JPS6312834A - Underwater tank - Google Patents

Underwater tank

Info

Publication number
JPS6312834A
JPS6312834A JP61155082A JP15508286A JPS6312834A JP S6312834 A JPS6312834 A JP S6312834A JP 61155082 A JP61155082 A JP 61155082A JP 15508286 A JP15508286 A JP 15508286A JP S6312834 A JPS6312834 A JP S6312834A
Authority
JP
Japan
Prior art keywords
air
tank
compressing system
combustion
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61155082A
Other languages
Japanese (ja)
Inventor
Masao Hayashi
正夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP61155082A priority Critical patent/JPS6312834A/en
Publication of JPS6312834A publication Critical patent/JPS6312834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable easy and safe installation of an underwater tank, by a method wherein, in a pressure accumulating air tank for air for pressurization combustion used for a gas turbine, pressurized air from an air compressing system is guided to a flexible tank installed in sea water through a pipe body. CONSTITUTION:A gas turbine generator feeds compressed air from an air compressing system 1 to a combustor, a turbine is driven by means of high pressure high temperature combustion gas generated in the combustor, and a power is generated by means of a generator. In this case, a flexible tank 7, installed in sea water, is connected to the air compressing system 1 through a pipe body 8. In which case, a depth H in water of a connection end 6 is set so that a sea water pressure at the connecting end 6 of the flexible tank 7 is adjusted to a pressure matching that of air 10 for combustion. Through utilization of a surplus power at night, the air compressing system 1 is driven, compressed air produced by the air compressing system is stored in the flexible tank 7, and during power generation in the daytime, the stored air is utilized as air for combustion.

Description

【発明の詳細な説明】 〔発明の目的〕 (発明の利用分野) 本発明は水中式タンク例えばガスタービンに使用される
加圧燃焼用空気の蓄圧空気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Field of Application of the Invention) The present invention relates to an accumulator for pressurized combustion air used in submersible tanks, such as gas turbines.

(従来技術とその問題点) 電力系統を構成する発電所の運用に当っては、一般に起
動停止が好ましくない原子力発電所や起動停止が容易で
ない微粉炭火力発電所をベース運転用として用い、その
不足電力公吏には昼間における電力需用の増大時には、
起動停止が迅速容易な石油火力発電所やLNG、LPG
火力発電所更にはLNGガスなどを燃料とするガスター
ビン発電所を運転して、電力需用に対応することが行わ
れている。従ってベース運転用以外の発電所は夜間その
他において動作か停止されるものが多い。
(Prior art and its problems) When operating power plants that make up an electric power system, nuclear power plants, where starting and stopping are generally undesirable, and pulverized coal-fired power plants, where starting and stopping are not easy, are used for base operation. When power demand increases during the day, power shortage officials will
Oil-fired power plants, LNG, and LPG that can be started and stopped quickly and easily
Thermal power plants as well as gas turbine power plants that use LNG gas as fuel are operated to meet the demand for electricity. Therefore, many power plants other than those for base operation are operated or shut down at night and other times.

そこで燃料の燃焼に加圧された空気を使用する発電所、
例えば第1図に示す如き概略構成をもつガスタービン発
電所のように、空気圧縮機(1)により例えば10気圧
程度に加圧された空気を燃焼用空気として燃料ガス(例
えばLNG)と共に燃焼器(2)に加えて作動ガスを作
り、これによりガスタービン(3)を駆動して発電機(
4)により発電するものにおいては、それが停止される
夜間その他における余剰電力を使用して、例えば発電機
(4)を電動機として駆動して空気圧縮機(1)を動作
させ、これにより作られた加圧空気を地中に掘削した貯
溜装置(5)に貯溜しておき、発電運転時この貯溜空気
を燃焼用として使用することが提案されている。
A power plant that uses pressurized air to burn fuel,
For example, in a gas turbine power plant having a schematic configuration as shown in Fig. 1, air pressurized to about 10 atmospheres by an air compressor (1) is used as combustion air and is used in a combustor together with fuel gas (for example, LNG). In addition to (2), a working gas is created, which drives a gas turbine (3) to generate a generator (
4), the surplus power generated during the night and other times when the generator is stopped is used to drive the generator (4) as an electric motor to operate the air compressor (1), thereby generating electricity. It has been proposed to store the pressurized air in a storage device (5) excavated underground and use this stored air for combustion during power generation operation.

この方法によれば発電電力と同等またはそれ以上の電力
を必要とする空気圧縮機の動力を安価な余剰電力によっ
て賄うことができることから燃料費を大きく低下するこ
とができ、例えば余剰電力として原子力発電のそれを使
用すればその発電燃料原価は現在3円/ KWhであり
、ガスタービン発電における燃料としてLNGを用いた
場合には10円/に誉りであるから、1O−3=7円分
だけI KWh当りの発電燃料コストを低下できる。ま
たこの方式によれば従来方式即ちガスタービンの運転と
同時に空気圧縮機を駆動して燃焼用空気を作るものに比
べて、実質的に空気圧縮機に必要とされる動力分だけ発
電設備が増大されたと同様のすぐれた効果、例えば発電
力を10万KWとした場合空気圧縮機に要する動力は1
0万kw以上になることから、少な(見積っても10万
に誓の発電設備の増強が行われたと同様のすぐれた効果
を得られる。
According to this method, the power of the air compressor, which requires the same or more power than the generated power, can be covered by inexpensive surplus electricity, which can greatly reduce fuel costs.For example, the surplus power can be used to generate nuclear power. If you use that, the fuel cost for power generation is currently 3 yen/KWh, and if LNG is used as the fuel for gas turbine power generation, it will be 10 yen/KWh, so 1O-3 = 7 yen. The power generation fuel cost per I KWh can be reduced. Additionally, compared to the conventional method, which generates combustion air by driving an air compressor at the same time as the gas turbine is operating, this method requires more power generation equipment by the amount of power required for the air compressor. For example, if the power generation power is 100,000 KW, the power required for the air compressor is 1
Since it will be more than 100,000 kW, it would be possible to obtain the same excellent effect as if the power generation equipment was increased by 100,000 kW.

しかも以上に加えて負荷の千卓化が行われるばかりか、
系統事故時にバンクアンプ発電所とじて用いるときは、
貯溜装置のバルブを開くことにより所要の圧力をもった
燃焼用空気を直ちに得ることができるため、起動速度が
速<、10分程度の短い時間で90%程度の負荷をとれ
る。従って系統の安定効果を高めうる効果がある。
In addition to the above, not only is the load multiplied by 1,000 machines, but
When used as a bank amplifier power plant in the event of a grid failure,
By opening the valve of the storage device, combustion air with the required pressure can be obtained immediately, so the startup speed is fast and about 90% of the load can be taken in a short time of about 10 minutes. Therefore, it has the effect of increasing the stability of the system.

しかしその一方従来の貯溜装置は第1図に示すように貯
溜空気の使用によって空気圧力が変化する。このため燃
料ガスの燃焼状態が変化してガスタービンの運転状態が
変化することから、運転効率などの低下をまぬがれ得な
い欠点がある。また地中に掘られた貯溜装置はその壁面
からの貯溜空気が逃散しないように経済的に作られるこ
とが望ましく、このためには緻密な地盤であると同時に
掘削が容易な地層に掘削できることが強く望まれる。し
かし我が国においては適切な地層を探すことは困難であ
り、特に発電所の立地点として選定される湾岸における
適地はないと云ってよい。
However, in the conventional storage device, the air pressure changes depending on the use of the stored air, as shown in FIG. For this reason, the combustion state of the fuel gas changes and the operating state of the gas turbine changes, so there is a drawback that the operating efficiency, etc., cannot be avoided. In addition, it is desirable that a storage device dug underground be constructed economically so that the stored air does not escape from the wall, and for this purpose, it is necessary to be able to excavate into a stratum that is both dense and easy to excavate. Highly desired. However, in Japan, it is difficult to find suitable geological strata, and it can be said that there is no suitable location in the bay area, especially for the location of a power plant.

本発明は湾岸発電所にも容易に適用できる定圧式蓄圧空
気装置を提供し、従来装置の欠点の一掃を図ったもので
ある。次に図面を用いてその詳細を説明する。
The present invention provides a constant pressure accumulating air device that can be easily applied to coastal power plants, and eliminates the drawbacks of conventional devices. Next, the details will be explained using the drawings.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 第2図は本発明の一実施例図であって、本発明の特徴と
するところは次の点にある。即ち一端が空気圧縮系(1
)に接続され、他端開口(6)に可撓性タンク(7)(
例えばステンレス板やテフロン製)が接続された加圧燃
焼用空気の貯溜管体(8)(例えば鉄管。
(Means for Solving the Problems) FIG. 2 is a diagram showing an embodiment of the present invention, and the features of the present invention are as follows. That is, one end is connected to the air compression system (1
) and a flexible tank (7) (
A pressurized combustion air storage pipe (8) (for example, an iron pipe) is connected to a storage pipe (8) (for example, made of stainless steel plate or Teflon).

ビニール管)を、海底(9)に沿わせて海中に設けると
共に、可撓性タンク接続端(6)における海水圧が貯溜
される燃焼用空気0I11のそれに対抗しうる圧力とな
るように可撓性タンク接続端(6)の水深l(を選定す
ることを特徴とするものであって、可撓性タンク(7)
の大きさ、数、肉厚などは燃焼用空気の貯溜量、圧力、
水深などに関係して選定される。なお0υは加圧燃焼用
空気による管体(8)などの浮上りを防止するための重
りであって、例えば岩屑などが使用される。
A vinyl pipe) is installed in the sea along the seabed (9), and is flexible so that the seawater pressure at the flexible tank connection end (6) can counteract that of the stored combustion air 0I11. The flexible tank connection end (6) is characterized by selecting a water depth l(), and the flexible tank (7)
The size, number, and wall thickness of the combustion air are determined by the amount of combustion air stored, pressure,
Selection is made based on water depth, etc. Note that 0υ is a weight for preventing the tube body (8) etc. from floating due to the pressurized combustion air, and is made of, for example, rock chips.

(作用と効果) 以上において加圧燃焼用空気α0)の圧力を例えば10
気圧としたとき、管体(8)を200mの等水深に位置
させて布設すれば管体(8)の可撓性タンク(7)に働
く海水圧はIO気圧となり、燃焼用空気の量が使用によ
って変ったとき可撓性タンク(7)は大きさを変える。
(Function and Effect) In the above, the pressure of the pressurized combustion air α0) is set to 10, for example.
If the pipe body (8) is installed at a constant water depth of 200 m, the seawater pressure acting on the flexible tank (7) of the pipe body (8) will be IO pressure, and the amount of combustion air will be The flexible tank (7) changes size as the use changes.

このため第1図によって前記した地中に掘削形成された
従来の貯溜装置のように燃焼用空気の使用によって圧力
が変ることがなく常時定圧に保たれ、タービンの運転に
悪影響を及ぼすことがない。
For this reason, the pressure does not change due to the use of combustion air, unlike the conventional storage device excavated and formed underground as shown in Figure 1, and is always maintained at a constant pressure, which does not adversely affect the operation of the turbine. .

またこれに加えて本発明は水中式であって、所要の水深
が得られさえすれば管体を布設するのみで作ることがで
き、地中掘削式のもののように掘削や廃止の処理などに
苦慮することなく比較的簡単に作ることができる。従っ
て湾岸や海岸などに建設されることが殆どであるガスタ
ービン発電プラントへの適用が容易である。
In addition to this, the present invention is an underwater type, and as long as the required water depth is obtained, it can be made by simply laying a pipe body, and unlike underground excavation type, it can be easily used for excavation and decommissioning. It can be made relatively easily without any difficulty. Therefore, it is easy to apply to gas turbine power generation plants, which are mostly constructed on the bay or coast.

(変形例) 以上では可撓性タンクを用いた場合について説明したが
、第3図のように管体(8)の海中端部(6)に廃棄す
る沈船a′;!Jを置き、この中に可撓性タンク(7)
を設けるように外力から保護することもできる。
(Modified Example) The case where a flexible tank is used has been described above, but as shown in Fig. 3, a sunken ship a';! is disposed of at the underwater end (6) of the pipe body (8). Place the flexible tank (7) in it.
It can also be protected from external forces by providing a

また海中端部(6)を閉塞すれば変圧式とすることがで
きる。ただこの場合にはタービンに対する海水の影響を
防止するための隔膜が要求される。また以上においては
貯溜空気による浮上り防止のため第2図に示すように重
りaυを用いたが、その代わりにロックフィ、ル材を管
体(8)内に充填してもよい。
Moreover, if the underwater end (6) is closed, it can be made into a transformer type. However, in this case, a diaphragm is required to prevent the influence of seawater on the turbine. Further, in the above description, a weight aυ was used as shown in FIG. 2 to prevent floating due to the stored air, but instead of this, a lock fill material may be filled into the pipe body (8).

この方法は地上部からロックフィル材を落しこめばよい
ので施行が簡単であるが、ロックフィル材が燃焼器内に
入るとタービンに悪影響を及ぼすので適切な隔膜が必要
である。また以上ではガスタービンに適用した場合につ
いて例示したが、例えばガスタービンの排気熱により蒸
気タービンを駆動して発電効率を高くした所謂複合発電
はもとより、加圧空気の貯溜を必要とする機器、その池
水の貯蓄用9石油備蓄タンクなどとして利用できる。
This method is easy to implement as it is sufficient to drop the rockfill material from above ground, but if the rockfill material enters the combustor it will have an adverse effect on the turbine, so an appropriate diaphragm is required. In addition, although the above examples have been applied to gas turbines, for example, it can be applied to so-called combined cycle power generation in which the exhaust heat of the gas turbine drives a steam turbine to increase power generation efficiency, as well as equipment that requires storage of pressurized air, etc. It can be used as an oil storage tank for pond water storage, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガスタービン発電の一例を示す系統図、第2図
は本発明の詳細な説明図、第3図は本発明の変形例の部
分図である。 (1)・・・空気圧縮機、(2)・・・燃焼器、(3)
・・・ガスタービン、(4)・・・発電機、(5)・・
・貯溜装置、(6)・・・可撓性タンク接続端、(7)
・・・可撓性タンク、(8)・・・管体、(9)・・・
海底、Ql・・・燃焼用空気、aυ・・・重り、α乃・
・・沈船。
FIG. 1 is a system diagram showing an example of gas turbine power generation, FIG. 2 is a detailed explanatory diagram of the present invention, and FIG. 3 is a partial diagram of a modification of the present invention. (1)...Air compressor, (2)...Combustor, (3)
...gas turbine, (4)...generator, (5)...
・Storage device, (6)...Flexible tank connection end, (7)
... Flexible tank, (8) ... Pipe body, (9) ...
Seabed, Ql...combustion air, aυ...weight, αno...
...Shipwreck.

Claims (1)

【特許請求の範囲】[Claims] 一端に貯溜加圧空気の充填口を有し、他端開口部に可撓
性タンクを接続した管体を、貯溜加圧空気圧力と対向し
うる水圧が得られる水深に位置させて布設したことを特
徴とする水中式タンク。
A pipe body with a filling port for stored pressurized air at one end and a flexible tank connected to the opening at the other end is installed at a depth where water pressure that can oppose the pressure of stored pressurized air can be obtained. A submersible tank featuring
JP61155082A 1986-07-03 1986-07-03 Underwater tank Pending JPS6312834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155082A JPS6312834A (en) 1986-07-03 1986-07-03 Underwater tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155082A JPS6312834A (en) 1986-07-03 1986-07-03 Underwater tank

Publications (1)

Publication Number Publication Date
JPS6312834A true JPS6312834A (en) 1988-01-20

Family

ID=15598261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155082A Pending JPS6312834A (en) 1986-07-03 1986-07-03 Underwater tank

Country Status (1)

Country Link
JP (1) JPS6312834A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030041408A (en) * 2001-11-20 2003-05-27 주식회사 유일산업 water storage and supply apparatus in under the sea
WO2007066117A1 (en) * 2005-12-07 2007-06-14 The University Of Nottingham Power generation
CN102261299A (en) * 2010-05-24 2011-11-30 陈汉保 Method for performing energy storage and electricity generation by utilizing underground mines
WO2012119018A1 (en) * 2011-03-03 2012-09-07 Research Triangle Institute, International Energy storage reservoir
JP2013057280A (en) * 2011-09-08 2013-03-28 Haruko Amiya Power generation system
JP2013057322A (en) * 2012-12-13 2013-03-28 Haruko Amiya Turbine cooling device
CN107559146A (en) * 2017-10-12 2018-01-09 华能国际电力股份有限公司 A kind of offshore wind power system with seabed compressed-air energy storage
CN111498036A (en) * 2020-05-28 2020-08-07 华能灌云清洁能源发电有限责任公司 Offshore floating wind turbine generator with energy storage device and electric energy consumption method
US11686284B2 (en) 2018-03-23 2023-06-27 Hans Gude Gudesen Underwater energy storage system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214608A (en) * 1982-06-09 1983-12-13 Mitsui Eng & Shipbuild Co Ltd Energy storage device
JPS62294723A (en) * 1986-06-13 1987-12-22 Shimizu Constr Co Ltd Energy storing equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214608A (en) * 1982-06-09 1983-12-13 Mitsui Eng & Shipbuild Co Ltd Energy storage device
JPS62294723A (en) * 1986-06-13 1987-12-22 Shimizu Constr Co Ltd Energy storing equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030041408A (en) * 2001-11-20 2003-05-27 주식회사 유일산업 water storage and supply apparatus in under the sea
WO2007066117A1 (en) * 2005-12-07 2007-06-14 The University Of Nottingham Power generation
US8030793B2 (en) 2005-12-07 2011-10-04 The University Of Nottingham Power generation
CN102261299A (en) * 2010-05-24 2011-11-30 陈汉保 Method for performing energy storage and electricity generation by utilizing underground mines
WO2012119018A1 (en) * 2011-03-03 2012-09-07 Research Triangle Institute, International Energy storage reservoir
JP2013057280A (en) * 2011-09-08 2013-03-28 Haruko Amiya Power generation system
JP2013057322A (en) * 2012-12-13 2013-03-28 Haruko Amiya Turbine cooling device
CN107559146A (en) * 2017-10-12 2018-01-09 华能国际电力股份有限公司 A kind of offshore wind power system with seabed compressed-air energy storage
US11686284B2 (en) 2018-03-23 2023-06-27 Hans Gude Gudesen Underwater energy storage system
CN111498036A (en) * 2020-05-28 2020-08-07 华能灌云清洁能源发电有限责任公司 Offshore floating wind turbine generator with energy storage device and electric energy consumption method

Similar Documents

Publication Publication Date Title
US7743609B1 (en) Power plant with energy storage deep water tank
Lim et al. Conceptual design of ocean compressed air energy storage system
Tabor et al. The Beith Ha'Arava 5 MW (e) solar pond power plant (SPPP)—progress report
US9649582B2 (en) Deep sea collection of solid materials from geothermal fluid
US20090021012A1 (en) Integrated wind-power electrical generation and compressed air energy storage system
EP2154417A2 (en) A compressed gas utilisation system and method with sub-sea gas storage
CN102686850A (en) Underwater compressed fluid energy storage system
GB2415975A (en) Subsea power supply
Pimm et al. Underwater compressed air energy storage
US20120061973A1 (en) Method and Apparatus for Compressed Gas Energy Storage in Offshore Wind Farms
CN104021828A (en) Fixed platform type floating nuclear power station and material changing method
JPS6312834A (en) Underwater tank
CN203826014U (en) Semi-submersible platform floating nuclear power station
Seymour Ocean energy on-demand using underocean compressed air storage
CN203826016U (en) Fixed platform type floating nuclear power plant
WO2021043759A1 (en) An energy system for supply of power to a mobile offshore drilling unit
JP7198632B2 (en) wind power system
JP2755778B2 (en) Deep sea power storage plant
Lim Ocean Compressed Air Energy Storage Integrated with Offshore Renewable Energy Sources.
JPS63239320A (en) Underwater energy storage device
JPS63239319A (en) Underwater energy storage device
Long et al. Storage-integrated energy harvesters
Gorlov Hydrogen as an activating fuel for a tidal power plant
JPH0271053A (en) Compressed air energy storage system
CN104021827A (en) Semisubmersible platform floating nuclear power station and material changing method