JPS63128572A - Solid electrolyte for use in secondary battery - Google Patents
Solid electrolyte for use in secondary batteryInfo
- Publication number
- JPS63128572A JPS63128572A JP61274050A JP27405086A JPS63128572A JP S63128572 A JPS63128572 A JP S63128572A JP 61274050 A JP61274050 A JP 61274050A JP 27405086 A JP27405086 A JP 27405086A JP S63128572 A JPS63128572 A JP S63128572A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- particle size
- particles
- mum
- crystal grains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 29
- 239000000919 ceramic Substances 0.000 claims abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 239000000470 constituent Substances 0.000 claims description 4
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 17
- 239000013078 crystal Substances 0.000 abstract description 12
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract description 5
- 238000000465 moulding Methods 0.000 abstract description 3
- 239000008188 pellet Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 9
- 229910052708 sodium Inorganic materials 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101100348017 Drosophila melanogaster Nazo gene Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/3909—Sodium-sulfur cells
- H01M10/3918—Sodium-sulfur cells characterised by the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は二次電池用固体電解質に関し、特にナトリウム
−硫黄電池用固体電解質に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid electrolyte for secondary batteries, and particularly to a solid electrolyte for sodium-sulfur batteries.
従来、固体電解質の製造方法については、ベータアルミ
ナ、又はベータダブルプライムアルミナ。Conventionally, solid electrolytes are produced using beta alumina or beta double prime alumina.
又はこれらの混合物の粉末を成型、焼結する方法が使わ
れている。Alternatively, a method is used in which a powder of a mixture of these is molded and sintered.
ナトリウム−硫黄電池に使用される固体電解質としては
、特開昭51−13814号公報に記載の如く、原料粉
末を1μm以下に微細化して成型、焼結し。As described in JP-A-51-13814, the solid electrolyte used in sodium-sulfur batteries is prepared by pulverizing raw material powder to 1 μm or less, molding it, and sintering it.
緻密で強固な固体電解質を得る努力がされていた。Efforts have been made to obtain dense and strong solid electrolytes.
しかし、焼結後の固体電解質の結晶粒径については配慮
されていなかった。However, no consideration was given to the crystal grain size of the solid electrolyte after sintering.
上記従来技術はベータダブルプライムアルミナが層状化
合物であるため、焼結時の結晶粒の方向が一定でなく、
そのため結晶粒と結晶粒の角の隙間が埋まらず、空孔が
できる点について配慮がされておらず、電池運転時に空
孔にナトリウムイオンが析出し、遂には空孔内部を押し
拡げ、固体電解質に割れを発生させるという問題があっ
た。In the above conventional technology, since beta double prime alumina is a layered compound, the direction of the crystal grains during sintering is not constant.
As a result, the gaps between the corners of the crystal grains are not filled, and no consideration is given to the formation of pores. During battery operation, sodium ions precipitate in the pores, and eventually push the inside of the pores and expand the solid electrolyte. There was a problem that cracks occurred.
本発明の目的は固体電解質の空孔を減少させ、電池の長
寿命化を達成することにある。An object of the present invention is to reduce pores in a solid electrolyte and thereby extend the life of a battery.
上記目的は構成単位粒子の短軸方向の粒径の平均値が1
μm以上で、かつ欄準偏差1.5μm以上の粒径分布を
有するセラミックスからなることを特徴とする二次電池
用固体電解質により達成される。The above purpose is to ensure that the average particle diameter in the minor axis direction of the constituent unit particles is 1.
This is achieved by a solid electrolyte for secondary batteries characterized by being made of ceramics having a particle size distribution of 1.5 μm or more and a field standard deviation of 1.5 μm or more.
固体電解質の空孔を少なくシ、併せて結晶粒界を強化す
るために、原料粉末の大きさを調整し。The size of the raw material powder is adjusted to reduce the number of pores in the solid electrolyte and strengthen the grain boundaries.
大きな粒子の間に小さい粒子を混入させ、成型。Molding by mixing small particles between large particles.
焼結すると、大きな粒子は粗大結晶粒になり、小さい粒
子は小さな結晶粒となって粗大結晶粒間の隙間を埋める
ため、焼結の完全な、Jl密で1強固な固体電解質が得
られる。When sintered, the large particles become coarse crystal grains and the small particles become small crystal grains to fill the gaps between the coarse crystal grains, resulting in a completely sintered, Jl-dense, solid electrolyte.
次に本発明による二次電池用固体電解質の試料について
説明する。Next, a sample of the solid electrolyte for secondary batteries according to the present invention will be explained.
固体電解質の原料となるベータダブルプライムアルミナ
粉末の作り方は、特公昭57−15063号公報(出願
人:フォード・モータ)に記載された方法による。Beta double prime alumina powder, which is a raw material for the solid electrolyte, is prepared according to the method described in Japanese Patent Publication No. 57-15063 (Applicant: Ford Motor Co., Ltd.).
ベータダブルプライムアルミナに必要なリチウムをLi
zo−5AI2zO+s の仮焼で与える。ベータダブ
ルプライムアルミナの製造方法は、特公昭50−156
3号公報(出願人:フォード:モータ0名称:陽イオン
伝導性多結品質焼結体の製法)に記載された方法による
。Lithium required for beta double prime alumina
Provided by calcining zo-5AI2zO+s. The manufacturing method of beta double prime alumina was published in 1977-156.
According to the method described in Publication No. 3 (Applicant: Ford: Motor 0 Name: Manufacturing method of cation-conductive multi-crystalline sintered body).
この粉体の組成は重量パーセントでAQzOa89.4
%、NazO9,8%、LizO0,8%でなり、X線
回折によりベータダブルプライムアルミナの組成を示す
ことを確認したので、当粉体の原料であるアルミナ粉末
の短軸方向の粒径(以下粒径と称する)を、第1表に示
す如く3種類の試料を試作した。The composition of this powder is AQzOa89.4 in weight percent.
%, NazO 9.8%, and LizO 0.8%, and it was confirmed by X-ray diffraction that it shows the composition of beta double prime alumina. Three types of samples were prepared as shown in Table 1.
第1表 アルミナ粉末の粒径別百分比(%)第1実施例
第1表に示す3種類の試料について、内径20Iのペレ
ット用金型に所定量充填し、平方センチメートル当たり
1トンの荷重で成型し、更に前記特公昭50−1563
号公報に記載の製法に基づき。Table 1 Percentage ratio (%) of alumina powder by particle size First example The three types of samples shown in Table 1 were filled in a predetermined amount into a pellet mold with an inner diameter of 20I, and molded with a load of 1 ton per square centimeter. , furthermore, the above-mentioned Special Publication No. 50-1563
Based on the manufacturing method described in the publication.
1.560℃にて6分間焼結後、アニールを1,400
℃で行い、直径約16awの焼結ペレットを行った。1. After sintering at 560℃ for 6 minutes, annealing at 1,400℃
℃ and produced sintered pellets with a diameter of about 16 aw.
この焼結ペレットを用い、ナトリウム/ナトリウムセル
を組み、LCRメータで20 KHzの交流周波数を用
いて固体電解質のペレットの抵抗測定、充放電装置を用
いた充放電サイクルテスト及び限界電流密度試験を行っ
た。Using these sintered pellets, a sodium/sodium cell was assembled, and the resistance of the solid electrolyte pellet was measured using an LCR meter at an AC frequency of 20 KHz, and a charge/discharge cycle test and critical current density test were conducted using a charge/discharge device. Ta.
充放電サイクルテストにおいて1通電電気量は2アンペ
アの電流を1時間、プラスからマイナスに送るのを充電
、その逆を放電としこれを1サイクルとした。In the charge/discharge cycle test, one cycle was defined as charging by sending a current of 2 amperes from positive to negative for one hour, and discharging from the opposite direction.
限界電流密度試験は、電池の充放電時に固体電解質に発
生する、固体電解質の内部から破壊しようとする力に対
する強度の評価を行う方法である。The limiting current density test is a method for evaluating the strength against the force that tends to destroy the solid electrolyte from within, which is generated in the solid electrolyte during charging and discharging of a battery.
限界電流密度とは、試料の両側をナトリウムで満たし、
電流を流してナトリウムイオンを一方向に移動させ1次
第に電流値を上げていくとイオンの移動量が多くなり電
圧が上昇していくが、ある電流値で試料が破壊して、ナ
トリウムが短絡して電圧が急激に零となり、その時の電
流値を、試料がナトリウムと接している部分の表面積(
有効表面積)で割った値をいう。The limiting current density is when both sides of the sample are filled with sodium,
If you apply a current to move sodium ions in one direction and gradually increase the current value, the amount of ion movement will increase and the voltage will rise, but at a certain current value the sample will be destroyed and the sodium will short-circuit. The voltage suddenly drops to zero, and the current value at that time is expressed as the surface area of the part of the sample in contact with sodium (
(effective surface area).
第1表に示した3種類のアルミナ粉末の試料を角いて製
作した、焼結ペレットの抵抗値と充放電サイクルテスト
の結果を第2表に示す。Table 2 shows the resistance values and charge/discharge cycle test results of sintered pellets made by squaring the three types of alumina powder samples shown in Table 1.
第2表
試料番号1の初期抵抗値は低いが、充放電サイクルの増
加とともに徐々に抵抗値が増加する。Although the initial resistance value of Sample No. 1 in Table 2 is low, the resistance value gradually increases as the charge/discharge cycles increase.
試料番号2の抵抗値は200サイクル時も初期とほぼ同
程度であった。また、充放電サイクルテスト結果も良好
な値を示した。The resistance value of sample number 2 was almost the same as the initial value even after 200 cycles. The charge/discharge cycle test results also showed good values.
第1図に限界電流密度試験の結果を示す、試料番号2の
条件での値は試料番号1の場合の倍以上の値を示した。FIG. 1 shows the results of the limiting current density test, and the value under the conditions of sample number 2 was more than double that of sample number 1.
この値に上記抵抗値と充放電サイクルテストの結果を合
わせることにより1粒界が強化された固体電解質が得ら
れたことが確認できた。なお、試料番号3の場合は、抵
抗値が高く。By combining this value with the above resistance value and the results of the charge/discharge cycle test, it was confirmed that a solid electrolyte with one grain boundary strengthened was obtained. In addition, in the case of sample number 3, the resistance value was high.
充放電サイクルテストの結果も伸びず、限界電流密度も
低かった。The results of the charge/discharge cycle test also showed no improvement, and the limiting current density was low.
第2実施例
第1実施例の第1表に示した、3種類のアルミナ粉末か
らなるベータダブルプライムアルミナ粉末を、夫々の試
料毎にラバープレス型に充填し、その型を圧力容器内に
設置して水圧を加え、粉末を圧縮して成型体とする。こ
の成型体を、第1実施例と同様に焼結、アニールを行い
、袋管を製作した。Second Example Beta double prime alumina powder consisting of three types of alumina powder shown in Table 1 of the first example was filled into a rubber press mold for each sample, and the mold was placed in a pressure vessel. Then, water pressure is applied to compress the powder into a molded body. This molded body was sintered and annealed in the same manner as in the first example to produce a bag tube.
これら袋管の大きさは外径約18nm、長さ約44m、
厚さ約1.5mである。この袋管でナトリウム/ナトリ
ウムセルを作り、第1実施例と同様、抵抗測定、充放電
サイクルテストを行った。The size of these bag tubes is approximately 18 nm in outer diameter and approximately 44 m in length.
The thickness is approximately 1.5m. A sodium/sodium cell was made using this bag tube, and the resistance was measured and the charge/discharge cycle test was performed in the same manner as in the first example.
又、機械的強度として、圧環強度を測定した。In addition, radial crushing strength was measured as mechanical strength.
袋管の評価試験結果を次の第3表に示す。この袋管にお
いても、試料番号2の粉末を用いた場合の圧環強度が高
く、抵抗値、充放電サイクルテストの結果ともに優れて
いた。The evaluation test results for the bag tube are shown in Table 3 below. In this bag tube as well, the radial crushing strength was high when the powder of sample number 2 was used, and both the resistance value and the results of the charge/discharge cycle test were excellent.
第3表
次に、上記第1実施例のペレットの研磨表面について説
明する。第1実施例で得られた。ベータダブルプライム
アルミナの焼結ペレットの表面を研磨し、150”Cの
リン酸に浸漬して、その研磨表面をエツチングし1粒界
侵食の度合を走査型電子顕微鏡によって観察した。観察
した電子顕微鏡写真を第2A〜2C図に示す。Table 3 Next, the polished surface of the pellet of the first example will be explained. Obtained in the first example. The surface of a sintered pellet of beta double prime alumina was polished, immersed in 150"C phosphoric acid, the polished surface was etched, and the degree of grain boundary erosion was observed using a scanning electron microscope. Photographs are shown in Figures 2A-2C.
第2A図では試料番号1の粉末を用いて製作した焼結ペ
レットの表面で、微細な結晶粒子間に小さい空孔が比較
的均一に分布しているのが観察された。第2B図では試
料番号2の粉末を用いて製作した焼結ペレットの表面で
、粗大結晶粒子間に微細粒子が入り込み、極めて密に組
合っているのがw4察された。In FIG. 2A, it was observed that on the surface of the sintered pellet produced using the powder of sample number 1, small pores were relatively uniformly distributed between fine crystal grains. In FIG. 2B, it was observed w4 that on the surface of the sintered pellet produced using the powder of sample number 2, fine particles were intercalated between the coarse crystal grains and were extremely tightly interlocked.
第2C図では、試料番号3の粉末を用いて製作した焼結
ペレットの表面で1粒子の抜けた空孔や結晶粒子間の空
孔で、荒れている様子が観察された。なお、リン酸への
浸漬時間は4分、電子顕微鏡写真の倍率はs、ooo倍
である。In FIG. 2C, it was observed that the surface of the sintered pellet produced using the powder of sample number 3 was rough due to pores where one particle had fallen out and pores between crystal particles. The immersion time in phosphoric acid was 4 minutes, and the magnification of the electron micrograph was s, ooo times.
リン酸によるエツチングの結果からも、ベータダブシブ
1ライムアルミナの原料のひとつであるアルミナ粉末の
粒度調整を行うと、ベータダブルプライムアルミナの結
晶粒界が強化されたのがわかる。なお、第1表の試料番
号2の粉末を用いて製作した焼結ペレットの表面の粒子
の短軸方向の粒子径は、電子顕微鏡写真を画像処理装置
で解析した所、1μm以下が44%、1〜5μmが54
%。The results of etching with phosphoric acid also show that grain boundaries in beta double prime alumina were strengthened by adjusting the particle size of alumina powder, which is one of the raw materials for beta double prime alumina. In addition, the particle diameter in the minor axis direction of the particles on the surface of the sintered pellets produced using the powder of sample number 2 in Table 1 was found to be 1 μm or less in 44% of the particles when electron micrographs were analyzed using an image processing device. 1 to 5 μm is 54
%.
5i10μmが2%であった。5i10μm was 2%.
本発明によれば固体電解質の結晶粒界が強化される。ま
た、固体電解質の表面及び内部の空孔が減少し、ナトリ
ウム−硫黄電池の固体電解質として使用した時、ナトリ
ウムイオンが固体電解質内に析出する址が少ないので、
固体電解質に生じる内部応力も減少した。その結果、ナ
トリウム−硫黄電池の寿命が約30%伸びた。According to the present invention, the grain boundaries of the solid electrolyte are strengthened. In addition, the pores on the surface and inside of the solid electrolyte are reduced, and when used as a solid electrolyte in a sodium-sulfur battery, there is less room for sodium ions to precipitate within the solid electrolyte.
The internal stress generated in the solid electrolyte was also reduced. As a result, the lifespan of sodium-sulfur batteries was increased by about 30%.
Claims (1)
上で、かつ標準偏差1.5μm以上の粒径分布を有する
セラミックスからなることを特徴とする二次電池用固体
電解質。 2、セラミックスの構成単位粒子の短軸方向の粒径が、
1μm以下が40〜60%、1〜5μmが50〜60%
、5〜10μmが1〜5%であることを特徴とする特許
請求の範囲第1項記載の二次電池用固体電解質。 3、セラミックスの構成単位粒子が、ベータアルミナ又
はベータダブルプライムアルミナであることを特徴とす
る特許請求の範囲第1項記載の二次電池用固体電解質。[Scope of Claims] 1. A secondary battery characterized by being made of a ceramic having a particle size distribution in which the average particle size in the short axis direction of the constituent unit particles is 1 μm or more and the standard deviation is 1.5 μm or more. Solid electrolyte for use. 2. The grain size in the minor axis direction of the constituent unit particles of ceramics is
40-60% is 1 μm or less, 50-60% is 1-5 μm
, 5 to 10 μm is 1 to 5% of the solid electrolyte for a secondary battery according to claim 1. 3. The solid electrolyte for a secondary battery according to claim 1, wherein the constituent unit particles of the ceramic are beta alumina or beta double prime alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61274050A JPS63128572A (en) | 1986-11-19 | 1986-11-19 | Solid electrolyte for use in secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61274050A JPS63128572A (en) | 1986-11-19 | 1986-11-19 | Solid electrolyte for use in secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63128572A true JPS63128572A (en) | 1988-06-01 |
Family
ID=17536268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61274050A Pending JPS63128572A (en) | 1986-11-19 | 1986-11-19 | Solid electrolyte for use in secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63128572A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547412A (en) * | 1991-08-12 | 1993-02-26 | Ngk Insulators Ltd | Beta-alumina solid electrolyte |
-
1986
- 1986-11-19 JP JP61274050A patent/JPS63128572A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0547412A (en) * | 1991-08-12 | 1993-02-26 | Ngk Insulators Ltd | Beta-alumina solid electrolyte |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102348193B1 (en) | Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery | |
JP2927430B2 (en) | Activation method of rechargeable hydrogen storage negative electrode | |
KR101918815B1 (en) | Anode Active Material for Rechargeable Battery and Preparing Method thereof | |
JPWO2018193994A1 (en) | All-solid-state lithium-ion secondary battery | |
EP3059796A1 (en) | Lead-acid battery | |
JP7233333B2 (en) | Manufacturing method of sintered body | |
JP3396076B2 (en) | Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery | |
EP0926750B1 (en) | Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same | |
CN105895884B (en) | A kind of method and its application for carrying out surface modification to hydrogen bearing alloy using molybdenum disulfide | |
US3847603A (en) | Process for preparing a sintered iron negative plate for an alkaline storage battery | |
JP7107888B2 (en) | Negative electrode active material for solid battery, negative electrode and solid battery using the active material | |
EP3582299B1 (en) | Lithium composite oxide sintered body plate and lithium secondary battery | |
JPS63128572A (en) | Solid electrolyte for use in secondary battery | |
JP2634674B2 (en) | Mold for isostatic pressing of ceramics tubes | |
WO2021166662A1 (en) | Nickel electrode for alkaline secondary cell and alkaline secondary cell including this nickel electrode | |
US5510210A (en) | Solid electrolyte for sodium-sulfur secondary cell and process for preparing the same | |
WO2020195542A1 (en) | Hydrogen-intercalated alloy for alkaline battery, alkaline battery using same as negative electrode, and vehicle | |
JP4984430B2 (en) | Method for producing paste active material for negative electrode | |
JPH0774093B2 (en) | Beta-alumina solid electrolyte and method for producing the same | |
WO1993024964A1 (en) | High porosity aluminum nitride separator | |
CN115881955B (en) | Composite lithium iron phosphate material and preparation method thereof | |
JPH0837008A (en) | Paste type lead-acid battery | |
JP7510118B2 (en) | Solid electrolyte sheet, manufacturing method thereof, and all-solid-state secondary battery | |
EP0810678A2 (en) | Nickel eletrode for secondary battery | |
JP2000017302A (en) | Hydrogen storage alloy sintered compact and hydrogen storage alloy sintered compact porous negative electrode |