射窓を多数並べ
てハニカム構造としたもので、このハニカム構造体の開
口した両端面には例えば50−200μ−のカーボン繊
維の膜(17) (17)が接着剤で表面張りされてい
る。この保護枠(13)の膜(17)と前記薄膜(11
)とは外部でねじ(15)で締めつけられ密着して固定
されているが、中央部は、単に接触しているだけで隙間
が生じる。そしてこの隙間に空気があると、レーザ管(
3)にレーザ媒質ガスを封入するのに先立ち内部を真空
にしたとき気圧差で薄膜(11)が破壊するおそれがあ
る。そこで、この隙間に気圧調整用チューブ(18)が
連通され、製造時にこの隙間を真空にしその後チューブ
(18)を封鎖する。
The thin film (11) is made of Teflon or the like which has corrosion resistance against the laser medium gas, and the central portion is pre-coated with 1iffi.
It is sufficiently thin (for example, 50 to 100μ) and wide enough for X-rays for separating ions to pass through efficiently, and the outer peripheral edge (
lla) should be thick for installation. The protective frame (13
) As shown in Figure 2, one piece of aluminum foil, for example, 20 to 40 μm in width, is 3-5 cm wide and 5-5 cm long.
A honeycomb structure is formed by arranging a large number of small entrance windows of the hexagonal cylinder (16) of LoIm, and a carbon fiber film (17) of, for example, 50-200μ is attached to both open end surfaces of this honeycomb structure. is covered with adhesive. The film (17) of this protective frame (13) and the thin film (11)
) are tightened externally with screws (15) and are tightly fixed, but a gap is created in the center simply because they are in contact. And if there is air in this gap, the laser tube (
3) When the inside is evacuated before filling with laser medium gas, there is a risk that the thin film (11) will be destroyed due to the pressure difference. Therefore, an air pressure adjustment tube (18) is communicated with this gap, and during manufacturing, this gap is evacuated and then the tube (18) is sealed.

前記X線入射窓(5)の外側のカバー(19)内にはX
線発生源のX線管(1)がX線入射窓(5)に対向して
設けられている。このX線管(1)はX線管カソード(
20)とX線管アノード(21)とが対向し、このX線
管アノード(21)にはタングステン板(22)が設け
られている。そしてX線管カソード(20)とX線管ア
ノード(21)間は高圧電源ライン(23)を介して高
圧パルス回路(4)に結合されている。
Inside the outer cover (19) of the X-ray entrance window (5) is an
An X-ray tube (1) serving as a radiation source is provided facing an X-ray entrance window (5). This X-ray tube (1) has an X-ray tube cathode (
20) and an X-ray tube anode (21) face each other, and the X-ray tube anode (21) is provided with a tungsten plate (22). The X-ray tube cathode (20) and the X-ray tube anode (21) are connected to a high-voltage pulse circuit (4) via a high-voltage power supply line (23).

以上のような構成による本発明の詳細な説明する。The present invention having the above configuration will be described in detail.

まずレーザ管(3)内にレーザ媒質ガスを封入するが、
このガス封入に際し、内部を清浄にするため、レーザ管
(3)を200〜300℃に加熱してポンプで真空に引
く、このとき、加熱によって保護枠(13)が破壊した
り強度が低下したりすることがあるので、保護枠(13
)に代えて耐熱性のある仮のキャップで蓋をする。また
薄膜(11)は隙間に空気があるとレーザ’! (3)
を真空に引いたとき破壊するので。
First, a laser medium gas is sealed inside the laser tube (3).
When filling this gas, in order to clean the inside, the laser tube (3) is heated to 200-300°C and evacuated with a pump. Protective frame (13)
) instead, cover with a heat-resistant temporary cap. Also, if there is air in the gap in the thin film (11), the laser'! (3)
Because it will be destroyed when it is pulled into a vacuum.

予め隙間の空気を気圧調整用チューブ(18)から吸引
して真空にしておく。
The air in the gap is drawn in advance through the air pressure adjustment tube (18) to create a vacuum.

この状態でレーザ管(3)内を真空にして内部を清浄に
してからレーザ媒質ガスを封入する。レーザ媒質ガスを
封入して内部の気圧を元に戻した後、仮のキャップを外
し、保護枠(13)を取付ける。なお、保護枠(13)
が充分な耐熱性を有する場合は仮のキャップを用いる必
要がない。また、保護枠(13)に薄膜(11)が接着
剤等で結合されているときには隙間を真空に引く必要は
ない。
In this state, the inside of the laser tube (3) is evacuated to clean it and then filled with laser medium gas. After filling the laser medium gas and restoring the internal air pressure, the temporary cap is removed and the protective frame (13) is attached. In addition, the protective frame (13)
If the material has sufficient heat resistance, there is no need to use a temporary cap. Further, when the thin film (11) is bonded to the protective frame (13) with an adhesive or the like, there is no need to evacuate the gap.

つぎに、レーザ発振の作用を説明する。Next, the effect of laser oscillation will be explained.

X線管(1)のアノード(21)とカソード(20)間
に高電圧パルスが印加されるとX線がパルス状となって
発生し、これが、6角筒体のハニカム状の小さな入射窓
(16)の集合体からなる保護枠(13)の中を経てさ
らに薄膜(11)を通過しレーザ管(3)内に入射する
。そしてX線は放電電極(2a) (2b)の間を通っ
てレーザ媒質ガスを電離する。放電電極(2a)(2b
)には高圧電源回路(8)から高電圧パルスが印加され
ているので、X線で電離したガスを予備イオンガスとし
てレーザ媒質ガスが励起されレーザ発振をする。
When a high voltage pulse is applied between the anode (21) and cathode (20) of the X-ray tube (1), X-rays are generated in a pulsed form, which enters the small honeycomb-shaped entrance window of the hexagonal cylinder. The light passes through the protective frame (13) made up of an aggregate of (16), further passes through the thin film (11), and enters the laser tube (3). The X-rays then pass between the discharge electrodes (2a) and (2b) and ionize the laser medium gas. Discharge electrode (2a) (2b
) is applied with a high voltage pulse from the high voltage power supply circuit (8), the laser medium gas is excited using the gas ionized by the X-rays as a preliminary ion gas to cause laser oscillation.

前記実施例では保護枠(13)の小さな入射窓(16)
は、強度、製造上の点から6角筒体をならべたハニカム
構造形状としたが、これに限られるものではなく、例え
ば第4図(a)のような4角筒体の小さな入射窓(16
)、第4図(b)に示すような網状の小さな入射窓(1
6) 、第4図(C)に示すような円筒体状の小さな入
射窓(16)、第4図(d)に示すような8角筒体と4
角筒体の組合せの小さな入射窓(16)、さらには3角
筒体、菱形またはこれらの組合せであってもよい。
In the embodiment described, the small entrance window (16) of the protective frame (13)
From the viewpoint of strength and manufacturing, the honeycomb structure is formed by arranging hexagonal cylinders, but the shape is not limited to this. For example, a small entrance window ( 16
), a small mesh-shaped entrance window (1
6) A small cylindrical entrance window (16) as shown in Fig. 4(C), an octagonal cylinder as shown in Fig. 4(d),
The small entrance window (16) may be a combination of rectangular cylinders, or even a triangular cylinder, a rhombus, or a combination thereof.

r発明の効果」 本発明は上述のようにX線入射窓を、ハニカム構造その
他の小さな入射窓を並べた形状の保護枠とこれに密接し
た薄膜とで被覆したので薄膜を可及的に薄くでき、X線
の吸収損失を大巾に減少できる。保護枠と薄膜の間に隙
間が生じる場合には、気圧調整手段を設けてその隙間も
真空にすることにより、レーザ管の内圧を変化させる際
、レーザ管と一体のものとして扱うことができ、薄膜が
薄くても破壊から防止できる。ちなみに、レーザ管の内
圧はレーザ媒質ガス封入時に真空状態から3気圧程度の
範囲で変化されるが、実験によれば5気圧でも何ら構造
上の変化はなく確実にレーザ媒質ガスの封入が可能であ
った。また、第3図はX線透過率を本発明の装置の場合
の特性(A)と従来の装置の場合の特性(B)を比較し
たものである。
Effects of the Invention As described above, the present invention covers the X-ray entrance window with a protective frame having a honeycomb structure or other arrangement of small entrance windows and a thin film in close contact with the protective frame, so that the thin film can be made as thin as possible. X-ray absorption loss can be greatly reduced. If there is a gap between the protective frame and the thin film, by providing a pressure adjustment means to make the gap a vacuum, it can be treated as an integral part of the laser tube when changing the internal pressure of the laser tube. Even if the film is thin, it can be prevented from being destroyed. By the way, the internal pressure of the laser tube changes in the range from vacuum to about 3 atm when the laser medium gas is filled in, but according to experiments, there is no structural change even at 5 atm, and it is possible to reliably fill the laser medium gas. there were. Furthermore, FIG. 3 compares the characteristics (A) of the X-ray transmittance in the case of the apparatus of the present invention and the characteristics (B) in the case of the conventional apparatus.

二こで、本発明の装置は、30μ鳳厚のアルミニウム箔
を用い、長さが10−のハニカムの両面に100μ墓の
カーボン繊維の膜を表面張りし、薄膜に100μ■のテ
フロンを用いてなるもので、また、従来の装置は2m厚
のアルミニウムを用いたものである。この第3図からつ
ぎのことがわかる。すなわち、予備イオン化には低エネ
ルギーX線が高エネルギーX線より効率がよいので、本
発明の装置では、従来の装置に対して同じエネルギー分
布のX線で1対の放電電極間に数倍から10倍のX線予
備イオン数を生じさせることができた。
Second, the device of the present invention uses aluminum foil with a thickness of 30μ, a carbon fiber film with a thickness of 100μ is applied on both sides of a honeycomb with a length of 10, and a Teflon film with a thickness of 100μ is used for the thin film. Furthermore, the conventional device uses aluminum with a thickness of 2 m. The following can be seen from Figure 3. In other words, since low-energy X-rays are more efficient than high-energy X-rays for pre-ionization, the device of the present invention can generate several times more energy between a pair of discharge electrodes using X-rays with the same energy distribution than conventional devices. It was possible to generate 10 times the number of X-ray preliminary ions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガスレーザ発振装置の一実施例を
示す断面図、第2図は保護枠の一部の斜視図、第3図は
本発明の装置による場合と従来の装置による場合のX線
透過率の特性図、第4図は保護枠の他の実施例の説明図
、第5図および第6回はそれぞれ従来の装置の断面図で
ある。 (1) ・X線管、(la) =−X線とり出し窓、(
2a) (2b)・・・放電電極、(3)・・・レーザ
管、(4)・・・高電圧パルス回路、(5)・・・X線
入射窓、(6)・・・被覆材、(7)・・・ブロア、(
8)・・・高圧電源回路、(9)・・・フランジ、(1
0)・・・シール材、(11)・・・薄膜、 (lla
)・・・外周縁部、(12)・・・シール材、(13)
・・・保護枠、(14)・・・支持枠、(15)・・・
ねじ、 (16)・・・小さな入射窓、(17)・・・
膜、(18)・・・気圧調整用チューブ、(19)・・
・カバー、(20)・・・レーザ管カソード、(21)
・・・レーザ管アノード、(22)・・・タングステン
板、(23)・・・高圧電源ライン。 出願人  浜松ホトニクス株式会社 第  4  図 第  5  図 IIG図
FIG. 1 is a sectional view showing an embodiment of the gas laser oscillation device according to the present invention, FIG. 2 is a perspective view of a part of the protective frame, and FIG. A characteristic diagram of the linear transmittance, FIG. 4 is an explanatory diagram of another embodiment of the protective frame, and FIGS. 5 and 6 are sectional views of conventional devices, respectively. (1) ・X-ray tube, (la) =-X-ray extraction window, (
2a) (2b)...Discharge electrode, (3)...Laser tube, (4)...High voltage pulse circuit, (5)...X-ray entrance window, (6)...Coating material , (7)...Blower, (
8)...High voltage power supply circuit, (9)...Flange, (1
0)...Sealing material, (11)...Thin film, (lla
)...outer periphery, (12)...sealing material, (13)
...Protection frame, (14)...Support frame, (15)...
Screw, (16)...Small entrance window, (17)...
Membrane, (18)...Air pressure adjustment tube, (19)...
・Cover, (20)...Laser tube cathode, (21)
... Laser tube anode, (22) ... Tungsten plate, (23) ... High voltage power supply line. Applicant Hamamatsu Photonics Co., Ltd. Figure 4 Figure 5 Figure IIG

Claims (5)

【特許請求の範囲】[Claims] (1)1対の放電電極を設けたレーザ管に、外部のX線
管よりレーザ管の入射窓の被覆材を通してX線を入射し
て内部に封入されたレーザ媒質ガスを予備イオン化しつ
つレーザ発振をするようにした装置において、前記入射
窓の被覆材はレーザ媒質ガスを密封する可及的に薄い薄
膜に、小さな入射窓を多数並べた構造の保護枠を密着し
てなることを特徴とするガスレーザ発振装置。
(1) X-rays are incident on a laser tube equipped with a pair of discharge electrodes from an external X-ray tube through the coating material of the entrance window of the laser tube to pre-ionize the laser medium gas sealed inside and emit a laser beam. In the device which oscillates, the covering material of the entrance window is made of a thin film as thin as possible that seals the laser medium gas, and a protective frame having a structure in which a large number of small entrance windows are arranged is tightly attached to the coating material of the entrance window. Gas laser oscillation device.
(2)薄膜と保護枠間はその間隙を真空にするための気
圧調整用チューブを具備してなる特許請求の範囲第1項
記載のガスレーザ発振装置。
(2) The gas laser oscillation device according to claim 1, further comprising an air pressure adjusting tube between the thin film and the protective frame to evacuate the gap therebetween.
(3)薄膜は耐ガス腐食性を有するものからなる特許請
求の範囲第1項または第2項記載のガスレーザ発振装置
(3) A gas laser oscillation device according to claim 1 or 2, wherein the thin film is made of a material having gas corrosion resistance.
(4)保護枠は小さな多角筒体の入射窓を多数並べてハ
ニカム構造とした特許請求の範囲第1項、第2項または
第3項記載のガスレーザ発振装置。
(4) The gas laser oscillation device according to claim 1, 2 or 3, wherein the protective frame has a honeycomb structure in which a large number of small polygonal cylindrical entrance windows are arranged side by side.
(5)保護枠は小さな多角筒体の入射窓と小さな円筒体
の入射窓とを多数組合せた構造とした特許請求の範囲第
1項、第2項または第3項記載のガスレーザ発振装置。
(5) The gas laser oscillation device according to claim 1, 2 or 3, wherein the protective frame has a structure in which a large number of small polygonal cylindrical entrance windows and small cylindrical entrance windows are combined.
JP27492686A 1986-11-18 1986-11-18 Gas laser oscillator Granted JPS63128687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27492686A JPS63128687A (en) 1986-11-18 1986-11-18 Gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27492686A JPS63128687A (en) 1986-11-18 1986-11-18 Gas laser oscillator

Publications (2)

Publication Number Publication Date
JPS63128687A true JPS63128687A (en) 1988-06-01
JPH0477474B2 JPH0477474B2 (en) 1992-12-08

Family

ID=17548468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27492686A Granted JPS63128687A (en) 1986-11-18 1986-11-18 Gas laser oscillator

Country Status (1)

Country Link
JP (1) JPS63128687A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868997A (en) * 1971-12-23 1973-09-19
JPS50134792A (en) * 1974-04-04 1975-10-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868997A (en) * 1971-12-23 1973-09-19
JPS50134792A (en) * 1974-04-04 1975-10-25

Also Published As

Publication number Publication date
JPH0477474B2 (en) 1992-12-08

Similar Documents

Publication Publication Date Title
US5247534A (en) Pulsed gas-discharge laser
GB1373402A (en) Method and apparatus for producing a controlled
US3351870A (en) Pulsed gas laser
JPS63128687A (en) Gas laser oscillator
JPS636886A (en) Lateral excitation type laser apparatus
US3516012A (en) Argon laser
US4091336A (en) Direct nuclear pumped laser
Golden et al. Intense proton‐beam‐pumped Ar‐N2 laser
JP2592821B2 (en) Gas laser device
US3906392A (en) Combination electron window-sustainer electrode for electron beam discharge devices
US4228407A (en) Ion-beam-excited gas laser
US4323858A (en) Foil cooling system for high current density electron-beam pumped lasers
US3808551A (en) Secondary foil for apparatus producing a controlled discharge which provides molecular excitation of a gaseous working medium
JP2699894B2 (en) X-ray preionization discharge excitation gas laser apparatus and oscillation method thereof
JP2913743B2 (en) X-ray preionization gas laser device
US4250468A (en) Technique for CW or quasi CW operation of planar electrode laser apparatus
JP2538590B2 (en) Metal vapor laser device
JPH02123775A (en) X-ray pre-ionization-discharge excitation pulse gas laser device
US3617933A (en) Method for generating oscillation in krypton laser
JPS63199476A (en) Gas laser device
RU2129319C1 (en) Ultraviolet lamp for photoionization detector
JPH01274485A (en) Pulse laser device
JP2614231B2 (en) Gas laser device
JPH01128482A (en) Gas laser oscillator
JPH04118981A (en) X-ray spare ionization type laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees